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Abstract: A self-learning based methodology for building the rule-base of a 

fuzzy logic controller (FLC) is presented and verified in a practical 

experiment. The methodology is a simplified version of those presented in 

available research papers. Some aspects are intentionally ignored as they 

rarely appear in control system engineering and a SISO process is considered 

here. The fuzzy inference system obtained is a table-based Sugeno-Takagi 

type. System’s desired performance is defined by a reference model and rules 

are extracted from recorded data, after the correct control actions are 

learned. Presented algorithm is tested for a DC drive control application. 
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1. Introduction 
 

As often mentioned in current literature, 

there are at least four main sources for 

finding control rules of a fuzzy logic 

controller (FLC) [6], [11]: i) based on 

experience; ii) based on an operator’s 

control actions properly recorded; iii) based 

on a fuzzy model of the plant; iv) based on 

complex intelligent techniques such as self-

learning algorithms and neural networks. 

Practical implementations often use more 

than one of these sources in order to exploit 

their benefits and avoid usual difficulties. 

As an example, the self-learning algorithm 

can be used to obtain a rough rule-base of 

the FLC, which might be further improved 

by designer [1], [3-5], [7], [9]. 

Intelligent techniques (term derived from 

artificial intelligence) are meant to extract 

fuzzy rules from an automatic process of 

recording and processing data that somehow 

imitates human reasoning. One strategy for 

building a rule-base is by using a self-

learning algorithm. The concept of self-

learning control [2] implies a reference 

model and an iterative learning scheme, 

through which the desired control actions 

are progressively learned by operating the 

system repeatedly [2]. At the same time, 

the fuzzy rule-base is formed by observing, 

recording and properly processing the 

learned actions [1], [4], [8]. No expert or 

process model would be necessary and 

model identification errors are avoided. 

 

2. Modified  Sugeno-Takagi  Fuzzy 

Reasoning 

 

It is considered very difficult to extract 

fuzzy rules from numerical data. Usually, 

this is because there is no clear relation 

between numbers (quantitative data) and 

the linguistic terms used by an expert 
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(qualitative data). However, from an 

engineering control point of view, it is 

possible to use a rule-base with rules 

having less linguistic meaning, but having 

the “if-then” statement form. This leads to 

a little change in the usual fuzzy reasoning 

scheme [8]: crisp values (which will be 

further named target values) instead of 

fuzzy sets are initially chosen over the 

universe of discourse for each variable, 

and a fuzzy set for close to linguistic term 

is used to engage a fuzzy inference 

mechanism. The inference engine computes 

the output by comparing actual inputs with 

some already known values, for which 

have the correct outputs. This action is 

termed pattern matching, where patterns 

are the already known cases or target values. 

Let us consider a simple case: an input 

variable x and an output variable y, with 

crisp target values xj for input. We assume 

that for every input target value a 

corresponding output value yj is known. 

Hence, for every xj, we can enounce a non-

fuzzy rule with the if-then form: 

 

if x = xj then y = yj. 

 

Further, in order to increase the robustness 

of the control system, it is reasonable to 

enounce the following fuzzy rule: 

 

if x is close to xj then y is close to yj. 

 

The “close to” term is usually defined by 

a fuzzy set, with its parameters chosen to 

fulfil completeness condition for the rule-

base. The “close to” fuzzy set actually 

produces the fuzziness and defines a norm 

to describe the distance between an actual 

value x′ and the targets xj for which we 

know the correct action yj. The action y′, 

taken for x′, is influenced by this norm. 

Both the universe of discourse and the 

target values for every variable can be 

chosen based on the recorded data from a 

learning stage. This will increase the 

system’s learning characteristic, which 

makes it more intelligent. In this case, a 

variable’s range can be chosen depending 

on the maximum recorded value for that 

variable. 

 

 
 

Fig. 1. A symbolic representation of the 

fuzzy inference mechanism 

 

Afterwards, the adequate target values 

are chosen over the range. It is worth 

mentioned here that the simplest uniform 

distribution is satisfactory, yet could have 

no relevance in some control applications. 

Better performances in steady-state 

conditions require a more detailed analysis 

of error values close to zero. Hence, we 

consider that target values for the input 

variables must cover the range but should 

be denser in the close to zero regions. 

In conclusion, non-fuzzy relations between 

inputs and outputs, represented by recorded 

data, can be the basis for building fuzzy rules, 

and so for the modified reasoning scheme. 

 

3. Rule-Base Construction by Self-Learning 
 

The attractive characteristic of fuzzy control 

is that only little explicit knowledge 

regarding the process is needed while 

designing the controller. In other words, 

design should focus on building the rule-

base and not on model identification. 

Hence, the main guidelines to be followed 

while designing the FLC would be: i) the 

control system should satisfy the desired 

performance and ii) the required knowledge 

about the process should be kept as little as 

possible [6]. 

The block diagram of the self-learning 

system used in this paper is shown in 
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Figure 2. The overall system is composed of 

four functional modules: reference model, 

learning algorithm, rule-base formation 

mechanism and the controlled process. 

 

 
 

Fig. 2. Block diagram of the self-learning system 

 
3.1. Learning Algorithm 

 

The concept of iterative self-learning 

was initially introduced in [2]. As its name 

implies, the correct control actions are 

learned by repeated trial in such a way that 

the modification of the present control is 

based on the error information obtained 

during previous trial.  

A reference model Gref (s) is used to 

designate the desired performance, defined 

by time domain indices or alternatively by 

desired pole position in the s-plane. The 

model can be a low-order linear one, with 

its parameters obtained from given 

performance indices. The output of the 

model, yref, represents the desired process 

output. 

The error information used to control the 

algorithm is the learning error, defined as: 

 

)()()( sksrefsk iTyiTyiT −=ε , (1) 

 

where: k specifies the current iteration 

number of the algorithm and Ii ,0=  is the 

sample number of all signals recorded with 

the sampling time Ts. Notice that we have 

I + 1 values for every recorded variable. 

The learning algorithm is called PID-type 

update law or error correction algorithm, 

and is defined by: 

 

)()()( 11 skksksk iTgiTuiTu
−−

ε+= , (2) 

 

where gk is a learning gain for current 

iteration. The control output is adjusted at 

every iteration, such that the learning error 

asymptotically tends to zero, or a pre-

specified small value, εmax. The algorithm 

stops (at iteration k) if: 
 

max

0

)()( ε≤ε=ε ∑
=

I

i

sksk iTiT . (3) 

 

In the most simple case, learning gain is 

constant for every iteration, gk = g. 
 

3.2. Rule-Base Construction 
 

The rule-base construction consists in a 

statistical data processing [1], [4], which is 

a simplified version for a SISO process. A 

detailed version for MIMO processes is 

presented in [7]. 

Suppose that, at the K-th learning iteration, 

the correct control action uK(iTs) is learned 

so that the desired output response 

specified by the reference model is 

achieved. At the same time, the measured 

error or control error: 
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)()()( sKssK iTyiTriTe −= , (4) 

 

is recorded and we have two sets of data, 

one for control action and one for 

measured error, having I + 1 values. From 

eK(iTs) data set we can obtain the values for 

the change-in-error: 
 

)()()( ssKsKsK TiTeiTeiTce −−= . (5) 

 

The three vectors are organized in pairs: 
 

}{~};{ iii ucee , (6a) 

 

where: ~ means “corresponding to”. Notice 

that the iteration number is no longer needed. 

The present I + 1 groups are derived from 

a positive step reference, or positive command 

action. If the process’ output is symmetrical 

around zero when command action sign is 

reversed, expressed as then another I data 

pairs having the same absolute values but 

with opposite signs will be obtained: 
 

}{~};{ iii ucee −−− . (6b) 

 

For every input variable, target values 

are chosen uniformly distributed over 

symmetrical ranges, as presented in section 

2. All possible J combinations of the target 

values will form target pairs {ej; cej}, with 

Jj ,1= . For every target pair, the corre-

sponding value for the output variable is 

calculated from the recorded data pairs: 
 

∑
=

=

jN

i

iij

j

j uw
N

u
1

1
, (7) 
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and Nj being the number of not null wij  

values. Notice that only the recorded data 

pairs close enough to the target pairs are 

considered. With output values calculated 

in (7), non-fuzzy rules can be expressed: 

 

if e = ej  and  ce = cej  then  u = uj, 

 

and then it is possible to enounce the fuzzy 

rules: 

 

if e is close to {ej} and ce is close to 

{cej} then u is {uj}. 

 

The close to term is usually defined by a 

fuzzy set having a triangular membership 

function around target value and is 

preferably chosen.  

The rules obtained would be: 

 

if e is Ej and ce is CEj then u = uj. 

 

Several important aspects must be 

mentioned here. First, the number of fuzzy 

rules depends on the number of target pairs. 

A large number of fuzzy rules imply a 

more complex and slower implementation, 

which can result in an unstable control 

system. Hence, a larger number of target 

values does not lead to better results. 

Second, the procedure is meant to find the 

fuzzy rules of the controller. Choosing 

learning gains, scaling gains, target values 

and reference model is still designer’s task 

and his experience is most relevant. 

 

4. Constructing a Rule-Base for a DC 

Drive Fuzzy Control Application 
 

The process subjected to the presented 

self learning fuzzy control system in our 

experiment is a DC drive. This application 

is wide spread, and so it is easy to verify 

the algorithm by comparing the results 

with some already known. The DC drive 

model is not relevant, as this is one of the 

reasons for self-learning design strategy. 

Hence, the experiment does not include 

identification or parameter estimation. 
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The learning scheme (Figure 2) is 

implemented using a software application 

(WinFact/BORIS) that enables both data 

acquisition and real-time processing 

(Figure 3). 
 

 
 

Fig. 3. The experiment 
 

The data acquisition is realized with a 

device connected to a computer through 

the USB port (ProfiCASSY). The drive is 
powered at 24 V DC voltage, and it produces 

3000 rpm for a 10 V DC command voltage 

applied on power amplifier. The speed sensor 

generates 1 V signal for 1000 rpm speed. 

An additional scaling factor of 10/3 is used 

to adjust sensor’s voltage to −10…+10 V 

reference range, so the maximum speed 
will correspond to the maximum command 

signal.  

The following settings were chosen: 

- reference signal is: )(15)( ttr
+

⋅= ; 

- reference model is a first order element 

with no time delay, having Kref = 1 and 

Tref  = 1; 

- learning gain is constant and arbitrarily 

chosen gk = g = 1; 

- learning error value to stop iterative 

learning algorithm is εmax = 0.5; 

- scaling factors for the range of each 

variable, that multiplies the maximum 

recorded values are neglected since recorded 

values are already scaled to −10…+10 V; 

- there are 7 target values for error 

variable and 3 for change-in-error variable, 

uniformly chosen over their ranges; 

- the sampling time is Ts = 0.1 s. 

With these settings, an iterative self-

learning stage was performed. It reaches 

the stop condition (3) at the 10
th
 iteration 

(K = 10): 

483.0)(
10

=ε
==Kksk iT . 

 

The now available values for error and 

command are used to extract fuzzy rules, 

by running a custom made Matlab program.  

With these data, an incomplete rule-base 

would be formed, that is not satisfactory. 

To avoid that, the rule-base construction 

stage has two steps. First it extracts fuzzy 

rules from available data (6a) and from the 
inverse values of them (6b). Second, it 

considers supplementary fuzzy rules so 

that the rules table will be symmetrical 
around the zero values of each input 

variable (or around the middle cell in the 

table). Rules are presented in Table 1, 

where the marked cells are filled in the 

second step (notice there are only two cells). 

Subsequently, the rule-base was verified 

by using again WinFact/BORIS environment, 

which provides a powerful tool to run real-

time tests and analyze fuzzy control systems. 
 

Table 1  
The table of extracted fuzzy rules 

ce 

e 
−10 0 10 

−4.98 −8.1823 −6.9409 −6.5448 

−3.32 −5.4411
*
 −5.4411 −5.4411 

−1.66 −0.0204 −2.3783 −5.3949 

0 −0.0150 4.7808 0.0150 

1.66 5.3949 5.2157 5.4628 

3.32 5.4411 5.4411 5.4411
*
 

4.98 6.5448 6.9409 8.1823 

 

 
 

Fig. 4. The step response of the designed 

control system and the reference model 
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The results are satisfactory and very 

close to the reference model (see Figure 4): 

i) DC drive speed varies around reference 
(constant value corresponding to half the 

drive’s maximum speed), within a reasonable 

%1±  stability range; steady-state error is 

zero; ii) raising time is approximately equal 

to the value for the considered reference 

model; iii) as expected, no overshoot is 

recorded. 

 

Conclusions 
 

A simplified self-learning based 

methodology for building the rule-base of 

a fuzzy logic controller (FLC) was 

presented and verified, aiming to engage 

intelligent characteristics to a fuzzy logic 

control systems. The process subjected to 

control is a DC drive, a single input single 

output system that leads to the main 

simplification in the general algorithm. 

The DC drive is used because of the huge 

number of successful applications, which 

assures a reasonable and trustful verification 

of the presented algorithm. 

A custom Matlab code was used to process 

recorded data and the fuzzy controller was 

tested in real-time by using again the 

WinFact/BORIS environment. The designed 

system has satisfactory behavior that 

proves method’s viability. Fuzzy controller 

design guidelines were followed and fuzzy 

control advantages were achieved. The 

control system has satisfactory performance 

and the controller was built without any 

information about the process (model, 

experience, parameters etc.). 
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