
GALS-SA TEST EXTENSION

Răzvan JIPA

1

Abstract: The paper presents a flexible and scalable test solution designed

for a new class of hybrid circuits - GALS-SA that combine the structured

ASIC advantages with the GALS (Globally Asynchronous Locally

Synchronous) architecture. The test solution consists of two parts: intrinsic
tests that ensure important functions are always tested at power-up and

extension tests that are required only during prototype debug and

characterization and are implemented on configurable logic that can be used

later for user design for mass production. The proposed solution offer means

to implement any user-specific test function without affecting the platform

intrinsic architecture with small area penalty.

Key words: GALS, synchronous, structured ASIC, test.

1 Dept. of Electronics and Computers, Transilvania University of Braşov.

1. Introduction

The advance in microelectronic

technology that follows Moor’s law offers

the digital circuit designer the possibility to

build bigger and more complex circuits,
but at the same time creates several

challenges when building large structures.

One of these challenges is to distribute a

global clock across the design with

minimum skew without implying large

design efforts and occupied area.

A possible solution to these problems is

the hybrid synchronous-asynchronous

circuits or GALS (globally asynchronous

locally synchronous) circuits. These

circuits were first introduced by Chapiro

[1] and they advocate for a synchronous

design style for the modules while the

interconnections between modules are

asynchronous communication channels.

This type of design brings the advantage of

removing the global clock network and

diminishing the clock network power

consumption with up to 70% that accounts

up to 20% from the total power consumption

of a synchronous circuit [3].

Interconnecting synchronous modules

with an asynchronous environment is

accomplished by the asynchronous

wrappers that embed the synchronous

module transforming it into an
asynchronous one. It contains a local clock

generator, and asynchronous finite state

machines (AFSM) for synchronous-

asynchronous transformation. A wrapper

implementation with a modular approach

that uses 4-phase bundled data protocol

was proposed by Muttersbach in [7]

(Figure 1).

Locally

synchronous

module

Local clock

generator

Port

controller

Port

controller

Self-timed wrapper Input port Output port

Fig. 1. Asynchronous wrapper

Bulletin of the Transilvania University of Braşov • Vol. 2 (51) - 2009 • Series I

274

Another possible solution used to

overcome the complexity of large designs

is the structured ASIC platforms also

called zero mask-change ASIC [8]. These

platforms provide pre-manufactured and

verified elementary logic structures and

require inexpensive metallization process

in order interconnect the logic elements to

implement the desired function. This

technological approach provides cost

reduction compared to the traditional

standard cell flow and FPGA (for moderate

production volumes) as well as power

reduction compared with FPGA design

offering similar performances.

A combination of those two concepts

into new hybrid platform was previously

analyzed in [4] and general architectural

solutions were provided, but no testing

solution was presented. In [2] and there is

presented a general purpose test structure

for GALS designs based on the JTAG

protocol where all modules are tied in a

chain. This approach although universal

may not offer the best solution in terms of

test time and is not compatible with the

architectural constraints the GALS-SA

platform requires. In [6] is presented a

custom test solution that ensures well-

known synchronous testing methodologies

can be applied to the GALS platforms

ensuring asynchronous resources can be

tested in order to guarantee their function.

The paper is based on the architectures

previously developed by author in [5] and

[6] and presents a modified version of the

test module that allows test extension

modules implementation without using

intrinsic circuit area, but utilizing logic

array cells that can be reused by user

designs if the extension test modules are

not required. This proves to be a flexible

solution during platform characterization

and debug when several additional tests are

required while for mass production the test

extensions are no longer required leaving

more room for the user designs.

2. General Architecture

The architecture proposed by author in

[6] ensures that a hybrid GALS-SA

platform (GALS architectures implemented

on a structured ASIC platform) is able use

the same serial link to perform structural

and functional tests of the asynchronous

channels and to calibrate the local clock

generators (specific to a GALS architecture).

The solution uses a 6-wire serial protocol

to send configuration and calibration

information for local clocks as well test

commands to intrinsic local test modules

attached to each synchronous logic block.

In Figure 2 is presented the proposed

general architecture of a GALS-SA

platform where each synchronous logic

block has associated a test module and

serial link module.

local clock gen

synchronous

logic block

JTAG controller

Serial controller

local clock gen

synchronous

logic block

local clock gen

synchronous

logic block

local clock gen

synchronous

logic block

asynchronous resources

test resources

Fig. 2. GALS-SA general architecture

The test resources are implemented on
the intrinsic structure of the platform and

can not be customised later the

technological process opposed to the logic

blocks that allow the implementation of

any synchronous random logic that can be

customised on the last stage of the

manufacturing process. Due to these

particularities the intrinsic test module

Jipa, R.: GALS-SA Test Extension 275

implementation has to be a compromise

between features and occupied area. The

proposed solution in [6] (Figure 3) restricts

to a minimum the features to reduce the

area overhead. The test modules presented

implement only two tests:

• Functional test of the asynchronous

channel that exercises the data link and the

handshake signals.

• Structural test that measure the

asynchronous channel latency.

Locally

synchronous

module

Local

clock

generator

Input port Output port

Test module

Local
serial

interface
Previous serial

interface

Next serial

interface

asynchronous resources

test resources

Fig. 3. Test solution architecture

Although this architecture offers support

to test the most important features of the

asynchronous channels, it is not flexible

and does not offer any mean to add new

asynchronous channel tests.

3. Test Extension Architecture

To ensure that a GALS-SA platform is

capable to provide means to implement

different tests that targets the asynchronous

or the synchronous resources, a test extension

needs to be added to the already existent

test resources. Since the test resources are

intrinsic circuits, then a flexible test

extension need to be implemented on the

synchronous logic block in order to allow

the implementation of any test. This

approach requires some modification of

the main serial controller and on the local

test modules and of the serial transfer

protocol. The following sections describe

the custom extensible test solution proposed

by author for GALS-SA platforms.

3.1. Serial Protocol

The communication is performed using

variable length serial frames that contain a

set of compulsory fields (serial chain test

module address and command) and

optional fields whose number, content and

length depend on the type of command.

For each received frame, a response frame

is issued by the target module and contains

serial protocol status bits and optional

status data. The general format of the

frames is described in Figure 4.

The serial protocol status bits are used to

specify if the transmitted frame was valid

or if it contains the address of a non-

existent module or a not-implemented

operation was selected. The response

frame is be issued by the target module

only after the operation is complete and

clears the serial bus for another access as

described in Figure 5.

Because each serial frame transmitted is

accompanied by “valid” signal

(serTxEn/serRxEn) the frames can have
variable length and this provides a flexible

enough solution to ensure that new type of

frames can be added without any

modification of the serial protocol.

 addr cmd command specific data

a)

frame status cmd status/data
b)

Fig. 4. Serial frames structure for

 transmit (a) and receive (b)

Bulletin of the Transilvania University of Braşov • Vol. 2 (51) - 2009 • Series I

276

serClk

addr

serTxEn

serTxData

serRxEn

serRxData

cmd data

status

Fig. 5. Serial connection with TX and RX frames

4. Test Extension

The test extension implementation needs

to follow several constraints in order to

obtain a cost-effective, flexible solution:

• Keep to a minimum the hardware

structures added to the already existent

intrinsic modules.

• Do not affect the timing of already

existent modules.

• Provide a simple extension that ensures

ease of design and implementation of the

additional test using the platform logic blocks.

The proposed solution, whose architecture

is described in Figure 6, was devised such

way to respect all the above enumerated

constraints.

From the transmitter point of view, the

main serial controllers (Figure 2), there are

minimum changes required in order to

support the new test extension:

• Add a 1-bit via programmable input

that enable/disable the test extension.

• Add a new input that specified the

extended test frame length based on the

extended test command type; this value is

generated by a logic module implemented

on the synchronous logic blocks.

As described in the implementation

section this increases the area with a

negligible amount.

The local serial controller needs to

implement several changes, because it is

responsible for translating the received

serial frames into test action and to

compose the return frames based on the

test results and status. Local serial

controller uses a shift register to convert

from serial to parallel the incoming frames

and passes through to test extension

interface the command and its specific data

if there are any. This approach solves data

receiving part of the test extension with

zero area overhead.

On the transmit side, when return frames

are generated, in order to avoid increasing

the length of the serialise circuit, already

kept to a minimum by the short length of

the intrinsic implemented test commands,

the solution is to let the external test

extension to implement its own serialize

circuit using logic blocks and implement

only the circuits that perform the selection

between the intrinsic logic and external test

logic (Figure 7).

5. Implementation and Results

To compare the results in terms of

occupied between the solution proposes in

[6] and the improved solution in this paper

the same technology and EDA was

selected for implementation. The target

technology was a 90 nm standard cell and

Magma BlastFusion was used tool to

perform all the stages from RTL synthesis

to layout.

Also a test extension that offers two new

tests was included. The new tests logic

were implemented using as target

technology the 90-nm eASIC Nextreme

logic fabric as synchronous logic blocs

Jipa, R.: GALS-SA Test Extension 277

 Locally synchronous module

Test

extension

port

Test

module

Local serial

interface

Previous serial

interface

Next serial

interface

test/serial extension resources

test/serial intrinsic resources

Test

extension
Serial control.

extension

test/serial extension resources

test/serial intrinsic resources

out

in

cmd
data

out

Test

logic
Extension

enable

Fig. 6. Test solution architecture Fig. 7. Test solution architecture

together with Magma BlastCrate SA for a

complete implementation.

One additional test was used to increase

the coverage of the asynchronous channel

functional test by allowing user selected

patterns to be sent over the channel

opposed to the intrinsic test that exercise

the channel with a series of pseudorandom

generated patterns. The second test allow

the user to read back the signature
computed after receiving each patter on the

same asynchronous channel function test.

In case of communication failure the user

has a mean to observe closely the failing

values localize the source of errors during

debug session.

Comparing the results (Table 1) of the

solution implemented in [6] with the

proposed solution, one can notice the area

increase that might seems moderate is

rather negligible when compared with the

area of a single synchronous block. Even

the total area occupied by the test solution

including external test extension is small

compared with the logic block area.

The test extensions occupy a small

portion of the platform total available logic

blocks providing valuable testing options

that may ease the possible debug process.

The small footprint is achieved because a

lot of resources are shared with the

intrinsic test and serial modules and in case

of necessity the area can be used by user

design if the prototype debug process is

complete.

Implementation results Table 1

Module
Area

[um
2
]

Overhead

[%]

Architecture without test extension

Main serial controller 2666 -

Local serial controller 4472 -

Test controller 8679 -

Architecture with test extension

Main serial controller 2829 5.66

Local serial controller 5369 16.7

Test controller 10257 15.4

Main serial extension 95 -

Local serial extension 973 -

Total area 3706 23.4

Overhead compared to logic block area

Total area 19523 4.64

Area increase 3706 0.88

Logic block 420000 -

6. Conclusions

The paper presents a custom test

extension developed by the author to

address the testing needs of GALS-SA

hybrid platform. The proposed test solution

relies on the intrinsic test structure of the

Bulletin of the Transilvania University of Braşov • Vol. 2 (51) - 2009 • Series I

278

platform that offer limited testing

capabilities, in order to gain access to the

logic module that needs to be verified and

adds resources to allow the designer to

implement as many additional test as

required using the programmable logic

blocks. In this way a is obtained a flexible

and scalable test solution that address the

test requirement and the post manufacturing

debug features of the GALS-SA hybrid

platforms.

The area penalty for implementing the

intrinsic portion of the test resources such

is rather negligible - 4.64% overhead

compared with the total synchronous

resources area and is permanent for all

designs. The area occupied by the logic

implementing the test module depends on

the complexity and number of test, but this

is not considered a permanent overhead

since the modules are implemented on

programmable logic that can be reused n

other purpose when a different design is

implemented and the test extensions modules

are not required.

References

1. Chapiro, D.: Globally-Asynchronous

Locally-Synchronous Systems. In: Ph.D.

Thesis, Stanford University, STAN-

CS-84-1026, Oct. 1984.

2. Gurkaynak, F.K., et al.: A Functional

Test Methodology for Globally-

Asynchronous Locally-Synchronous
Systems. In: Proceedings of Eight

International Asynchronous Symposium,

ASYNCH 2002, Manchester, UK,

2002, p. 181-189.

3. Hemani, A., Meincke, T., et al.:

Lowering Power Consumption in

Clock by Using Globally Asynchronous

Locally Synchronous Design Style. In:

Proceedings of 36
th
 Design Automation

Conference, New Orleans, USA, 1999,

p. 873-878.

4. Jipa, R., Tulbure, T.: Gals Designs

Implementation on “Structured ASIC”

Platforms. In: Bulletin of the

Transilvania University of Braşov,

Vol. 1 (50), Series I, 2008, p. 351-356.

5. Jipa, R.: Dedicated Solution for Local

Clock Programming in GALS Designs.

In: Proceedings of International

Semiconductor Conference CAS 2008,

Sinaia, Romania, 2008, p. 393-396.

6. Jipa, R.: Custom Test Solution for

GALS Modules Implemented on

Structured ASIC Platforms, In:

Proceeding of the Third International

Electronics, Computers and Artificial

Intelligence Conference, ECAI 2009,

Piteşti, Romania, 2009, p. 7-13.

7. Muttersbach, J., Villiger, T., Fichtner,

W.: Practical Design of Globally-

Asynchronous Locally-Synchronous

Systems. In: Proceedings of Sixth

International Asynchronous Symposium,

ASYNCH 2000, Eilat, Israel, 2000, p.

52-59.

8. http://www.easic.com.

