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Abstract: Nowadays high speed interfaces are commonly used in digital 

electronics, communications and computers. Standards like PCI Express, 

SATA, GigE (802.3-2002), XAUI (802.3ae), 10G Base-KX4 (802.3ap), 10G 

Base-CX4 (802.3ak), HDMI, DVI, DisplayPort require high speed connection 

link. In this paper we present implementation and test of a 30 bit host-LCD 

panel interface that can work at an effective rate of up to 945Mbs per 

channel using Structured ASIC Technology. Structured ASIC technology has 

the advantage of built in Serializer/Deserializer and low-cost prototype that 

allows building a testchip before the real product implementation. 
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1. Introduction 
 

High-speed Low Voltage Differential 

Signalling (LVDS) interfaces become 

commonly used in digital electronics, 

communications and computers. Low Voltage 

Differential Signaling is a technology 

addressing the needs of today’s high 

performance data transmission applications. 

LVDS solutions provide designers with a 

new alternative to solving high speed I/O 

interface problems, delivering hundreds of 

megabits per second with power 

consumptions of few milliwatts for today’s 

and tomorrow’s bandwidth hungry data 

transmission applications. 

However testing a high-speed LVDS 

interface requires very expensive equipment 

that is not available to all companies. For 

most of them building a testchip that 

demonstrate the capability of high-speed 

LVDS connection link is a preferred solution.  

This paper presents such a testchip for 

validation of a high-speed LVDS connection 

between a Host and a Flat Panel Display 

that can work up to 945 Mbs per LVDS 

channel to support pixel data transmission 

from NTSC up to SXGA+ resolutions.  

In comparison with other similar high 

speed test interfaces [5] the proposed idea 

has the advantage of using the same die-

package combination that will be used in 

real product matching exactly the high-speed 

interface behaviour and package parasitic.  

In our case the selected transmitter chip 

is a five channel 135 MHz 30 bits color 

transmitter part number is THC63LVD103D 

described in [9]. Next sections describe the 

functionality of the testchip that will 

interact with a LVDS transmitter. The 

testchip generates pseudo random data that 

is sent to the serializer transmitter chip. The 

LVDS transmitter can receive the data from 

the testchip or from another video stream and 
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Fig. 1. LVDS testchip - internal architecture and external connections 

 

sends the data at 945 MHz frequency back 

to the LVDS testchip that compares the 

received data with the expected sequence.  

The LVDS Testchip has the following 

interfaces: 

- LVTTL parallel data out to 

THC63LVD103D at 135 MHz; 

- LVDS serial input from 

THC63LVD103D at 945 MHz; 

- mobile DDR interface at 200 MHz;  

- JTAG debug interface; 

- LCD display interface to NHD-

0112BZ-FL-YBW; 

- parallel debug port. 

The LVDS Testchip has the LCD display 

interface to allow display of the bit error rate 

(BER) and can be controlled by a application 

running on a computer using a JTAG debug 

interface connection. Other high speed 

interface tested by the presented circuit is a 

mobile DDR interface working at 200 

MHz, but the current paper focuses mainly 

on the high-speed LVDS interface.  

In section II we will present the architecture 

of the LVDS testchip. In section III we 

will describe the test environment. Section 

IV will depict the implementation. Finally 

conclusions and further study are presented 

in Section V. 

 

2. Testchip Architecture  
 

The testchip generates a pseudo random 

data sequence using a linear feedback shift 

register (LFSR), that is sent parallel to the 

transmitter chip which sends the data back 

serially and the comparison starts. The 

comparison is using the same LFSR 

structure. Receive LFSR starts generating 

data after a latency cycle that is either 

specified in one of the configuration registers 

or is determined by sending a training 

pattern and computing the delay it takes 

for the pattern data to be received back 

from the transmitter chip, pseudo-random 

data following the training pattern. 

The deserializer phase alignment interface 

is driven by configuration registers to solve 

the phase alignment issue between clock 

and data. 
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All the configuration registers can be 

accessed through a JTAG controller. 

The whole configuration structure can be 

bypassed in order to create a simple loop 

between the serializer and the testchip. 

The top level internal architecture is 

presented in Figure 1 with the following 

sub-modules: 

- tcDes - serdes block de-serializes high 

speed data stream;  

- tcPattGen - pseudo random pattern 

generator and comparator; 

- tcReg - contains configuration registers 

and pattern memories; 

- JTAG controller - IEEE 1149.1 compliant 

JTAG controller with OCP (Open Core 

Protocol) interface; 

- FPU - floating point unit for computing 

bit error rate (BER); 

- LCD controller - controller for LCD 

display; 

- DDR physical interface for mobile DDR. 

 

2.1. tcDes - Serdes Block 

 
The transmitter does serialization with 

factor of 7x and sends high-speed data stream 

and low speed clock. Figure 2 presents the 

relationship between clock and data, note 

that there is a 2 high speed cycle shift 

between low speed clock and data stream. 

The deserializer requires a high-speed 

clock and a low-speed clock that drive the 

load-enable-control block, a core clock on 

which the parallel data is transferred to the 

core, and a feedback clock to remove the 

high-speed clock tree insertion delay. The 

deserializer PLL reference clock originates 

from the driving serializer, which is 

received on a dedicated pad. 

For both the serializer and deserializer 

the high-speed clock must be 180° phase 

shifted (inverted). This can be easily 

achieved by setting the correct PLL 

parameter. All other clocks should be non- 

inverting. The low-speed clock must be the 

same frequency as the core clock. The high- 

 
 

Fig. 2. LVDS output data position 

 

speed clock frequency is determined by the 

data conversion ratio (which is the same as 

the parallel data width) times the low-

speed clock frequency. The following data 

conversion ratios are supported: 2x, 3x, 4x, 

7x, 8x and 10x. 

The deserializer takes a serial data 

stream from a dedicated, high speed 

differential input buffer and converts it into 

a parallel data stream for the core. 

To adjust for any skew on the data 

signals, either generated by the PCB or by 

delays on the die, each channel has a 

programmable delay, which can be 

individually adjusted during runtime. 

Figure 3 presents the deserializer block for 

the selected Structured ASIC technology [8]. 

Load-Enable Control Block (intloaden) 

generates an internal load enable signal 

from the high-speed clock and the low-speed 

clock, which are generated by the PLL. 

The load enable signal is driven onto 

the high-speed clock tree to the serial-to-

parallel and parallel-to-serial converter 

blocks. 

The serial-to-parallel converter (int_rx) 

stores the high-speed data stream from the 
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Fig. 3. Programmable LVDS receiver 
 

differential input pad, through a 

programmable delay, into the shift register. 

On the rising edge of load enable the data 

is latched into the holding register from 

where it can be retrieved by the core. 

 

2.2. tcPattGen - Pseudo Random Pattern 

Generator and Comparator 
 

This module generates parallel streams 

of data going to the transmitter device. 

When the enable signal coming from the 

eDes is asserted the comparison starts. The 

LFSRs are first initialized with a certain 

value. The generation of the data continues 

until the number of patterns is equal with 

the number programmed coming from the 

configuration registers bank written 

through JTAG. Based on stop at error 

parameter the chip will stop at a specific 

error number. The number of errors is 

written in the configuration registers via 

for software access through JTAG. 

The testchip will send a stream of ‘0’ to 

the transmitter device until the Serdes PLL 

from the testchip is getting locked. At that 

moment the tcPattGen will send a training 

pattern to figure out the latency of the data. 

A maximum latency register in the tcReg 

contain the maximum latency expected for 

the data. If the latency could not be computed 

then a error bit is output and stored in the 

status registers. The latency computed can 

be written in a register for debug purpose. 

 
 

Fig. 4. Comparison process inside 

tcPattGen 

 

Two memory blocks will be written after 

the training pattern was established every 

time there is an error. One memory 

contains the correct data and the other one 

the wrong data. This way, at the end, both 

memories can be read back and check the 

differences. The memories can be read 

through JTAG. Only when an error 

appears the memories are written, write 

enable for the memory is the error signal. 

One port will be used for writing data in 

the memory while the other one for 

reading the data, on the JTAG_CLK. We 

can take advantage on the true dual port 

memory configuration using both ports for 

independent configuration. 

The memory address and data out are 

connected to the tcReg in order to allow 

debug via JTAG. The LFSR starts generating 

data when the latency is computed. It waits 

for the number of cycles computed in 

latency register and then it starts comparing 

the data. The comparison process is presented 

in Figure 4.  

All the data is output also to the primary 

ports using a custom parallel interface in 

order to debug them with a logic analyzer. 

 

2.3. JTAG Controller 

 
The JTAG controller implements an 

IEEE-1149 compliant JTAG tap controller 
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with full boundary scan capability as in 

[2]. In addition, the JTAG controller maps 

JTAG user commands into OCP transfers 

to access the internal devices of an 

integrated circuit. 

This is a reusable IP core that has two 

standard interfaces: JTAG interface for 

testing and standardized access purpose 

and OCP interface that facilitates “plug 

and play” SoC design as detailed in [6]. 

JTAG controller has three interfaces: 

- JTAG interface - standard JTAG port; 

- boundary scan interface - not used in this 

testchip; 

- OCP interface - provide byte wide access 

to a 64 KB address space implemented in 

tcReg. 

The JTAG solution was preferred because 

the IP core already has been tested in few 

implementations on both ASIC and 

structured ASIC. Also the availability of 

software libraries for connection of JTAG 

interface to parallel port or USB port of a 

host computer make JTAG the preferred 

solution for the debug interface. 

 

2.4. Floating Point Unit 
 

The FPU is used to compute two bit error 

rate values. Bit error ratio (BER) is the 

number of received bits that have been 

altered due to noise, interference and 

distortion, divided by the total number of 

transferred bits during a studied time 

interval [1], [3]. 

The total BER is obtained by dividing 

the total number of wrong bits by the total 

number of received bits. The other BER is 

computed relative to a specified period 

(written through JTAG interface to a 

configuration register from tcReg). This bit 

error rate is computed by dividing the 

number of wrong bits received by the total 

number of bits received during that specific 

interval. 

The FPU inputs and outputs are represented 

as floating point number - 64 bit precision 

[4]. Hence, the dividers and dividends had 

to be “normalized” (converted from their 

initial form - fixed point arithmetic, no 

fractional part, to 64 bit floating point 

arithmetic, having a sign, mantissa and 

exponent). 

The quotients, however, had to go through 

the opposite process, “de-normalization” 

(the values were converted from the 64 bit 

floating point representation to a fixed 

point representation, base-10, having a 

mantissa and a decimal exponent). This 

was necessary in order to obtain a base - 

10 representation that could be further on 

displayed on the LCD. 

The FPU module is a double precision 

floating point reusable IP core from 

opencores.org. It features double precision 

operation for addition, subtraction, 

multiplication and division. 

The IEEE 754 standard defines how 

double precision floating point number are 

represented. 64 bits are used to represent a 

double precision floating point number. 

The sign bit occupies bit 63. ‘1’ signifies a 

negative number, and ‘0’ is a positive 

number. The exponent field is 11 bits long, 

occupying bits 62-52. The value in this 11-

bit field is offset by 1023, so the actual 

exponent used to calculate the value of the 

number is 2^(e-1023). The mantissa is 52 

bits long and occupies bits 51-0. There is a 

leading ‘1’ that is not included in the 

mantissa, but it is part of the value of the 

number for all double precision floating 

point numbers with a value in the exponent 

field greater than 0. A 0 in the exponent field 
 

 
 

Fig. 5. Structure of floating point unit 



Bulletin of the Transilvania University of Braşov • Vol. 3 (52) - 2010 • Series I 

 

310 

corresponds to a denormalized number. 

The actual value of the double precision 

floating point number is the following: 
 

Value = −1^(sign bit) × 2^(exponent –  

      − 1023) × 1.(mantissa), 

 

(1.mantissa) being a base 2 representation 

of a number between 1 and 2, with 1 

followed by a decimal point and the 52 bits 

of the mantissa. 

The top level, fpu_double, starts a 

counter one clock cycle after enable goes 

high. The counter counts up to the number 

of clock cycles required for the specific 

operation that is being performed. For 

addition, it counts to 20, for subtraction 21, 

for multiplication 24, and for division 71. 

Once the counter reaches the specified 

final count, the ready signal goes high, and 

the output will be valid for the operation 

being performed. fpu_double contains the 

instantiations of the other 6 modules, 

which are 6 separate source files of the 4 

operations (add, subtract, multiply, divide) 

and the rounding module and exceptions 

module. 

 

2.5. LCD Controller 
 

The LCD controller implements an 

interface with the NHD-0112BZ-FL-YBW 

LCD Display. The LCD is used to output 

the computed BERs. On the first line it 

displays the total BER and on the second 

one the BER computed every period. They 

are represented as floating point numbers, 

having a mantissa and an exponent. 

The controller for the LCD is comprised 

of a finite state machine, an “lcd write” 

module and a bcd-to-ASCII conversion 

module. The FSM is the key part of the 

controller, generating the control signals 

that are used in the “lcd_write” module for 

interfacing the LCD display.  

The two BER values that are to be 

displayed inputs to the controller are 

represented as 40 bits integer numbers, 

having an 8 bit exponent. In order to 

output these values, they were converted 

from their binary representation to BCD 

(binary-coded decimal). As the LCD 

display needs to receive as inputs ASCII 

codes of the digits/symbols to be 

displayed, the module “bcd_to_ascii” was 

implemented. This module contains the 

logic for the translation from BCD to 

ASCII. 

As the two BER values are fractional 

numbers, and to be more specific, quite 

small, the exponential representation was 

needed in order to maintain the highest 

precision possible: 

E.g.:  

The value displayed on the LCD: 

    

1.0253 e – 07.  

 

The value written as a decimal number: 

 

1.0253 e – 07 = 1.0253 × 10−7 = 

= 0.00000010253. 

   
2.6. DDR Physical Interface 

 

The testchip provides a 32 bit mobile 

DDR interface testing using DFI (DDR 

PHY Interface) compliant DDR2 physical 

interface and simplified DDR2 controller. 

The DDR2 physical interface is designed 

to interface a DDR2 memory controller 

with a DDR2 memory unit and is intended 

for structured ASIC family only. It consists 

of DDR2 specific macros which allow 

translation of information between the 

controller which works on one edge of a 

clock signal and the DDR2 memory unit 

which works on both the edges of the clock 

thus allowing the controller to perform 

read and write operations to the memory. 

The DDR2 controller part is implemented 

as a very basic solution where transmit part 

is under control of data from a 2Xx128 

block memory while the received data is 
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stored into a 2kx64 block memory. Both 

memories can be accessed from debug 

interface from host computer. Programmable 

addresses counters are used to control transmit 

and receive sequences. The implementation 

provides the possibility to write the test 

sequence from host computer through 

JTAG or it can be directly programmed in 

the initial content of those memories through 

a bitstream stored into external serial memory. 

The data received from the external mobile 

DDR memory is stored into internal block 

memory. The host computer can read this 

data and compare it against the expected 

data for the test sequence. 

 

3. Test Environment 
 

Test environment include a suite of tests 

that are run using ModelSim simulator. 

Figure 6 depicts the test environment. 

Test environment consists of: 

- JTAG master (jtagTasks) which controls 

and monitors all internal registers and 

memory. It is configurable through external 

input file that contains the JTAG sequence 

in human readable format. 

- Transmitter model that receives the 

parallel stream of data and provides back 

the clock and high speed serialized data for 

five channels. 

- Error generators that provide the 

capability to inject errors in high speed 

stream of data. Each channel has its own 

error generator with programmable threshold 

for random error rate. 

- Mobile DDR model for the selected 

DDR part provided by the memory 

producer. 

A test regression composed from multiple 

tests is automated with a makefile. Test 

regression contains: 

- basic read/write JTAG access to all 

registers; 

- dynamic PLL reconfiguration test; 

- basic DDR write/read/check; 

- automated detection of transmitter latency; 
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Fig. 6. Test environment structure 

 

- phase alignment test; 

- error free high speed interface (serdes) 

test; 

- tests with errors injected for each channel 

and for all channels. 

The LCD interface is difficult to test using 

simulation because of long simulation and 

non existent simulation model for LCD 

part. The solution was to implement the 

LCD controller on FPGA using a Spartan-

3E Starter Kit with similar LCD screen. On 

the two line LCD display we have the bit 

error rate per period and on second line the 

total number of errors since latest reset. 

This LCD interface is helpful for long-term 

analysis.  
 

4. Implementation 
 

The Testchip was implemented on 

structured ASIC using eASIC NX1500 

device with BG480 package. 

The chosen synthesis strategy was the 

top-bottom one using the Magma Design 

Automation environment for structured 

ASIC 0.09 µm Fujitsu process.  

Table 1 presents area results for the testchip.  

 

Testchip area results   Table 1 

Area results  

Logic Memory IO 

15233 eCells = 

152330 

equivalent 

logic gates 

16 bRAMs = 

512 kbits 

146 eIO 

including 

98 DDR 

registers 
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The final placed and routed netlist was 

analyzed with a static time analysis tool - 

Synopsys PrimeTime. The final analysis 

included parasitic information about the 

design, silicon die and package. Several 

iteration from static timing analysis to 

routing were requires to solve transition 

and hold violations. Table 2 describes clock 

frequencies; timing was met for all clocks. 

 

Testchip timing results   Table 2 

Clock periods [ns] 

CORE_CLK RX_HS_CLK DDR_CLK JTAG_CLK 

9.43 1.35 5 100 

 

The implementation took about two 

weeks with the most difficult part being 

timing closure for high speed interface. 

Based on static timing analysis we 

determine the value for delay elements that 

ensure clock edge to center of the data eye. 

Based on this value determined from static 

timing analysis we coded the rest value for 

the registers that control the phase 

alignment for high speed input interface 

but the values can be later changed by host 

computer based on experiments. 

 

5. Conclusion 

 

This paper presented the methodology 

for design and implementation of a testchip 

for a host-LCD panel high speed interface. 

The idea can be successfully applied to test 

other high speed interfaces as well. The 

simulation proven the correct behavior and 

implementation provided quantitative 

performance measurement.  

Further studies can be made to design 

and implement automatic dynamic phase 

alignment based on training patterns and to 

improve the reporting of long term error 

statistics based on feedback from actual 

silicon testing. 
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