
Bulletin of the Transilvania University of Braşov • Vol. 3 (52) - 2010

Series I: Engineering Sciences

HIGH SPEED INTERFACE TESTCHIP

FOR STRUCTURED ASIC TECHNOLOGY

T. TULBURE

1
 R. JIPA

1

Abstract: Nowadays high speed interfaces are commonly used in digital

electronics, communications and computers. Standards like PCI Express,

SATA, GigE (802.3-2002), XAUI (802.3ae), 10G Base-KX4 (802.3ap), 10G

Base-CX4 (802.3ak), HDMI, DVI, DisplayPort require high speed connection

link. In this paper we present implementation and test of a 30 bit host-LCD

panel interface that can work at an effective rate of up to 945Mbs per

channel using Structured ASIC Technology. Structured ASIC technology has

the advantage of built in Serializer/Deserializer and low-cost prototype that

allows building a testchip before the real product implementation.

Key words: High speed serial interface, Structured ASIC, LVDS.

1 Dept. of Electronics and Computers, Transilvania University of Braşov.

1. Introduction

High-speed Low Voltage Differential

Signalling (LVDS) interfaces become

commonly used in digital electronics,

communications and computers. Low Voltage

Differential Signaling is a technology

addressing the needs of today’s high

performance data transmission applications.

LVDS solutions provide designers with a

new alternative to solving high speed I/O

interface problems, delivering hundreds of

megabits per second with power

consumptions of few milliwatts for today’s

and tomorrow’s bandwidth hungry data

transmission applications.

However testing a high-speed LVDS

interface requires very expensive equipment

that is not available to all companies. For

most of them building a testchip that

demonstrate the capability of high-speed

LVDS connection link is a preferred solution.

This paper presents such a testchip for

validation of a high-speed LVDS connection

between a Host and a Flat Panel Display

that can work up to 945 Mbs per LVDS

channel to support pixel data transmission

from NTSC up to SXGA+ resolutions.

In comparison with other similar high

speed test interfaces [5] the proposed idea

has the advantage of using the same die-

package combination that will be used in

real product matching exactly the high-speed

interface behaviour and package parasitic.

In our case the selected transmitter chip

is a five channel 135 MHz 30 bits color

transmitter part number is THC63LVD103D

described in [9]. Next sections describe the

functionality of the testchip that will

interact with a LVDS transmitter. The

testchip generates pseudo random data that

is sent to the serializer transmitter chip. The

LVDS transmitter can receive the data from

the testchip or from another video stream and

Bulletin of the Transilvania University of Braşov • Vol. 3 (52) - 2010 • Series I

306

T_A

THINE

THC63LVD103D

LCD DISPLAY

NHD-0112BZ-FL-YBW

DDR

MT46H8M32LF
tcDes

T_B

T_C

T_D

T_E

T_A_N

T_B_N

T_C_N

T_D_N

T_E_N

TCLK

TCLK_N

SRD_CLK

RX_CLK

DATA_REC

35

tcPattGen

RxLFSR

TxLFSR

Compara

tor

SRD_DATA(A-E)

35

tcReg

JTAG Controller

LCD Controller

DDR PHY

FPU

BER

SW
3DATA_SEL_I

OSC
SYS_CLK

RST_NI

GND

SERDES DDR TESTCHIP

EXP_DATA_O

REC_DATA_O

7

7

Fig. 1. LVDS testchip - internal architecture and external connections

sends the data at 945 MHz frequency back

to the LVDS testchip that compares the

received data with the expected sequence.

The LVDS Testchip has the following

interfaces:

- LVTTL parallel data out to

THC63LVD103D at 135 MHz;

- LVDS serial input from

THC63LVD103D at 945 MHz;

- mobile DDR interface at 200 MHz;

- JTAG debug interface;

- LCD display interface to NHD-

0112BZ-FL-YBW;

- parallel debug port.

The LVDS Testchip has the LCD display

interface to allow display of the bit error rate

(BER) and can be controlled by a application

running on a computer using a JTAG debug

interface connection. Other high speed

interface tested by the presented circuit is a

mobile DDR interface working at 200

MHz, but the current paper focuses mainly

on the high-speed LVDS interface.

In section II we will present the architecture

of the LVDS testchip. In section III we

will describe the test environment. Section

IV will depict the implementation. Finally

conclusions and further study are presented

in Section V.

2. Testchip Architecture

The testchip generates a pseudo random

data sequence using a linear feedback shift

register (LFSR), that is sent parallel to the

transmitter chip which sends the data back

serially and the comparison starts. The

comparison is using the same LFSR

structure. Receive LFSR starts generating

data after a latency cycle that is either

specified in one of the configuration registers

or is determined by sending a training

pattern and computing the delay it takes

for the pattern data to be received back

from the transmitter chip, pseudo-random

data following the training pattern.

The deserializer phase alignment interface

is driven by configuration registers to solve

the phase alignment issue between clock

and data.

Tulbure, T., et al.: High Speed Interface Testchip for Structured ASIC Technology 307

All the configuration registers can be

accessed through a JTAG controller.

The whole configuration structure can be

bypassed in order to create a simple loop

between the serializer and the testchip.

The top level internal architecture is

presented in Figure 1 with the following

sub-modules:

- tcDes - serdes block de-serializes high

speed data stream;

- tcPattGen - pseudo random pattern

generator and comparator;

- tcReg - contains configuration registers

and pattern memories;

- JTAG controller - IEEE 1149.1 compliant

JTAG controller with OCP (Open Core

Protocol) interface;

- FPU - floating point unit for computing

bit error rate (BER);

- LCD controller - controller for LCD

display;

- DDR physical interface for mobile DDR.

2.1. tcDes - Serdes Block

The transmitter does serialization with

factor of 7x and sends high-speed data stream

and low speed clock. Figure 2 presents the

relationship between clock and data, note

that there is a 2 high speed cycle shift

between low speed clock and data stream.

The deserializer requires a high-speed

clock and a low-speed clock that drive the

load-enable-control block, a core clock on

which the parallel data is transferred to the

core, and a feedback clock to remove the

high-speed clock tree insertion delay. The

deserializer PLL reference clock originates

from the driving serializer, which is

received on a dedicated pad.

For both the serializer and deserializer

the high-speed clock must be 180° phase

shifted (inverted). This can be easily

achieved by setting the correct PLL

parameter. All other clocks should be non-

inverting. The low-speed clock must be the

same frequency as the core clock. The high-

Fig. 2. LVDS output data position

speed clock frequency is determined by the

data conversion ratio (which is the same as

the parallel data width) times the low-

speed clock frequency. The following data

conversion ratios are supported: 2x, 3x, 4x,

7x, 8x and 10x.

The deserializer takes a serial data

stream from a dedicated, high speed

differential input buffer and converts it into

a parallel data stream for the core.

To adjust for any skew on the data

signals, either generated by the PCB or by

delays on the die, each channel has a

programmable delay, which can be

individually adjusted during runtime.

Figure 3 presents the deserializer block for

the selected Structured ASIC technology [8].

Load-Enable Control Block (intloaden)

generates an internal load enable signal

from the high-speed clock and the low-speed

clock, which are generated by the PLL.

The load enable signal is driven onto

the high-speed clock tree to the serial-to-

parallel and parallel-to-serial converter

blocks.

The serial-to-parallel converter (int_rx)

stores the high-speed data stream from the

Bulletin of the Transilvania University of Braşov • Vol. 3 (52) - 2010 • Series I

308

PLL

P N P N P NP N

D D D D
in

t_
rx

in
t_

rx

in
t_

rx

High speed clock treein
t_

lo
a
d
e
n

Logic Array
core clock

feedback clockRef

FBo

FBi

HS

LScore

Fig. 3. Programmable LVDS receiver

differential input pad, through a

programmable delay, into the shift register.

On the rising edge of load enable the data

is latched into the holding register from

where it can be retrieved by the core.

2.2. tcPattGen - Pseudo Random Pattern

Generator and Comparator

This module generates parallel streams

of data going to the transmitter device.

When the enable signal coming from the

eDes is asserted the comparison starts. The

LFSRs are first initialized with a certain

value. The generation of the data continues

until the number of patterns is equal with

the number programmed coming from the

configuration registers bank written

through JTAG. Based on stop at error

parameter the chip will stop at a specific

error number. The number of errors is

written in the configuration registers via

for software access through JTAG.

The testchip will send a stream of ‘0’ to

the transmitter device until the Serdes PLL

from the testchip is getting locked. At that

moment the tcPattGen will send a training

pattern to figure out the latency of the data.

A maximum latency register in the tcReg

contain the maximum latency expected for

the data. If the latency could not be computed

then a error bit is output and stored in the

status registers. The latency computed can

be written in a register for debug purpose.

Fig. 4. Comparison process inside

tcPattGen

Two memory blocks will be written after

the training pattern was established every

time there is an error. One memory

contains the correct data and the other one

the wrong data. This way, at the end, both

memories can be read back and check the

differences. The memories can be read

through JTAG. Only when an error

appears the memories are written, write

enable for the memory is the error signal.

One port will be used for writing data in

the memory while the other one for

reading the data, on the JTAG_CLK. We

can take advantage on the true dual port

memory configuration using both ports for

independent configuration.

The memory address and data out are

connected to the tcReg in order to allow

debug via JTAG. The LFSR starts generating

data when the latency is computed. It waits

for the number of cycles computed in

latency register and then it starts comparing

the data. The comparison process is presented

in Figure 4.

All the data is output also to the primary

ports using a custom parallel interface in

order to debug them with a logic analyzer.

2.3. JTAG Controller

The JTAG controller implements an

IEEE-1149 compliant JTAG tap controller

LFSR

Syncronization
PATTERN
(35 x 3 bits)

T
ra

n
sm

it
er

35

SYS _ CLK _ I RST _ NI

DES
35

CORE _ CLK

35 x 3 shift
reg

105 bits of
pattern in
3 cycles

then send
the LFSR

data

COMPARATOR

LFSR
EN

COMPARATOR

EN

LOCKED _ O

CLK
RST _ NI

Tulbure, T., et al.: High Speed Interface Testchip for Structured ASIC Technology 309

with full boundary scan capability as in

[2]. In addition, the JTAG controller maps

JTAG user commands into OCP transfers

to access the internal devices of an

integrated circuit.

This is a reusable IP core that has two

standard interfaces: JTAG interface for

testing and standardized access purpose

and OCP interface that facilitates “plug

and play” SoC design as detailed in [6].

JTAG controller has three interfaces:

- JTAG interface - standard JTAG port;

- boundary scan interface - not used in this

testchip;

- OCP interface - provide byte wide access

to a 64 KB address space implemented in

tcReg.

The JTAG solution was preferred because

the IP core already has been tested in few

implementations on both ASIC and

structured ASIC. Also the availability of

software libraries for connection of JTAG

interface to parallel port or USB port of a

host computer make JTAG the preferred

solution for the debug interface.

2.4. Floating Point Unit

The FPU is used to compute two bit error

rate values. Bit error ratio (BER) is the

number of received bits that have been

altered due to noise, interference and

distortion, divided by the total number of

transferred bits during a studied time

interval [1], [3].

The total BER is obtained by dividing

the total number of wrong bits by the total

number of received bits. The other BER is

computed relative to a specified period

(written through JTAG interface to a

configuration register from tcReg). This bit

error rate is computed by dividing the

number of wrong bits received by the total

number of bits received during that specific

interval.

The FPU inputs and outputs are represented

as floating point number - 64 bit precision

[4]. Hence, the dividers and dividends had

to be “normalized” (converted from their

initial form - fixed point arithmetic, no

fractional part, to 64 bit floating point

arithmetic, having a sign, mantissa and

exponent).

The quotients, however, had to go through

the opposite process, “de-normalization”

(the values were converted from the 64 bit

floating point representation to a fixed

point representation, base-10, having a

mantissa and a decimal exponent). This

was necessary in order to obtain a base -

10 representation that could be further on

displayed on the LCD.

The FPU module is a double precision

floating point reusable IP core from

opencores.org. It features double precision

operation for addition, subtraction,

multiplication and division.

The IEEE 754 standard defines how

double precision floating point number are

represented. 64 bits are used to represent a

double precision floating point number.

The sign bit occupies bit 63. ‘1’ signifies a

negative number, and ‘0’ is a positive

number. The exponent field is 11 bits long,

occupying bits 62-52. The value in this 11-

bit field is offset by 1023, so the actual

exponent used to calculate the value of the

number is 2^(e-1023). The mantissa is 52

bits long and occupies bits 51-0. There is a

leading ‘1’ that is not included in the

mantissa, but it is part of the value of the

number for all double precision floating

point numbers with a value in the exponent

field greater than 0. A 0 in the exponent field

Fig. 5. Structure of floating point unit

Bulletin of the Transilvania University of Braşov • Vol. 3 (52) - 2010 • Series I

310

corresponds to a denormalized number.

The actual value of the double precision

floating point number is the following:

Value = −1^(sign bit) × 2^(exponent –

 − 1023) × 1.(mantissa),

(1.mantissa) being a base 2 representation

of a number between 1 and 2, with 1

followed by a decimal point and the 52 bits

of the mantissa.

The top level, fpu_double, starts a

counter one clock cycle after enable goes

high. The counter counts up to the number

of clock cycles required for the specific

operation that is being performed. For

addition, it counts to 20, for subtraction 21,

for multiplication 24, and for division 71.

Once the counter reaches the specified

final count, the ready signal goes high, and

the output will be valid for the operation

being performed. fpu_double contains the

instantiations of the other 6 modules,

which are 6 separate source files of the 4

operations (add, subtract, multiply, divide)

and the rounding module and exceptions

module.

2.5. LCD Controller

The LCD controller implements an

interface with the NHD-0112BZ-FL-YBW

LCD Display. The LCD is used to output

the computed BERs. On the first line it

displays the total BER and on the second

one the BER computed every period. They

are represented as floating point numbers,

having a mantissa and an exponent.

The controller for the LCD is comprised

of a finite state machine, an “lcd write”

module and a bcd-to-ASCII conversion

module. The FSM is the key part of the

controller, generating the control signals

that are used in the “lcd_write” module for

interfacing the LCD display.

The two BER values that are to be

displayed inputs to the controller are

represented as 40 bits integer numbers,

having an 8 bit exponent. In order to

output these values, they were converted

from their binary representation to BCD

(binary-coded decimal). As the LCD

display needs to receive as inputs ASCII

codes of the digits/symbols to be

displayed, the module “bcd_to_ascii” was

implemented. This module contains the

logic for the translation from BCD to

ASCII.

As the two BER values are fractional

numbers, and to be more specific, quite

small, the exponential representation was

needed in order to maintain the highest

precision possible:

E.g.:

The value displayed on the LCD:

1.0253 e – 07.

The value written as a decimal number:

1.0253 e – 07 = 1.0253 × 10−7 =

= 0.00000010253.

2.6. DDR Physical Interface

The testchip provides a 32 bit mobile

DDR interface testing using DFI (DDR

PHY Interface) compliant DDR2 physical

interface and simplified DDR2 controller.

The DDR2 physical interface is designed

to interface a DDR2 memory controller

with a DDR2 memory unit and is intended

for structured ASIC family only. It consists

of DDR2 specific macros which allow

translation of information between the

controller which works on one edge of a

clock signal and the DDR2 memory unit

which works on both the edges of the clock

thus allowing the controller to perform

read and write operations to the memory.

The DDR2 controller part is implemented

as a very basic solution where transmit part

is under control of data from a 2Xx128

block memory while the received data is

Tulbure, T., et al.: High Speed Interface Testchip for Structured ASIC Technology 311

stored into a 2kx64 block memory. Both

memories can be accessed from debug

interface from host computer. Programmable

addresses counters are used to control transmit

and receive sequences. The implementation

provides the possibility to write the test

sequence from host computer through

JTAG or it can be directly programmed in

the initial content of those memories through

a bitstream stored into external serial memory.

The data received from the external mobile

DDR memory is stored into internal block

memory. The host computer can read this

data and compare it against the expected

data for the test sequence.

3. Test Environment

Test environment include a suite of tests

that are run using ModelSim simulator.

Figure 6 depicts the test environment.

Test environment consists of:

- JTAG master (jtagTasks) which controls

and monitors all internal registers and

memory. It is configurable through external

input file that contains the JTAG sequence

in human readable format.

- Transmitter model that receives the

parallel stream of data and provides back

the clock and high speed serialized data for

five channels.

- Error generators that provide the

capability to inject errors in high speed

stream of data. Each channel has its own

error generator with programmable threshold

for random error rate.

- Mobile DDR model for the selected

DDR part provided by the memory

producer.

A test regression composed from multiple

tests is automated with a makefile. Test

regression contains:

- basic read/write JTAG access to all

registers;

- dynamic PLL reconfiguration test;

- basic DDR write/read/check;

- automated detection of transmitter latency;

Testchip

DDR

Model

(Micron)

input vectors jtag

Parallel data

A

B

C

D

E

DDR

jtagTasks

Transmitter

errorGen

errorGen

errorGen

errorGen

errorGen

Fig. 6. Test environment structure

- phase alignment test;

- error free high speed interface (serdes)

test;

- tests with errors injected for each channel

and for all channels.

The LCD interface is difficult to test using

simulation because of long simulation and

non existent simulation model for LCD

part. The solution was to implement the

LCD controller on FPGA using a Spartan-

3E Starter Kit with similar LCD screen. On

the two line LCD display we have the bit

error rate per period and on second line the

total number of errors since latest reset.

This LCD interface is helpful for long-term

analysis.

4. Implementation

The Testchip was implemented on

structured ASIC using eASIC NX1500

device with BG480 package.

The chosen synthesis strategy was the

top-bottom one using the Magma Design

Automation environment for structured

ASIC 0.09 µm Fujitsu process.

Table 1 presents area results for the testchip.

Testchip area results Table 1

Area results

Logic Memory IO

15233 eCells =

152330

equivalent

logic gates

16 bRAMs =

512 kbits

146 eIO

including

98 DDR

registers

Bulletin of the Transilvania University of Braşov • Vol. 3 (52) - 2010 • Series I

312

The final placed and routed netlist was

analyzed with a static time analysis tool -

Synopsys PrimeTime. The final analysis

included parasitic information about the

design, silicon die and package. Several

iteration from static timing analysis to

routing were requires to solve transition

and hold violations. Table 2 describes clock

frequencies; timing was met for all clocks.

Testchip timing results Table 2

Clock periods [ns]

CORE_CLK RX_HS_CLK DDR_CLK JTAG_CLK

9.43 1.35 5 100

The implementation took about two

weeks with the most difficult part being

timing closure for high speed interface.

Based on static timing analysis we

determine the value for delay elements that

ensure clock edge to center of the data eye.

Based on this value determined from static

timing analysis we coded the rest value for

the registers that control the phase

alignment for high speed input interface

but the values can be later changed by host

computer based on experiments.

5. Conclusion

This paper presented the methodology

for design and implementation of a testchip

for a host-LCD panel high speed interface.

The idea can be successfully applied to test

other high speed interfaces as well. The

simulation proven the correct behavior and

implementation provided quantitative

performance measurement.

Further studies can be made to design

and implement automatic dynamic phase

alignment based on training patterns and to

improve the reporting of long term error

statistics based on feedback from actual

silicon testing.

References

1. Hong, D., Ong, C.-K., Cheng, K.-T:

BER Estimation for Serial Links Based

on Jitter Spectrum and Clock Recovery

Characteristics. In: Proceedings 2004

International Test Conference (ITC

2004), Charlotte, NC, USA, October

26-28, 2004, p. 1138-1147.

2. Kenneth, P.P.: The Boundary - Scan

Handbook. 2
nd

 Edition. Kluwer Academic

Publishers, 2000.

3. Li, M., Wilstrup, J.: On the Accuracy

of Jitter Separation from the Bit Error

Rate Function. In: Proc. of

International Test Conference, October

7-10, 2002, p. 710-716.

4. Lundgren, D.: Double Precision Floating

Point Core Verilog. Available at: http://

www.scribd.com/doc/11091346/Double-

Precision-Floating-Point-Arithmetic.

Accessed: 22-11-2009.

5. Suzuki, M., Shimizu, R., Naka, N.,

Nakamura, K.: High-Speed Interface

Testing. In: Proceedings of the 10th

Asian Test Symposium (ATS’01), Kyoto,

Japan, November 19-21, 2001, p. 461.

6. Tulbure, T.: OCP Compliant JTAG

Controller - IP Core. In: Proceedings

of the 9
th
 International Conference on

Optimization of Electrical and Electronic

Equipments IV, Braşov, May 20-21,

2004, p. 63-67.

7. *** OCP international partnership.

Available at: www.ocpip.org. Accessed:

20-11-2009.

8. *** www.easic.com. Accessed: 20-11-

2009.

9. *** www.thine.co.jp. Accessed: 20-11-

2009.

