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Abstract

The effective behavior of the solution of a dynamical boundary-value problem
modeling the bio-heat transfer in heterogeneous microvascular tissues is analyzed. We
consider an ε-periodic structure Ω, consisting of two parts: a solid tissue part and
small regions of blood of a certain temperature. In this domain, we consider a heat
equation, with a dynamical condition imposed on the boundaries of the blood zones.
The limit equation, as ε, the small parameter related to the characteristic size of the
blood regions, tends to zero, is a new heat equation, with extra-terms coming from
the influence of the nonhomogeneous dynamical boundary condition.
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1 Introduction and setting of the problem

The aim of this paper is to study the asymptotic behavior of the solution of a dynamical
boundary-value problem modeling thermoregulation phenomena in the human microvas-
cular system. The bio-heat transport in living tissues is a complex process involving
multiple mechanisms, such as conduction, convection, radiation, metabolism, etc. Bio-
heat transfer models have significant applications in many therapeutic practices, such as
cancer hyperthermia, brain hypothermia resuscitation, disease diagnostics, cryosurgery,
etc.

Let Ω be a bounded connected open subset of Rn (n ≥ 2), with ∂Ω of class C2 and let
Y = [0, 1)n be the representative cell in Rn and F (the so-called elementary obstacle) an
open subset of Y with boundary ∂F of class C2, such that F ⊂ Y . We shall denote by
F (ε,k) the translated image of εF by the vector εk, k ∈ Zn:

F (ε,k) = ε(k + F ).
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Also, we shall denote by F ε the set of all the obstacles contained in Ω. So

F ε =
⋃

k∈Zn

{F (ε,k) | F (ε,k) ⊂ Ω}.

Let Ωε = Ω\F ε. Hence, Ωε is a periodically perforated domain with obstacles of the same
size as the period.

We shall use the following notations:

Y ∗ = Y \ F , θ =
|Y ∗|
|Y |

.

In fact, we consider that Ω is an ε-periodic structure, consisting of two parts: a solid
tissue part Ωε of temperature uε and small regions of blood Ω\Ωε of a certain temperature.
ε represents a small parameter related to the characteristic size of the blood regions.

We shall assume that we are dealing with heterogeneous tissues. From a mathemat-
ical point of view, we shall consider the case of a general medium, having discontinuous
properties, represented by a coercive periodic matrix with rapidly oscillating coefficients.
Let A ∈ L∞# (Ω)n×n be a symmetric matrix whose entries are Y -periodic, bounded and
measurable real functions. We use the symbol # to denote periodicity properties. Let us
assume that for some 0 < α < β,

α |ξ|2 ≤ A(y)ξ · ξ ≤ β |ξ|2 ∀ξ, y ∈ Rn.

We shall denote by Aε(x) the value of A(y) at the point y = x/ε, i.e.

Aε(x) = A(
x

ε
).

The problem studied in this paper concerns the nonstationary heat transfer in the solid
tissue part, in contact with the blood regions. We shall assume that we have some external
thermal sources f inside Ωε and, due to the fact that this complicated microstructure is
dynamically evolving, we shall impose a dynamical boundary condition on the boundaries
of the blood zones.

If we denote by (0, T ) the time interval of interest, we shall analyze the asymptotic
behaviour, as ε → 0, of the solution of the following problem:

ερcp
∂uε

∂t
− div(Aε∇uε) = f(t, x), in Ωε × (0, T ), (1)

Aε∇uε · ν + αε
∂uε

∂t
= εa(uε

b − uε), on Sε × (0, T ), (2)

uε(0, x) = u0(x), in Ωε, (3)

uε(0, x) = v0(x), on Sε, (4)

uε = 0, on ∂Ω× (0, T ). (5)
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Here, ν is the exterior unit normal to Ωε, f ∈ L2(0, T ;L2(Ω)), u0 ∈ H1
0 (Ω), v0 ∈ L2(Sε),

a > 0, cp > 0, ρ > 0, α > 0, uε
b ∈ H1(Ω) and Sε is the boundary of the blood regions. Let

us remark that on Sε we assume that the temperature v0(x) is equal to the trace of u0(x).
The existence and uniqueness of a weak solution of problem (1)-(5) can be settled

by using the theory of parabolic problems (see, for instance, [7] and [10]). We shall be
interested in getting the asymptotic behavior, when ε → 0, of this solution.

Our results constitute a generalization of some of the results obtained in [5], by conside-
ring nonstationary processes and dynamical conditions on the boundaries of the blood
regions. Problems closed to this one have been considered by D. Cioranescu and P. Donato
[1], D. Cioranescu, P. Donato and H.I. Ene [2], D. Cioranescu, P. Donato and R. Zaki [3],
C. Conca, J.I. Dı́az and C. Timofte [4] and H. Ene and D. Polisevski [6].

2 The main result

The main convergence result of this paper is given by the following theorem:

Theorem 1. One can construct an extension P εuε of the solution uε of the problem (1)-
(5) such that P εuε ⇀ u weakly in L2(0, T ;H1

0 (Ω)), where u is the unique solution of the
following problem:

α
|∂F |
|Y ∗|

∂u

∂t
− div(A0∇u) + a

|∂F |
|Y ∗|

(u− ub) = f x ∈ Ω, t ∈ (0, T ),

u = 0 x ∈ ∂Ω, t ∈ (0, T ),
u(0, x) = u0(x) x ∈ Ω.

(6)

Here, A0 = (a0
ij) is the homogenized matrix, defined by:

a0
ij =

1
|Y ∗|

∫
Y ∗

(
aij(y) + aik(y)

∂χj

∂yk

)
dy,

in terms of the functions χj , j = 1, ..., n, solutions of the cell problems

−divyA(y)(Dyχ
j
+ ej) = 0 in Y ∗,

A(y)(Dχ
j
+ ej) · ν = 0 on ∂F,

χ
j
∈ H1

#Y (Y ?),
∫
Y ?

χ
j

= 0,

where ei, 1 ≤ i ≤ n, are the elements of the canonical basis in IRn. The constant matrix
A0 is symmetric and positive-definite.

Thus, in the limit, when ε → 0, we get a constant coefficient heat equation, with a
Dirichlet boundary condition and with extra-terms coming from the well-balanced con-
tribution of the dynamical part of our boundary condition on the surface of the blood
regions.
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3 Proof of the main result

Let us consider the variational formulation of problem (1)-(5):

ερcp

∫ T

0

∫
Ωε

u̇εϕdxdt +
∫ T

0

∫
Ωε

Aε∇uε · ∇ϕdxdt+

αε

∫ T

0

∫
Sε

u̇εϕdxdt + aε

∫ T

0

∫
Sε

(uε − uε
b)ϕdxdt =

∫ T

0

∫
Ωε

fϕdxdt, (7)

for any ϕ ∈ C∞
0 ([0, T ]×Ωε). Here, we have denoted by ˙ the partial derivative with respect

to the time.
Following [7] or [10], we know that there exists a unique weak solution of (7). Taking

it as a test function in (7) and using our assumptions on the data and Cauchy-Schwartz,
Poincaré’s and Young’s inequalities, we can obtain suitable energy estimates, independent
of ε, for our solution (see [4], [7] and [8]).

Denoting by P εuε the classical extension of uε to Ω (see [1]), one can prove that P εuε

is bounded in L2(0, T ;H1
0 (Ω)) and

∂P εuε

∂t
is bounded in L2(0, T ;L2(Ω)) (see, for details,

[4], [8], [9] and [10]).
So, by passing to a subsequence, we have P εuε ⇀ u weakly in L2(0, T ;H1

0 (Ω)) and

strongly in L2(0, T ;L2(Ω)) and
∂P εuε

∂t
⇀

∂u

∂t
weakly in L2(0, T ;L2(Ω)).

It is well-known by now how to pass to the limit, with ε → 0, in the terms of (7)
defined on Ωε (see, for instance [4] and [8]). Also, recall that θ is the weak-? limit in
L∞(Ω) of χε. Thus, we get:∫ T

0

∫
Ωε

u̇εϕdxdt →
∫ T

0

∫
Ω

u̇θϕdxdt

and, therefore,

ερcp

∫ T

0

∫
Ωε

u̇εϕdxdt → 0. (8)

Also, ∫ T

0

∫
Ωε

Aε∇uε · ∇ϕdxdt →
∫ T

0

∫
Ω

θA0∇u · ∇ϕdxdt, (9)

∫ T

0

∫
Ωε

fϕdxdt →
∫ T

0

∫
Ω

θfϕdxdt. (10)

Let us see now how we can pass to the limit in the two terms on the boundary of the blood
regions. To this end, let us remember a result of D. Cioranescu and P. Donato (see [1]).
Introducing, for any h ∈ Ls′(∂F ), 1 ≤ s′ ≤ ∞, the linear form µε

h on W 1,s
0 (Ω) defined by

〈µε
h, ϕ〉 = ε

∫
Sε

h(
x

ε
)ϕdσ ∀ϕ ∈ W 1,s

0 (Ω),
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with 1/s + 1/s′ = 1, it is proven in [1] that

µε
h → µh strongly in (W 1,s

0 (Ω))′, (11)

where
〈µh, ϕ〉 = µh

∫
Ω

ϕdx,

with
µh =

1
|Y |

∫
∂F

h(y)dσ.

If h ∈ L∞(∂F ) or even if h is constant, using a result of D. Cioranescu, P. Donato and H.
Ene (see [2]), we have

µε
h → µh strongly in W−1,∞(Ω). (12)

We denote by µε the above introduced measure in the case in which h = 1.
Using the convergence (12) written for h = 1, we obtain

ε

∫
Sε

uεϕdx = 〈µε, P εuεϕ〉 → |∂F |
|Y |

∫
Ω

uϕdx.

Since uε
b ∈ H1(Ω) and ‖uε

b‖H1(Ω) ≤ C, then, up to a subsequence, we get

uε
b ⇀ ub weakly in H1(Ω).

Hence, integrating in time and using Lebesgue’s convergence theorem, it is not difficult to
see that

aε

∫ T

0

∫
Sε

(uε
b − uε)ϕdxdt → a

|∂F |
|Y |

∫ T

0

∫
Ω
(ub − u)ϕdxdt. (13)

Also, since (see [8])
∂γ(uε)

∂t
∈ L2(0, T ;L2(Sε)),

where γ : H1(Ωε) → L2(Sε) is the trace operator with respect to Sε, which is continuous,
we have

αε

∫ T

0

∫
Sε

u̇εϕdxdt → α
|∂F |
|Y |

∫ T

0

∫
Ω

u̇ϕdxdt. (14)

Putting together (8)-(10) and (13)-(14), we can pass to the limit in all the terms in
(7) and we obtain exactly the variational formulation of the limit problem (6). As u is
uniquely determined, the whole sequence P εuε converges to u and this completes the proof
of Theorem 1.
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