# ON THE TRANSFORMATIONS GROUP OF N-LINEAR CONNECTIONS ON THE DUAL BUNDLE OF 3-TANGENT BUNDLE 

Monica PURCARU ${ }^{1}$ and Mirela TÂRNOVEANU ${ }^{2}$


#### Abstract

In the present paper we study the transformations for the coefficients of an $N$-linear connection on the dual bundle of 3 -tangent bundle, $T^{* 3} M$, by a transformation of nonlinear connections on $T^{* 3} M$. We prove that the set $\mathcal{T}$ of these transformations together with the composition of mappings isn't a group, but we give some groups of transformations of $\mathcal{T}$, which keep invariant a part of the components of the local coefficients of an $N$-linear connection.


2000 Mathematics Subject Clasification: 53B05
Key Words: dual bundle of 3 -tangent bundle, nonlinear connection, $N$-linear connection, transformations group, subgroup.

## 1 Introduction

The notion of Hamilton spaces was introduced by R. Miron in [7] , [8]. The differential geometry of the dual bundle of $k$-osculator bundle was introduced and studied by R . Miron [13] , too.

In the present section the general setting from [13] is presented and subsequently only some needed notions are recalled.

Let $M$ be a real $n$-dimensional $C^{\infty}$-manifold and let $\left(T^{* 3} M, \pi^{* 3}, M\right)$ be the dual bundle of 3 -osculator bundle (or 3 -cotangent bundle), where the total space is:

$$
\begin{equation*}
T^{* 3} M=T^{* 2} M \times T^{*} M \tag{1.1}
\end{equation*}
$$

Let $\left(x^{i}, y^{(1) i}, y^{(2) i}, p_{i}\right),(i=1, \ldots, n)$, be the local coordinates of a point $u=\left(x, y^{(1)}\right.$, $\left.y^{(2)}, p\right) \in T^{* 3} M$ in a local chart on $T^{* 3} M$.

The change of coordinates on the manifold $T^{* 3} M$ is:

[^0]\[

\left\{$$
\begin{array}{l}
\tilde{x}^{i}=\tilde{x}^{i}\left(x^{1}, \ldots, x^{n}\right), \operatorname{det}\left(\frac{\partial \tilde{x}^{i}}{\partial x^{j}}\right) \neq 0  \tag{1.2}\\
\tilde{y}^{(1) i}=\frac{\partial \tilde{x}^{i}}{\partial x^{j}} \tilde{y}^{(1) j} \\
2 \tilde{y}^{(2) i}=\frac{\partial \tilde{y}^{(1) i}}{\partial x^{j}} y^{(1) j}+2 \frac{\partial \tilde{y}^{(1) i}}{\partial y^{(1) j}} y^{(2) j} \\
\tilde{p}_{i}=\frac{\partial x^{j}}{\partial \tilde{x}^{i}} p_{j},(i, j=1,2, \ldots, n)
\end{array}
$$\right.
\]

where the following relations hold:

$$
\begin{equation*}
\frac{\partial \tilde{y}^{(\alpha) i}}{\partial x^{j}}=\frac{\partial \tilde{y}^{(\alpha+1) i}}{\partial y^{(1) j}}=\frac{\partial \tilde{y}^{(2) i}}{\partial y^{(2-\alpha) j}},\left(\alpha=0,1 ; y^{(0)}=x\right) \tag{1.3}
\end{equation*}
$$

$T^{* 3} M$ is a real differential manifold of dimension $4 n$.
With respect to (1.1) the natural basis of the vector space $T_{u}\left(T^{* 3} M\right)$ at the point $u \in T^{* 3} M$ :

$$
\begin{equation*}
\left\{\left.\frac{\partial}{\partial x^{i}}\right|_{u},\left.\frac{\partial}{\partial y^{(1) i}}\right|_{u},\left.\frac{\partial}{\partial y^{(2) i}}\right|_{u},\left.\frac{\partial}{\partial p_{i}}\right|_{u}\right\} \tag{1.4}
\end{equation*}
$$

is transformed as it follows by the Jacobi matrix of (1.2) changes.
We denote $\widetilde{T^{* 3} M}=T^{* 3} M \backslash\{0\}$. Let us consider the tangent bundle of the differentiable manifold $T^{* 3} M$,
$\left(T T^{* 3} M, d \pi^{* 3}, T^{* 3} M\right)$, where $d \pi^{* 3}$ is the canonical projection and the vertical distribution $V: u \in T^{* 3} M \rightarrow V(u) \in T_{u} T^{* 3} M$, locally generated by the vector fields $\left\{\frac{\partial}{\partial y^{(1) i}}, \frac{\partial}{\partial y^{(2) i}}, \frac{\partial}{\partial p_{i}}\right\}$ at every point $u \in T^{* 3} M$.

The following $\mathcal{F}\left(T^{* 3} M\right)$ - linear mapping:

$$
J: \chi\left(T^{* 3} M\right) \rightarrow \chi\left(T^{* 3} M\right)
$$

defined by:

$$
\begin{equation*}
J\left(\frac{\partial}{\partial x^{i}}\right)=\frac{\partial}{\partial y^{(1) i}}, J\left(\frac{\partial}{\partial y^{(1) i}}\right)=\frac{\partial}{\partial y^{(2) i}}, J\left(\frac{\partial}{\partial y^{(2) i}}\right)=0, J\left(\frac{\partial}{\partial p_{i}}\right)=0 \tag{1.6}
\end{equation*}
$$

at every point $u \in \widetilde{T^{* 3} M}$ is a tangent structure on $T^{* 3} M$.
We denote with $N$ a nonlinear connection on the manifold $T^{* 3} M$ with the coefficients:

$$
\left(\underset{(1)}{N^{j}}{ }_{i}\left(x, y^{(1)}, y^{(2)}, p\right),{\underset{(2)}{N j}}_{i}\left(x, y^{(1)}, y^{(2)}, p\right), N_{i j}\left(x, y^{(1)}, y^{(2)}, p\right)\right),(i, j=1,2, \ldots, n)
$$

The tangent space of $T^{* 3} M$ in the point $u \in T^{* 3} M$ is given by the direct sum of vector spaces:

$$
\begin{equation*}
T_{u}\left(T^{* 3} M\right)=N_{0, u} \oplus N_{1, u} \oplus V_{2, u} \oplus W_{3, u}, \forall u \in T^{* 3} M \tag{1.5}
\end{equation*}
$$

A local adapted basis to the direct decomposition (1.5) is given by:

$$
\begin{equation*}
\left\{\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta y^{(1) i}}, \frac{\delta}{\delta y^{(2) i}}, \frac{\delta}{\delta p_{i}}\right\},(i=1,2, \ldots, n) \tag{1.6}
\end{equation*}
$$

where:

$$
\left\{\begin{array}{l}
\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-\underset{(1)}{N^{j}}{ }_{i} \frac{\partial}{\partial y^{(1) j}}-\underset{(2)}{N^{j}}{ }_{i} \frac{\partial}{\partial y^{(2) j}}+N_{i j} \frac{\partial}{\partial p_{j}}  \tag{1.7}\\
\frac{\delta}{\delta y^{(1) i}}=\frac{\partial}{\partial y^{(1) j}}-\underset{(1)}{N^{j}}{ }_{i} \frac{\partial}{\partial y^{(2) j}} \\
\frac{\delta}{\delta y^{(2) i}}=\frac{\partial}{\partial y^{(2) i}}, \\
\frac{\delta}{\delta p_{i}}=\frac{\partial}{\partial p_{i}}
\end{array}\right.
$$

Under a change of local coordinates on $T^{* 3} M$, the vector fields of the adapted basis transform by the rule:

$$
\begin{align*}
& \frac{\delta}{\delta x^{i}}=\frac{\partial \tilde{x}^{j}}{\partial x^{i}} \frac{\delta}{\delta \tilde{x}^{j}}, \frac{\delta}{\delta y^{(1) i}}=\frac{\partial \tilde{x}^{j}}{\partial x^{i}} \frac{\delta}{\delta \tilde{y}^{(1) j}} \\
& \frac{\delta}{\delta y^{(2) i}}=\frac{\partial \tilde{x}^{j}}{\partial x^{i}} \frac{\delta}{\delta \tilde{y}^{(2) j}}, \frac{\delta}{\delta p_{i}}=\frac{\delta x^{i}}{\delta \tilde{x}^{j}} \frac{\delta}{\delta \tilde{p}_{j}} \tag{1.8}
\end{align*}
$$

The dual basis of the adapted basis (1.6) is given by:

$$
\begin{equation*}
\left\{\delta x^{i}, \delta y^{(1) i}, \delta y^{(2) i}, \delta p_{i}\right\} \tag{1.9}
\end{equation*}
$$

where:

$$
\left\{\begin{array}{l}
d x^{i}=\delta x^{i}  \tag{1.10}\\
d y^{(1) i}=\delta y^{(1) i}-\underset{(1)}{N^{i}}{ }_{j} \delta x^{j} \\
d y^{(2) i}=\delta y^{(2) i}-\underset{(1)}{N^{i}}{ }_{j} \delta y^{(1) j}-\underset{(2)}{N^{i}{ }_{j} \delta x^{j}} \\
d p_{i}=\delta p_{i}+N_{j i} \delta x^{j}
\end{array}\right.
$$

Let $D$ be an $N$-linear connection on $T^{* 3} M$, with the local coefficients in the adapted basis (1.6) :

$$
\begin{equation*}
D \Gamma(N)=\left(H^{i}{ }_{j h}, \underset{(\alpha)}{C^{i}}{ }_{j h}, C_{i}^{j h}\right),(\alpha=1,2) \tag{1.11}
\end{equation*}
$$

An $N$-linear connection $D$ is uniquely represented under the adapted basis in the following form:

$$
\begin{align*}
& D_{\frac{\delta}{\delta x^{j}}} \frac{\delta}{\delta x^{i}}=H^{s}{ }_{i j} \frac{\delta}{\delta x^{s}}, D_{\frac{\delta}{\delta x^{j}}} \frac{\delta}{\delta y^{(\alpha) i}}=H^{s}{ }_{i j} \frac{\delta}{\delta y^{(\alpha) s}},(\alpha=1,2), \\
& D_{\frac{\delta}{\delta x^{j}} \frac{\delta}{\delta p_{i}}}=-H^{i}{ }_{s j \frac{\delta}{\delta p_{s}}}, \\
& D_{\frac{\delta}{\delta y^{(\alpha) j}}} \frac{\delta}{\delta x^{i}}=C^{s}{ }^{s}{ }_{i j} \frac{\delta}{\delta x^{s}}, D_{\frac{\delta}{\delta y^{(\alpha) j}}} \frac{\delta}{\delta y^{(\beta) i}}=C^{s}{ }_{(\alpha)}{ }_{i j} \frac{\delta}{\delta y^{(\beta) s}}, \\
& D_{\frac{\delta}{\delta y^{(\alpha) j}}}^{\delta p_{i}}=-C_{(\alpha)}^{i}{ }^{s j} \frac{\delta}{\delta p_{s}},(\alpha, \beta=1,2),  \tag{1.12}\\
& D_{\frac{\delta}{\delta p_{j}}} \frac{\delta}{\delta x^{i}}=C_{i}{ }^{j s} \frac{\delta}{\delta x^{s}}, D_{\frac{\delta}{\delta p_{j}}} \frac{\delta}{\delta y^{(\alpha) i}}=C_{i}{ }^{j s} \frac{\delta}{\delta y^{(\alpha) s}},(\alpha=1,2), \\
& D_{\frac{\delta}{\delta p_{j}}} \frac{\delta}{\delta p_{i}}=-C_{s}{ }^{i j} \frac{\delta}{\delta p_{s}} .
\end{align*}
$$

## 2 The set of the transformations of $N$-linear connections

In the following we shall give the transformations for the coefficients of an $N$ - linear connection on $T^{* 3} M$, by a transformation of nonlinear connections and we shall prove that the set, $\mathcal{T}$, of all these transformations together with the mapping composition isn't a group. We shall find some groups which keep invariant a part of components of the local coefficients of an $N$-linear connection.

Let $\bar{N}$ be another nonlinear connection on $T^{* 3} M$, with the local coefficients:

$$
\left(\bar{N}_{(1)}^{j}{ }_{i}\left(x, y^{(1)}, y^{(2)}, p\right), \bar{N}_{(2)}^{j}{ }_{i}\left(x, y^{(1)}, y^{(2)}, p\right), N_{i j}\left(x, y^{(1)}, y^{(2)}, p\right)\right)(i, j=1,2, \ldots, n)
$$

Then there exists the uniquely determined tensor fields $\underset{(\alpha)}{A^{j}}{ }_{i} \in \tau_{1}^{1}\left(T^{* 3} M\right),(\alpha=1,2)$ and $A_{i j} \in \tau_{2}^{0}\left(T^{* 3} M\right)$, such that:

$$
\left\{\begin{array}{l}
\bar{N}^{i}{ }_{j}=N_{(\alpha)}^{i}{ }_{j}-A_{(\alpha)}{ }^{i}{ }_{j},(\alpha=1,2),  \tag{2.1}\\
\left(\bar{N}_{i j}=N_{i j}-A_{i j},(i, j=1,2, \ldots, n)\right.
\end{array}\right.
$$

Conversely, if $\underset{(\alpha)}{N^{i}}{ }_{j}$ and $\underset{(\alpha)}{A^{i}}{ }_{j},(\alpha=1,2)$, respectively $N_{i j}$ and $A_{i j}$ are given, then $\underset{(\alpha)}{\bar{N}^{i}}{ }_{j}$, ( $\alpha=1,2$ ) , respectively $\bar{N}_{i j}$, given by (2.1) are the coefficients of a nonlinear connection.

Theorem 1 Let $N$ and $\bar{N}$ be two nonlinear connections on $T^{* 3} M$, with local coefficients:

$$
\begin{aligned}
& \quad\left(\underset{(1)}{N^{j}}{ }_{i}\left(x, y^{(1)}, y^{(2)}, p\right), \underset{(2)}{N_{j}^{j}}{ }_{i}\left(x, y^{(1)}, y^{(2)}, p\right), N_{i j}\left(x, y^{(1)}, y^{(2)}, p\right)\right) \\
& \left(\bar{N}_{(1)}^{j}{ }_{i}\left(x, y^{(1)}, y^{(2)}, p\right), \bar{N}_{(2)}^{j}{ }_{i}\left(x, y^{(1)}, y^{(2)}, p\right), N_{i j}\left(x, y^{(1)}, y^{(2)}, p\right)\right),(i, j=1,2, \ldots, n)
\end{aligned}
$$

respectively. If $D$ is an $N$-linear connection on $T^{* 3} M$, with local coefficients $D \Gamma(N)=$ $\left(H^{i}{ }_{j h}, \underset{(1)}{C^{i}}{ }_{j h}, \underset{(2)}{C^{i}}{ }_{j h}, C_{i}^{j h}\right)$, then the transformation: $N \longrightarrow \bar{N}$, given by (2.1) of nonlinear connections implies for the coefficients
$D \Gamma(\bar{N})=\left(\bar{H}^{i}{ }_{j h}, \underset{(1)}{\bar{C}^{i}}{ }_{j h}, \bar{C}_{(2)}^{i}{ }_{j h}, \bar{C}_{i}{ }^{j h}\right)$ of the $\bar{N}$-linear connection $D$ the relations $(2.2)$, that is the transformation $D \Gamma(N) \rightarrow D \Gamma(\bar{N})$ is given by:
where "," denotes the $h$-covariant derivative with respect to $D \Gamma(N)$.

The proof results by a straghtforward computation, using (1.12) and (2.1)
Theorem 2 Let $N$ and $\bar{N}$ be tho nonlinear connections on $T^{* 3} M$, with local coefficients:

$$
\begin{aligned}
& \left(\underset{(1)}{N^{j}}{ }_{i}\left(x, y^{(1)}, y^{(2)}, p\right), \underset{(2)}{N_{j}^{j}}{ }_{i}\left(x, y^{(1)}, y^{(2)}, p\right), N_{i j}\left(x, y^{(1)}, y^{(2)}, p\right)\right), \\
& \left(\underset{(1)}{N^{j}}{ }_{i}\left(x, y^{(1)}, y^{(2)}, p\right), \underset{(2)}{\bar{N}^{j}}{ }_{i}\left(x, y^{(1)}, y^{(2)}, p\right), \bar{N}_{i j}\left(x, y^{(1)}, y^{(2)}, p\right)\right),(i, j=\overline{1, n}) \text { respectively. } \\
& \quad \text { If } D \Gamma(N)=\left(H^{i}{ }_{j h}, \underset{(1)}{C^{i}}{ }_{j h}, \underset{(2)}{C^{i}}{ }_{j h} C_{i}{ }^{j h}\right) \text { and } D \bar{\Gamma}(\bar{N})=\left(\bar{H}^{i}{ }_{j h}, \underset{(1)}{\bar{C}^{i}}{ }_{j h}, \bar{C}_{(2)}^{i}{ }_{j h}, \bar{C}_{i}{ }^{j h}\right),
\end{aligned}
$$

are the local coefficients of two $N-$, respectively $\bar{N}$-linear connections, $D$, respectively $\bar{D}$ on the differentiable manifold $T^{* 3} M$, then there exists only one system of tensor fields $\left(\underset{(1)}{A^{i}}{ }_{j}, \underset{(2)}{A^{i}}{ }_{j}, A_{i j}, B^{i}{ }_{j h}, \underset{(1)}{D^{i}}{ }_{j h},{\left.\underset{(2)}{ }{ }^{i}{ }_{j h}, D_{i}{ }^{j h}\right) \text { such that: }}^{2}\right.$
where "।" denotes the $h$-covariant derivative with respect to $D \Gamma(N)$.

Proof. The first equality (2.3) determines uniquely the tensor fields: $\underset{(\alpha)}{A^{i}}{ }_{j},(\alpha=1,2)$. The second equality (2.3) determines uniquely the tensor field $A_{i j}$. Since $\underset{(\alpha)}{C^{i}}{ }_{j h},(\alpha=1,2)$ and $C_{i}^{j h}$ are $d$-tensor fields, the third equation (2.10) determines uniquely the tensor field $B^{i}{ }_{j h}$. Similarly the fourth, $\ldots$ and the last equation (2.3) determines the tensor field $D_{i}{ }^{j h}$ respectively.q.e.d.

We have immediately:
Theorem 3 If $D \Gamma(N)=\left(H^{i}{ }_{j h}, C_{(1)}^{i}{ }_{j h}, \underset{(2)}{C^{i}}{ }_{j h}, C_{i}^{j h}\right)$, are the coefficients of an $N$-linear connection $D$ on $T^{* 3} M$ and
 $D \bar{\Gamma}(\bar{N})=\left(\bar{H}^{i}{ }_{j h}, \underset{(1)}{\bar{C}^{i}}{ }_{j h}, \bar{C}_{(2)}^{i}{ }_{j h}, \bar{C}_{i}{ }^{j h}\right)$, given by (2.3) are the coefficients of an $\bar{N}$-linear connection, $\bar{D}$, on $T^{* 3} M$.

Following the definition given by M. Matsumoto [4,5] in the case of Finsler spaces, we have:

Definition $2.1 i)$ The system of tensor fields: $\left(\underset{(1)}{A^{i}}{ }_{j}, \underset{(2)}{A^{i}}{ }_{j}, A_{i j}, B^{i}{ }_{j h}, \underset{(1)}{D^{i}}{ }_{j h}, \underset{(2)}{D^{i}}{ }_{j h}, D_{i}{ }^{j h}\right)$, is called the difference tensor fields of $D \Gamma(N)$ to $D \bar{\Gamma}(\bar{N})$.
ii) The mapping: $D \Gamma(N) \longrightarrow D \bar{\Gamma}(\bar{N})$ given by (2.3) is called a transformation of $N$-linear connection to $\bar{N}$-linear connection on $T^{* 3} M$, and it is noted by:

Theorem 4 The set $\mathcal{T}$ of the transformations of $N$-linear connections to $\bar{N}$-linear connections on $T^{* 3} M$, together with the composition of mappings isn't a group.

Proof. Let $t\left(\underset{(1)}{A^{i}}{ }_{j}, \underset{(2)}{A^{i}}{ }_{j}, A_{i j}, B^{i}{ }_{j h}, \underset{(1)}{D^{i}}{ }_{j h}, \underset{(2)}{D^{i}}{ }_{j h}, D_{i}{ }^{j h}\right): D \Gamma(N) \longrightarrow D \bar{\Gamma}(\bar{N})$ and $t\left(\bar{A}_{(1)}^{i}{ }_{j}, \bar{A}_{(2)}^{i}{ }_{j}, \bar{A}_{i j}, \bar{B}^{i}{ }_{j h}, \bar{D}_{(1)}^{i}{ }_{j h}, \bar{D}_{(2)}^{i}{ }_{j h}, \bar{D}_{i}{ }^{j h}\right): D \bar{\Gamma}(\bar{N}) \longrightarrow D \overline{\bar{\Gamma}}(\overline{\bar{N}})$, be two transformations from $\mathcal{T}$, given by (2.3).

From (2.3) we have:

$$
\begin{aligned}
\overline{\bar{N}}_{(\alpha)}^{i}{ }_{j} & \left.={\underset{(\alpha)}{ }{ }^{i}{ }_{j}-\left(A_{(\alpha)}^{i}{ }_{j}+\bar{A}_{(\alpha)}{ }^{i}\right.}_{j}\right),(\alpha=1,2) \\
\overline{\bar{N}}_{i j} & =N_{i j}-\left(A_{i j}+\overline{\bar{A}}_{i j}\right)
\end{aligned}
$$

We obtain for example:

So ${\underset{(1)}{\bar{C}}}^{i}{ }_{j h}$ hasn't the form (2.10). It follows that the mapping of two transformations from $\mathcal{T}$ isn't a transformation from $\mathcal{T}$, that is $\mathcal{T}$, together with the composition of mappings isn't a group.q.e.d.

Remark 2.1. If we consider $\underset{(\alpha)}{A^{i}}{ }_{j}=0,(\alpha=1,2)$ and $A_{i j}=0$ in (2.3) we obtain the set $\mathcal{T}_{N}$ of transformations of $N$-linear connections corresponding to the same nonlinear connection $N$ :

We have:

Theorem 5 The set $\mathcal{T}_{N}$ of the transformations of $N$-linear connections to $N$-linear connections on $T^{* 3} M$, together with the composition of mappings is a group. This group, acts effectively and transitively on the set of $N$-linear connections.

Proposition 6 The sets: $\mathcal{T}_{N H}, \mathcal{T}_{N \underset{(1)}{C}}, \mathcal{T}_{N} \underset{(2)}{C}, \mathcal{T}_{N C}, \mathcal{T}_{N(1)(2)}^{C C}$ are Abelian subgroups of $\mathcal{T}_{N}$.
Proposition 7 The group $\mathcal{T}_{N}$ preserves the nonlinear connection $N, \mathcal{T}_{N H}$ preserves the nonlinear connection $N$ and the component $H^{i}{ }_{j h}$ of the local coefficients $D \Gamma(N) ; \mathcal{T}_{N C}$ preserves the nonlinear connection $N$ and the component $\underset{(1)}{C^{i}}{ }_{j h}$ of the local coefficients $D \Gamma(N), \mathcal{T}_{N(2)}^{C}$ preserves the nonlinear connection $N$ and the component $\underset{(2)}{C_{(2)}^{i}}{ }_{j h}$ of the local coefficients $D \Gamma(N), \mathcal{T}_{N C}$ preserves the nonlinear connection $N$ and the component $C_{i}{ }^{j h}$ of the local coefficients $D \Gamma(N)$ and $\mathcal{T}_{N C C C}$ preserves the nonlinear connection $N$ and the components $\underset{(1)}{C^{i}}{ }_{j h}, C_{(2)}^{i}{ }_{j h}, C_{i}{ }^{j h}$ of the local coefficients $D \Gamma(N)$.

## References

[1] Atanasiu, Gh., and Târnoveanu, M., New Aspects in the Differential Geometry of the second order Cotangent Bundle, Univ. de Vest din Timişoara, 90 (2005), 1-65.
[2] Atanasiu, Gh., The invariant expression of Hamilton geometry, Tensor N.S., Japonia, 47 (1988), 23-32.
[3] Ianuş, Ş., On differential geometry of the dual of a vector bundle, The Proc. of the Fifth National Sem. of Finsler and Lagrange Spaces, Univ. din Braşov, 1988, 173-180.
[4] Matsumoto, M., The Theory of Finsler Connections, Publ. of the Study Group of Geometry 5, Depart. Math. Okayama Univ., 1970.
[5] Matsumoto, M., Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Otsu, 1986.
[6] Miron, R., Hamilton Geometry, Seminarul de Mecanică, Univ. Timişoara, 3 (1987), 54.
[7] Miron, R., Sur la geometrie des espaces Hamilton, C.R. Acad., Sci. Paris, Ser II, 306, no. 4 (1988), 195-198.
[8] Miron, R., Hamilton Geometry, Analele Şt. Univ. Iaşi, S -I Mat. 35 (1989), 35-85.
[9] Miron, R., Ianuş,S., Anastasiei, M., The Geometry of the dual of a Vector Bundle, Publ. de l'Inst. Math., 46(60) (1989), 145-162.
[10] Miron, R., On the geometrical theory of higher-order Hamilton Spaces, Steps in Differential Geometry, Proceedings of the Colloquium on Differential Geometry, 25-30 July, 2000, Debrecen, Hungary, 231-236.
[11] Miron, R., Hamilton spaces of order $k$ grater than or equal to 1, Int. Journal of Theoretical Phys., 39(9) (2000), 2327-2336.
[12] Miron, R., Hrimiuc, D., Shimada, H. and Sabău, V.S., The geometry of Lagrange Spaces, Kluwer Academic Publisher, FTPH, 118, 2001.
[13] Miron, R., The Geometry of Higher-Order Hamilton Spaces. Applications to Hamiltonian Mechanics, Kluwer Acad. Publ., FTPH, 2003.
[14] Saunders, D.J., The Geometry of Jet Bundles, Cambride Univ. Press, 1989.
[15] Udrişte, C., Şandru, O., Dual Nonlinear Connections, Proc. of $22^{\text {nd }}$ Conference Differential Geometry and Topology, Polytechnic Institute of Bucharest, Rom'nia, sept., 1991.
[16] Yano, K., Ishihara, S., Tangent and Cotangent Bundles. Differential Geometry. M. Dekker, Inc., New-York, 1973.


[^0]:    ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: mpurcaru@unitbv.ro
    ${ }^{2}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: mi_tarnoveanu@yahoo.com

