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Abstract
The main purpose of this paper is to investigate the existence of parallel hypersur-

faces in a generalized Sasakian space forms.
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1 Introduction

The propose of this paper is to study some submanifolds in the generalized Sasakian forms.
Therefore, we obtain a characterization of manifolds whose tangent space are Lie triple
systems. As an application, we prove that the structure vector field of the generalized
Sasakian space forms is either tangent or normal to a parallel submanifold extending Pitis
result for C(α) manifold [7].

Almost contact structures (φ, ζ, η, g) is an C(α) manifold if the Riemannian tensor R
satisfies the following equality

R(X, Y, Z, U) = R(X, Y, φZ, φU) + α[g(X, U)g(Y, Z)− g(X, Z)g(Y, U)
−g(X, Z)g(Y, U) + g(X, φZ)g(Y, φU)− g(Y, φU)g(Y, φZ)]

For an α ∈ IR and for all X, Y, Z, U ∈ H(M) the curvature tensor of manifolds is
given by:

R(X, Y ) =
c + 3α

4
[g(Y, Z)X − g(X, Z)Y ] +

c− α

4
[η(X)η(Z)Y −

−η(Y )η(Z)X + g(X, Z)η(Y )ζ − g(Y, Z)η(X)ζ + g(Z, φY )φX

−g(Z, φX)φY + 2g(X, φY )φZ]

where c is the φ sectional curvature [7]. Finally, we recall the notion of the Lie systems
this is a linear subspace S of the tangent space TxM , such that R(X, Y )Z ∈ S for all
X, Y, Z ∈ S

Finally, we show that there is no parallel hypersurfaces in the Sasakian space forms
M2n+1(c) with n ≥ 2.
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2 Preliminaries

Let (M2n+1, g) be a 2n + 1 dimensional manifold and let (φ, ζ, η) be tensor fields of type
(1,1), (1,0) and (0,1) respectively on M, such that:

η(ζ) = 1 and φ2 = −I + ζ ⊗ η

This implies
η ◦ φ = 0 η(ζ) = 0 and rank(φ) = 2n.

If M admits a Riemannian metric G such that:

g(φX, φY ) = g(X, Y )− η(x)η(y)
η(X) = g(X, ζ)

Then is called an almost contact metric structure on M . If moreover

(∇̃Xθ)Y = g(X, Y )ζ − η(Y )X

Where ∇̃ denotes the Riemannian connection of G , then (M,φ, ζ, η, g) is called a Saskian
manifold (see [5]). The sectional curvature of the plane section spanned by the unit tangent
vector field Xorthogonal to ζ and φX is called a φ -sectional curvature. If M has a
constant -sectional curvature C , then M is called a Sasakian space forms and denoted
by M2n+1(c) . The Riemannian curvature of a Sasakian forms is given by the following
formula:

R(X, Y, Z) =
c + 3

4
[g(Y, Z)X − g(X, Z)Y ] +

c− 1
4

[η(X)η(Z)Y

−η(Y )η(Z)X] +
c− 1

4
[g(X, Z)η(Y )ζ − g(Y, Z)η(X)ζ

+g(Z, φY )φX − g(Z, φX)φY + 2g(X, φY )φZ]

[5, 3].
Example 1. We consider IR2n+1with the coordinates (xi, yi, z), i = 1, ..., n and its

usual contact form η = 1
2(dz −

n∑
i=1

yidxi). The characteristic field is given by ζ = 2 ∂
∂z ,the

tensor field φ is given by the matrix

 0 ∂ij 0
−∂ij 0 0
0 yj 0

 and the Riemannian metric g =

η⊗η+ 1
4

n∑
i=1

(dxi)2 +(dyi)2 is an associated metric for η. In this case IR2n+1 is a Sasakian

space forms with φ-sectional curvature c = −3, denoted by IR2n+1(−3) [5, 3].

Given an almost contact metric (M,φ, ζ, η, g) , M is called generalized Sasakian space
forms if there exists three functions f1, f2 and f3 such that the Riemannian curvature
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tensor is given by the following formula:

R(X, Y, Z) = f1[g(X, Z)X − g(X, Z)Y ] + (2.1)
f2[g(Z, φY )φX − g(Z, φX)φY + 2g(X, φY )φZ] +
f3[η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ζ − g(Y, Z)η(X)ζ]

In such case, we will write M(f1, f2, f3). This kind of manifolds appears as nastural
generalization of the Sasakian space form by taking:

f1 =
c + 3

4
and f2 = f3 =

c− 1
4

.

The φ- sectional curvature of generalized Sasakian space forms M(f1, f2, f3) is f1 + 3f2

[1].
Let N2nbe an immersed hypersurface of M2n+1(f1, f2, f3) . We denote the Levi Cevita

connection of M by and the Levi Civita connection of N by ∇ . Then we have the
formulas of Gauss and Weingarten

∇̃XY = ∇XY + h(X, Y )r
∇̃Xr = −SX

where X and Y are tangent vector fields, r a unit normal vector normal to N , H the
second fundamental form and S the shape operator of N . Note that H and S are related
by h(X, Y ) = g(SX, Y ). A hypersurface is called parallel if ∇̃h = 0 [2].

3 Main results

Theorem 3.1. [6]: Let N be a connected submanifold (dim N ≥ 2) of generalized
Sasakian space forms with f3 6= 0 and f3 + 3f2 6= 0. If all tangent spaces are Lie
M2n+1(f1, f2, f3) triple systems then the structure vector field ζ is either tangent or normal
to N at every point of N .

Proof. If R(X, Y )Z ∈ TXN for all X, Y, Z ∈ TXN, then by using (2.1) we have:

f2[g(Z, φY )φX − g(Z, φX)φY + 2g(X, φY )φZ]⊥

+ f3[g(X, Z)η(Y )− g(Y, Z)η(X)]ζ⊥ = 0 (3.2)

where ζ⊥ is the normal component of the vector ζ and ζt is the tangent component of the
vector ζ .

Case 1: If f2 = 0 then by using (3.2), we have:

[g(X, Z)η(Y )− g(Y, Z)η(X)]ζ⊥ = g(g(X, Z)Y − g(Y, Z)X, ζt)ζ⊥ = 0

This implies


ζ⊥ = 0

or
g(g(X, Z)Y − g(Y, Z)X, ζt) = 0

=⇒


ζ⊥ = 0

or
ζt = 0
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Case 2: If f2 6= 0, suppose that ζt 6= 0 and ζ⊥ 6= 0 . Since rankφ = 2n then
φζt 6= 0 and φζ⊥ 6= 0 .

Now for Z = Y = ζt, (3.2) becomes

f3[g(X, ζt)η(ζt)− g(ζt, ζt)η(X)]ζ⊥+

+f2[g(X, φζt)φζt − g(ζt, φζt)φX + 2g(X, φζt)φζt]⊥ = 0

since

η(X) = g(X, ζt), g(ζt, ζt) = η(ζt), η ◦ φ = 0, g(X, φX) = 0 and f2 6= 0

then
g(X, (φζt)t)(φζt)⊥ = 0

We have two cases
Case 2.1:(φζt)⊥ = 0
Then (φζt) is tangent to N and by taking and , Y = Z = (φζt) (3.2) becomes:

3f2g(ζt, φ2ζt)(φ2ζt)⊥ + f3g(ζt, φ2ζt)(η(ζt))ζ⊥ = 0

Therefore
g(ζt, φ2ζt)(η(ζt))ζ⊥ = 0.

So
g(φζt, φζt) = g(ζt, ζt)ζ⊥ = 0.

However, under the assumption ζt 6= 0 and ζ⊥ 6= 0 the last equation is impossible.
Case 2.2: (φζt)t = 0
In this case φζt is normal to N anf if X = ζt , from (3.2) we obtain:

f2[g(ζt, φZ)φY − g(Y, φZ)φζt + 2g(ζt, φY )φZ]⊥

+ f3[g(ζt, Z)η(Y )− g(Y, Z)η(ζt)]ζ⊥ = 0

But
g(ζt, φZ) = −g(φζt, Z) = 0.

Because is normal to N which implies

−f2g(Y, φZ)φζt + f3[g(ζt, Z)η(Y )− g(Y, Z)η(ζt)]ζ⊥ = 0.

Therefore

g(ζt, Z)g(ζt, Y )− g(Y, Z)g(ζt, ζt) = 0 (3.3)
and

g(Y, φZ) = 0

Because φζt and ζ⊥ are linearly independents. From the first equality (3.3) we
deduce

g(ζt, Y )ζt − g(ζt, ζt)Y = 0.

This contradicts to the hypothesis ζt 6= 0 and (dim N ≥ 2).
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Remark 3.1. In the previous paper [6], we did not mention the condition f3 + 3f2 6= 0
, because for f3 + 3f2 = 0 , the generalize Saskian space forms is a space of constant
curvature, so we did not study this case.

Theorem 3.2. Let N be a connected parallel submanifold dim N ≥ 2 of the generalized
space forms M2n+1(f1, f2, f3) with f3 + 3f2 6= 0 and f3 6= 0. Then the structure vector-
vector field ζ is either tangent or normal to N at every point of N .

Proof. The Codazzi equation is given by:

[R(X, Y )Z]⊥ = (∇̃Xh)(Y, Z)− (∇̃Y h)(X, Z)

where H is the second fundamental form. If N is parallel ∇̃xh = 0, then

[R(X, Y )Z]⊥ = 0

and by using Theorem 2 we obtain the result.

By taking

f1 =
c + 3α

4
and f2 = f3 =

c− α

4
we get Pitis theorem [7].

And for
f1 =

c + 3
4

and f2 = f3 =
c− 1

4
we have

Colorallary 3.1. Let N be a connected parallel submanifold dim N ≥ 2 of Sasakian space
forms M2n+1(c) with c 6= 1 . Then the structure vector-field ζ is either tangent or normal
to N at every point of N .

Colorallary 3.2. Let Nm a connected parallel submanifold of the Sasakian space forms
M2n+1(c) with m〉n and c 6= 1. Then the structure vector-field ζ is tangent to N at every
point of N .

4 Parallel hypersurfaces of Sasakian space forms

Theorem 4.1. In the Sasakian space forms M2n+1(c) with n ≥ 2, c 6= 1 there is not a
parallel connected hypersurfaces.

Proof. If N is a connected parallel hypersurface of the Sasakian space forms M , then by
Corollary 2, ζ is tangent to N . We denote by K the unit normal vector field to N and put

ζ1 = −φk.
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Since K is orthogonal to N , then

g(ζ1, ζ1) = g(φK, φK) = 1

and
g(ζ1,K) = g(ζ1, ζ) = 0.

Hence ζ1is tangent to N . For XεTxN , we set

φX = fX + w(X)K

where w and f are tensors fields on N of type (0,1) and (1,1) respectively, also fX
represents the tangent part of φX . Moreover, it is easy to verify that:

w(X) = g(X, ζ1) and φζ1 = K.

By the Codazzi equation and that ζ is tangent (from Theorem (3.2)) we obtain for all
X, Y and Z in TxN :

0 = (∇̃Xh)(Y, Z)− (∇̃Y h)(X, Z) = [R(X, Y )Z]⊥

=
c− 1

4
[g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ]⊥

=
c− 1

4
[g(X, φZ)w(Y )− g(Y, φZ)w(X) + 2g(X, fY )w(Z)]K = 0

If we take Z = ζ1, we have
c− 1

4
g(X, fY ) = 0

Since c 6= 1then fY = 0. In this case dim φ(TxN) = 1 . Since

TxM = TxN + TxN⊥ and rankφ = 2n

So
2n− 1 ≤ dim φ(TxN)⊥ ≤ 2n

which is impossible because

n ≥ 2 and dim TxN⊥ = 1 (dim φ(TxN⊥)) ≤ 1.

We deduce

Colorallary 4.1. There is not parallel-connected hypersurfaces in IR2n+1(−3) with n ≥ 2.
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