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Abstract

We establish Filippov type existence theorems for solutions of certain boundary
value problems of some second-order differential inclusions.
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1 Introduction

This paper is concerned with differential inclusions of the form

Dx ∈ F (t, x), (1.1)

where D is a differential operator and F (., .) : [0, 1]× R → P(R) is a set-valued map.
In the last years we observe a remarkable amount of interest in the study of existence

of solutions of several boundary value problems associated to problem (1.1). Most of these
existence results are obtained using fixed point techniques and are based on an integral
form of the right inverse to the operator D. This means that for every f the unique
solution y of the equation Dy = f can be written in the form y = Rf , where the operator
R possesses nonnegative Green’s function.

For a first order differential inclusion defined by a lipschitzian set-valued map with
nonconvex values, Filippov’s theorem ([8]) consists in proving the existence of a solution
starting from a given almost solution. Moreover, the result provides an estimate between
the starting almost solution and the solution of the differential inclusion.

The aim of this paper is to show that Filippov’s ideas can be suitably adapted in order
to obtain the existence of solutions for the following problems

x′′ − λx′ ∈ F (t, x), a.e. (I), x(0) = a0, x(1) = a1, (1.2)

x′′ ∈ F (t, x), a.e. (I), x(0)− k1x
′(0) = c1, x(1) + k2x

′(1) = c2, (1.3)

where I = [0, 1], F (., .) : I × R → P(R) is a set-valued map, λ > 0 and ai, ci ∈ R, and
ki ∈ R+, i = 1, 2.
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Existence results obtained using fixed point techniques for problem (1.2) may be found
in [4,5] and for problem (1.3) may be found in [3,6,7]. We note that a similar results for
another class of differential inclusions may be found in [2].

The paper is organized as follows: in Section 2 we recall some preliminary facts that
we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

Let (X, d) be a metric space. We recall that the Pompeiu-Hausdorff distance of the closed
subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
Let I = [0, 1], by C(I) we denote the Banach space of all continuous functions from I

to R with the norm ||x(.)||C = supt∈I |x(t)|, by AC1 we denote the space of differentiable
functions x(.) : (0, 1) → R whose first derivative x′(.) is absolutely continuous and by L1

we denote the Banach space of Lebesgue integrable functions x(.) : [0, 1] → R endowed
with the norm ||u(.)||1 =

∫ 1
0 |u(t)|dt.

A function x(.) ∈ AC1 is said to be a solution of (1.2) (resp., (1.3)) if there exists a
function v(.) ∈ L1 with v(t) ∈ F (t, x(t)), a.e. (I) such that x′′(t)−λx′ = v(t), a.e. (I) and
x(.) satisfies the corresponding boundary conditions.

Lemma 1. If v(.) : [0, 1] → R is an integrable function then the problem

x′′(t)− λx′(t) = v(t) a.e. (I), x(0) = a0, x(1) = a1,

has a unique solution x(.) ∈ AC1 given by

x(t) = Pa(t) +
∫ 1

0
G(t, s)v(s)ds,

where, if a = (a0, a1) ∈ R2, we denote

Pa(t) =
1

eλ − 1
[(eλ − eλt)a0 + (eλt − 1)a1]

the unique solution of the problem

x′′ − λx′ = 0 x(0) = a0, x(1) = a1,

and

G(t, s) =
1

eλs(1− eλ)

{
(eλt − 1)(eλs − eλ) if 0 ≤ t ≤ s ≤ 1
(eλs − 1)(eλt − eλ) if 0 ≤ s ≤ t ≤ 1

is the Green function associated to the problem.

x′′ − λx′ = 0 x(0) = 0, x(1) = 0.



On some second-order differential inclusions 13

The proof of Lemma 1 may be found in [4].
Note that if a = (a1, a2), b = (b1, b2) ∈ R2 we put ||a|| = |a1|+ |a2| and

|Pa(t)− Pb(t)| ≤ ||a− b||.

Denote M := supt,s∈I |G(t, s)|.

Lemma 2. If v(.) : [0, 1] → R is an integrable function then the problem

x′′(t) = v(t) a.e. (I)
x(0)− k1x

′(0) = c1,
x(1) + k2x

′(1) = c2,

has a unique solution x(.) ∈ AC1 given by

x(t) = Qc(t) +
∫ 1

0
G1(t, s)v(s)ds,

where if c = (c1, c2) ∈ R2 we denote

Qc(t) =
(1− t + k2)c1 + (k1 + t)c2

1 + k1 + k2

and

G1(t, s) =
−1

1 + k1 + k2

{
(k1 + t)(1− s + k2) if 0 ≤ t < s ≤ 1
(k1 + s)(1− t + k2) if 0 ≤ s < t ≤ 1

is the Green function of the problem.

The proof of Lemma 1 may be found in [3].
Note that if a = (a1, a2), b = (b1, b2) ∈ R2 we put ||a|| = |a1|+ |a2| and

|Qa(t)−Qb(t)| ≤ ||a− b||.

On the other hand, it is well known that supt,s∈I |G1(t, s)| = 1+k1+k2
4 .

In what follows we impose the following conditions on F .

Hypothesis 1. (i) F (., .) : I×R → P(R) has nonempty closed values and for every x ∈ R
F (., x) is measurable.

(ii) There exists L(.) ∈ L1 such that for almost all t ∈ I, F (t, .) is L(t)-Lipschitz in the
sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ R.

3 The main result

We are now ready to prove the main result of this paper.
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Theorem 1. Assume that Hypothesis 1 is satisfied, assume that M ||L||1 < 1 and let
y(.) ∈ AC1 be such that there exists q(.) ∈ L1 with d(y′′(t)− λy′(t), F (t, y(t))) ≤ q(t), a.e.
(I). Denote ã0 = y(0), ã1 = y(1) and ã = (ã0, ã1).

Then there exists x(.) a solution of (1.1)-(1.2) satisfying for all t ∈ I

|x(t)− y(t)| ≤ 1
1−M ||L||1

||a− ã||+ M

1−M ||L||1
||q||1. (3.1)

Proof. The set-valued map t → F (t, y(t)) is measurable with closed values and

F (t, y(t)) ∩ {y′′(t)− λy′(t) + q(t)[−1, 1]} 6= ∅ a.e. (I).

It follows (e.g., Theorem 1.14.1 in [1]) that there exists a measurable selection f1(t) ∈
F (t, y(t)) a.e. (I) such that

|f1(t)− y′′(t) + λy′(t)| ≤ q(t) a.e. (I) (3.2)

Define x1(t) = Pa(t) +
∫ 1
0 G(t, s)f1(s)ds and one has

|x1(t)− y(t)| ≤ ||a− ã||+ M ||q||1.

We claim that it is enough to construct the sequences xn(.) ∈ C(I), fn(.) ∈ L1, n ≥ 1
with the following properties

xn(t) = Pa(t) +
∫ 1

0
G(t, s)fn(s)ds, t ∈ I, (3.3)

fn(t) ∈ F (t, xn−1(t)) a.e. (I), n ≥ 1, (3.4)

|fn+1(t)− fn(t)| ≤ L(t)|xn(t)− xn−1(t)| a.e. (I), n ≥ 1. (3.5)

If this construction is realized then from (3.2)-(3.5) we have for almost all t ∈ I

|xn+1(t)− xn(t)| ≤
∫ 1

0
|G(t, t1)|.|fn+1(t1)− fn(t1)|dt1 ≤

M

∫ 1

0
L(t1)|xn(t1)− xn−1(t1)|dt1 ≤ M

∫ 1

0
L(t1)

∫ 1

0
|G(t1, t2)|.

|fn(t2)− fn−1(t2)|dt2 ≤ M2

∫ 1

0
L(t1)

∫ 1

0
L(t2)|xn−1(t2)− xn−2(t2)|dt2dt1

≤ Mn

∫ 1

0
L(t1)

∫ 1

0
L(t2)...

∫ 1

0
L(tn)|x1(tn)− y(tn)|dtn...dt1 ≤

≤ (M ||L||1)n(||a− ã||+ M ||q||1).

Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I), hence converging
uniformly to some x(.) ∈ C(I). Therefore, by (3.5), for almost all t ∈ I, the sequence
{fn(t)} is Cauchy in R. Let f(.) be the pointwise limit of fn(.).
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Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
∑n−1

i=1 |xi+1(t)− xi(t)| ≤ ||a− ã||
+M ||q||1 +

∑n−1
i=1 (||a− ã||+ M ||q||1)(M ||L||1)i = ||a−ã||+M ||q||1

1−M ||L||1 .
(3.6)

On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all t ∈ I

|fn(t)− y′′(t) + λy′(t)| ≤
∑n−1

i=1 |fi+1(t)− fi(t)|+ |f1(t)− y′′(t) + λy′(t)|
≤ L(t) ||a−ã||+M ||q||1

1−M ||L||1 + q(t).

Hence the sequence fn(.) is integrably bounded and therefore f(.) ∈ L1.
Using Lebesque’s dominated convergence theorem and taking the limit in (3.3), (3.4)

we deduce that x(.) is a solution of (1.1). Finally, passing to the limit in (3.6) we obtained
the desired estimate on x(.).

It remains to construct the sequences xn(.), fn(.) with the properties in (3.3)-(3.5).
The construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we already con-
structed xn(.) ∈ C(I) and fn(.) ∈ L1, n = 1, 2, ...N satisfying (3.3),(3.5) for n = 1, 2, ...N
and (3.4) for n = 1, 2, ...N − 1. The set-valued map t → F (t, xN (t)) is measurable. More-
over, the map t → L(t)|xN (t) − xN−1(t)| is measurable. By the lipschitzianity of F (t, .)
we have that for almost all t ∈ I

F (t, xN (t)) ∩ {fN (t) + L(t)|xN (t)− xN−1(t)|[−1, 1]} 6= ∅.

Theorem 1.14.1 in [1] yields that there exist a measurable selection fN+1(.) of F (., xN (.))
such that

|fN+1(t)− fN (t)| ≤ L(t)|xN (t)− xN−1(t)| a.e. (I).

We define xN+1(.) as in (3.3) with n = N + 1. Thus fN+1(.) satisfies (3.4) and (3.5)
and the proof is complete.

Remark 1. According to Theorem 1 in [5], if the assumptions of Theorem 1 are satisfied
then for any ε > 0 there exists xε(.) a solution of (1.2) satisfying for all t ∈ I

|xε(t)− y(t)| ≤ 1
1−M ||L||1

||a− ã||+ M

1−M ||L||1
||q||1 + ε. (3.7)

Obviously, the estimation in (3.1) is better than the one in (3.7).
We are concerned now with the boundary value problem (1.3).

Theorem 2. Assume that Hypothesis 1 is satisfied, l := 1+k1+k2
4 ||L||1

< 1 and let y(.) ∈ AC1 be such that there exists q(.) ∈ L1 with d(y′′(t), F (t,
y(t))) ≤ q(t), a.e. (I). Denote c̃0 = y(0)− k1y

′(0), c̃1 = y(1) + k2y
′(1) and c̃ = (c̃1, c̃2).

Then, there exists x(.) a solution of (1.3) satisfying for all t ∈ I

|x(t)− y(t)| ≤ 1
1− l

||c− c̃||+ 1 + k1 + k2

4(1− l)
||q||1 (3.8).
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The proof of Theorem 2 is similar to the one of Theorem 1.

Remark 2. According to Theorem 3.1 in [6], if the assumptions of Theorem 2 are satisfied
then for any ε > 0 there exists xε(.) a solution of (1.3) satisfying for all t ∈ I

|xε(t)− y(t)| ≤ 1
1− l

||c− c̃||+ 1 + k1 + k2

4(1− l)
||q||1 + ε. (3.9)

Obviously, the estimation in (3.8) is better than the one in (3.9).
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