
Bulletin of the Transilvania University of Braşov • Vol 2(51) - 2009

Series III: Mathematics, Informatics, Physics, 255-262

INTERACTIVE TOOL
FOR THE SUCCESSIVE SHORTEST PATHS ALGORITHM

IN SOLVING THE MINIMUM COST FLOW PROBLEM

Mircea PARPALEA1

Abstract

This article covers the minimum-cost flow problem and intends to offer an illustra-
tive tool for efficient education in sciences, especially in the field of flows in networks.
In the first part, the article concerns with the basic concepts of the problem itself. The
second part describes the ”Successive Shortest Path Algorithm” for finding a mini-
mum cost flow in a network and in the final part, a set of two interactive applications
of the problem are covered. The using of AWT (Java) in the developed applets brings
the advantage of a sophisticated set of Graphical User Interface which allows step by
step solving of both shortest path and minimum cost flow problems.

2000 Mathematics Subject Classification: 05C85, 11Y16, 05C12.
Key words: Dijkstra Algorithm, Successive Shortest Path Algorithm, Java applet,

AWT (Abstract Window Toolkit).

1 Indroduction

Knowledge exchange is a very complex process. Although Internet makes the exchange
of information possible at high speed rates, knowledge sharing and know-how broadcasting
is still an open problem that is waiting for suitable solutions. The new paradigm of active
learning can be fostered with the help of e-learning technologies, which take advantage of
the familiarity of the students with computers. Dijkstra’s Shortest Path algorithm and
Minimum cost flow problem are easier to be understood in an interactive way, regarded
as a two-way communication process. In order to point out some elements about the
working of these algorithms, two applets, embedded in HTML pages, were developed.
These applets are built in Java language using: Applet and AWT classes. AWT was a
widget toolkit for Java and provides a sophisticated set of GUI (Graphical User Interface)
components.

1National College, Andrei Şaguna of Braşov, Romania, e-mail: parpalea@gmail.com



256 Mircea Parpalea

2 Theoretical Aspects

2.1 Statement of the Problem

Let G = (V,E) be a directed network defined by a set V of vertexes (nodes) and set E
of edges (arcs). For each edge (i, j) ∈ E , two functions are assigned: the positive valued
function capacity u(i, j) : E → <+ (uij denotes the maximum amount of flow on the edge
(i, j)) and the positive valued function cost b(i, j) : E → <+ (bij denoting the cost per
unit of flow on the edge (i, j)). For each vertex i ∈ V a real valued function v(i) : V → <
is assigned, representing the supply/demand of that vertex. If v(i) > 0, vertex i is a
supply node and if v(i) < 0, vertex i is a demand node (its demand is equal to −v(i)).
A vertex i is called transshipment if it has a null supply/demand value, v(i) = 0. If all
the parameters are to be explicitly outlined, the digraph G is called a transportation
network and it is written as G = (V,E, u, b, v). Representing the flow on arc (i, j) ∈ E by
xij , the following optimization model for the minimum cost flow problem can be obtained:

min z(x) =
∑

(i,j)∈E

bijxij (1)

subject to ∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = v(i) for all i ∈ V (2)

0 ≤ xij ≤ uij for all (i, j) ∈ E. (3)

The first constraint states that the total outflow of a node minus the total inflow of the
node must be equal to mass balance (supply/demand value) of this node. This is known
as the mass balance constraints. Next, the flow bound constraints model physical
capacities or restrictions imposed on the flow’s range. As it can be seen, this optimization
model describes a typical relationship between warehouses and shops, for example, in a
case where there is only one kind of product. It is desired to satisfy the demand of each
shop by transferring goods from the subset of warehouses, while minimizing the expenses
on transportation.

The article concentrates on solving the problem using some ideas related to network
flow theory and reviews the necessary theoretical base for some basic algorithms used to
solve the minimum cost flow problem.

2.2 Finding a solution

If δ =
∑

i∈V v(i) 6= 0 the problem has no solution, because either the supply or
the demand dominates in the network and the mass balance constraints come into play.
However, this situation can be easily avoided if a special node r, with the supply/demand
value, v(r) = −δ is added. If δ > 0 (supply dominates) then for each node i ∈ V with
v(i) > 0 an arc (i, r) with infinite capacity and zero cost is added; otherwise (demand
dominates), for each node i ∈ V with v(i) < 0 an arc (r, i) with with the same properties
is added. A network with

∑
i∈V ∪r v(i) = 0 is obtained and this new network has the same

optimal value as the objective function.



The minimum cost flow problem 257

Even if δ = 0 it is not sure that the edge’s capacities allow the transfer of enough flow
from supply vertexes to demand ones. In order to establish if the network has a feasible
flow, any transfer way what will satisfy all the problem’s constraints is to be found. Of
course, this feasible solution is not necessarily optimal, but if it is absent the problem
cannot be solved. If the network includes more than one supply node (or demand node)
a source node s and a sink node t are introduced. For each node i ∈ V with v(i) > 0, a
source arc (s, i) with capacity v(i) and cost 0 is added to G. For each node i ∈ V with
v(i) < 0, a sink arc (i, t) with capacity −v(i) and cost 0 is added to G. The new network
is called a transformed network.

For a maximum flow problem from s to t, if the maximum flow saturates all the source
and sink arcs, then the problem has a feasible solution; otherwise, it is infeasible. Having
found a maximum flow, source, sink, and all adjacent arcs can be removed and a feasible
flow in G is obtained.

From the theoretical point of view, for any minimum cost flow problem some necessary
conditions for resolving the problem have to be checked:

- the supply/demand balance;
- the existence of a feasible solution;
- the non-existence of uncapacitated negative cycles (If the network contains a negative

cost cycle of infinite capacity, supposing that the network has a feasible solution, the
objective function will be unbounded).

From the practical point of view, the conditions can be checked while the solution is
being found.

2.3 Assumptions

Although the problems could be solved without these assumptions which sometimes
can lead to a loss of generality, in their absence the solutions would rapidly become too
complex.

Assumption 1: All data (uij , bij , v(i)) are integers.
As the computer works with rational numbers, this assumption is not restrictive in

practice while rational numbers can be converted to integers by multiplying by a suitable
large number.

Assumption 2:The network is directed.
If the network were undirected it has to be transformed into a directed one with the

requirement that the edge’s cost to be nonnegative. To transform an undirected network
to a directed one, each undirected edge connecting vertexes i and j is replaced by two
directed arcs (i, j) and (j, i), both having the capacity and cost of the replaced edge.
Each undirected edge (i, j) ∈ E has an associated constraint xij + xji ≤ uij and the term
bijxij + bijxji in the objective function. Given that bij ≥ 0 in some optimal solution either
xij or xji will be zero. Such a solution is called non-overlapping and every non-overlapping
flow in the original network has an associated flow in the transformed network with the
same cost, and vise versa.

Assumption 3:All costs associated with edges are nonnegative.



258 Mircea Parpalea

This assumption imposes a loss of generality but however, one of the algorithms (cycle-
canceling algorithm) is able to work without this assumption. For each vertex i ∈ V it
is associated a number denoted by pi and called the potential of node i. The reduced
cost bp

ij of an edge (i, j) ∈ E is defined as

bp
ij = bij + pi − pj . (4)

Denoting the reduced value by z(x, p), if p = 0, then evidently

z(x, 0) =
∑

(i,j)∈E

bijxij = z(x). (5)

For other values of p the following result is obtained:

z(x, p) =
∑

(i,j)∈E

bp
ijxij = z(x) +

∑
(i,j)∈E

pixij −
∑

(i,j)∈E

pjxij =

z(x) +
∑
i∈V

pi

∑
j:(i,j)∈E

xij −
∑
j∈V

pj

∑
i:(i,j)∈E

xij =

z(x) +
∑
i∈V

pi

 ∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji

 = z(x) +
∑
i∈V

piv(i)

For a fixed p, the difference z(x, p)−z(x) is constant. Therefore, a flow that minimizes
z(x, p) also minimizes z(x) and vice versa.

Theorem 1. For any node potential p, the minimum cost flow problems with edge costs
bij or bp

ij have the same optimal solutions. Moreover,

z(x, p) = z(x) +
∑
i∈V

piv(i). (6)

Theorem 2. Let G be a transportation network. Suppose P is a directed path from a
vertex a ∈ V to another vertex b ∈ V . Then for any node potential p,

∑
(i,j)∈P

bp
ij =

∑
(i,j)∈P

bij + pa − pb. (7)

For a directed cycle W and for any node potential p, holds that∑
(i,j)∈W

bp
ij =

∑
(i,j)∈W

bij . (8)

Introducing a vertex s, adding an arc (s, i) to G with some positive capacity and zero
cost for each node i ∈ V and supposing that for each node i ∈ V , the number pi denotes



The minimum cost flow problem 259

the length of the shortest path from s to i with respect to cost function b, for each arc
(i, j) ∈ E the following shortest path optimality condition is satisfied:

pj ≤ pi + bij . (9)

Since, bp
ij = bij + pi − pj and 0 ≤ pi − pj + bij yields bp

ij ≥ 0. Moreover, from Theorem
2 results that if G contains a negative cycle, it will be negative for any node potential
p in the reduced network. So, if the transportation network has no negative cycle, the
costs can be reduced and made positive by finding the shortest paths from the introduced
vertex s.

In order to find the shortest path in a graph, Bellman-Ford (label-correcting) algorithm
can be used to achieve this goal.

Assumption 4:The supply/demand function satisfies the condition
∑

i∈V v(i) = 0
and the minimum cost flow problem has a feasible solution.

If the network doesn’t satisfy the first part of this assumption, it can either be said that
the problem has no solution or corresponding transformation can be made according to
the steps outlined above. If the second part of the assumption isn’t met then the solution
doesn’t exist. However, many problems are often given in such a way which satisfies all
the assumptions.

3 Algorithms

3.1 Working with Residual Networks

Let G be a network and x be a feasible solution of the minimum cost flow problem.
Suppose that an edge (i, j) in E carries xij units of flow. The residual capacity of the edge
(i, j) is defined as rij = uij − xij . This means that additional rij units of flow can be sent
from vertex i to vertex j. The existing flow xij on the arc (i, j) can also be canceled by
sending up xij units of flow from j to i over the arc (i, j).

Sending a unit of flow from i to j along the arc (i, j) increases the objective function
by bij , while sending a unit of flow from j to i on the same arc decreases the flow cost by
bij . Based on these ideas, for a transportation network G = (V,E) and a feasible solution
x, the residual network with respect to the given flow x is denoted by Gx = (V,Ex), where
Ex is the set of residual edges corresponding to the feasible solution x.

Each arc (i, j) in E is replaced by two arcs (i, j), (j, i): the arc (i, j) has cost bij and
(residual) capacity rij = uij − xij , and the arc (j, i) has cost −bij and (residual) capacity
rji = xij .

The set Ex is constructed from the new edges with a positive residual capacity only.

3.2 Successive Shortest Path Algorithm

The successive shortest path algorithm searches for the maximum flow and optimizes
the objective function simultaneously. Instead of searching for the maximum flow as usual,
the flow from s to t is sent along the shortest path (with respect to arc costs). The residual
network is then updated, another shortest path is found and the flow is augmented again,



260 Mircea Parpalea

etc. The algorithm terminates when the residual network contains no path from s to t
(the flow is maximal). Since the flow is maximal, it corresponds to a feasible solution of
the original minimum cost flow problem. Moreover, this solution will be optimal.

The algorithm performs at most O(nB) augmentations, where B is assigned to an
upper bound on the largest supply of any node. Each augmentation strictly decreases
the residual capacity of a source arc (which is equal to the supply of the corresponding
node) by at least one unit. By using an O(nm) algorithm for finding a shortest path, it is
achieved an O(n2mB) complexity of the successive shortest path algorithm.

As exposed within assumption 3, all edge costs can be made nonnegative by using,
for instance, Bellman-Ford’s algorithm. Since working with residual costs doesn’t change
shortest paths, working with the transformed network and using Dijkstra’s algorithm
allows finding the successive shortest path more efficiently. In order to keep the edge costs
nonnegative, node potentials and reduce costs are updated right after the shortest path
has been found. For each i in V the potential pi is equal to the length of the shortest
paths from s to i. After having reduced the cost of each arc, all arcs along the shortest
path from s to i will have zero cost while the arcs which lie out of any shortest path to
any vertex will have a positive cost.

Successive Shortest Path;
1. Transform network G by adding source s and sink t ;
2. Initial flow x := 0;
3. Use Bellman-Ford’s algorithm to establish potentials p;
4. Reduce Cost (p);
5. While(Gx contains a path from s to t) Do
6. Use Dijkstra’s algorithm for the shortest path P from s to t;
7. Reduce Cost (p);
8. Augment current flow x along P ;
9. Update Gx;

Reduce Cost(p);
1. For each (i, j) in Ex Do
2. bp

ij := bij + pi − pj ;
3. bp

ji := 0;

Before starting the cycle in line 5, node potentials are calculated and all costs are
obtained to be nonnegative. In line 6, Dijkstra’s algorithm is used to establish a shortest
path with respect to the reduced costs.

Then the costs are reduced and the flow is augmented along the path. After the aug-
mentation, all costs will remain nonnegative and in the next iteration Dijkstra’s algorithm
will work correctly. Bellman-Ford’s algorithm is used only once to avoid negative costs
on edges. It takes O(nm) time. Then O(nB) times is used Dijkstra algorithm, which
takes either O(n2) (simple realization) or O(m log n) (heap realization for sparse network)



The minimum cost flow problem 261

time. Summing up results in O(n3B) estimate working time for simple realization and
O(nmB log n) if using heap.

4 Applications

4.1 Dijkstra’s shortest path application

The ”Dijkstra’s shortest path” application allows selecting different predefined net-
works and draws them in an applet. For each selected network the application is a step
by step construction of the shortest path (with respect to arc costs) from the start node
to the rest of nodes in the network. On each step, the candidate arcs are outlined as in
Figure 1.

Figure 1: (a) Selecting the minimum cost arc from the candidate arcs. (b) The shortest
path.

Once a minimum path is found, it is marked by changing its colour and the application
displays the distance from the start node to the rest of the nodes and the predecessor of
the nodes on the shortest path. In the lower side of the applet a label indicates which will
be the next action to be performed when clicking on the applet.

4.2 Minimum Cost Flow application

The Successive Shortest Path Algorithm for the Minimum Cost Flow application is
written in Java and solves the problem in a step by step mode. The application consists
in a set of two applets displayed simultaneously on the screen.

The first one presents the continuously updated residual network after the flow aug-
mentation along the successive shortest paths (Figure 2.a) while the other one presents
the total flow in each arc after successive augmentations (Figure 2.b). The application
ends when the minimum cost flow is reached and the application displays its value.



262 Mircea Parpalea

Figure 2: Updated residual network-(a) after flow augmentation-(b) for the ”Minimum
Cost Flow” application.

In the lower side of the first applet a label indicates which will be the next action to be
performed when clicking on the applet. The first applet advances in a step by step mode
while the second one, being a runnable application, permanently updates itself according
to the changes of the values in the first one.

5 Conclusions

The idea of using applets as a teaching tool, both in face-to-face and online learning,
is quite extended. The content of the lecture does not change, but the methods intend to
improve students’ attitude towards an active learning. The present paper can be extended
for solving different network flows problems and used for illustrating their behaviour and
operating mechanism. Applications developed in this manner can be successfully used in
the e-Learning and distance Learning systems for the benefit of pupils and students. Being
a Java based application it also can easily be integrated in web pages.

References

[1] Ciurea, E., Ciupală, L. ALGORITMI Introducere in algoritmica fluxurilor in retele.,
MATRIX ROM, Bucureşti, 2006.

[2] Sângeorzan, L., Parpalea, M. Interactive Demonstration of Harmonic Mechanical
Oscillations and Elastic Waves Using Java Applets., Sixth International Conference
Challenges in Higher Education and Research in 21st Century, June 4 - 7.Sozopol,
Bulgaria (2008), 411-415.

[3] Sângeorzan, L., Parpalea, M., Nedelcu, A., et al. Some Aspects in the Modeling of
Physics Phenomena using Computer Graphics., MACMESE: Proceedings of the 10th
Int. Conference on Mathematical and Computational Methods in Sciences and Engi-
neering, Bucharest Romania, 2008, 518-523.


