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THE MINIMUM COST FLOW PROBLEM WITH SURPLUS

Laura CIUPALĂ1

Abstract

In this paper we focus on the minimum cost flow problem with surplus because
it has many applications in economy, manufacturing, transportation and distribution.
In a minimum cost flow problem the sum of supplies equals the sum of demands, but
in a minimum cost flow problem with surplus the supplies exceed the demands.

We will solve the minimum cost flow problem with surplus by reducing it to a
standard minimum cost flow problem in a transformed network.
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1 The minimum cost flow problem

The minimum cost flow problem, as well as one of its special cases which is the maxi-
mum flow problem, is one of the fundamental problems in network flow theory and it was
studied extensively in the last five decades. The importance of the minimum cost flow
problem is also due to the fact that it arises in almost all industries, including agriculture,
communications, defense, education, energy, health care, medicine, manufacturing, retail-
ing and transportation. Indeed, the minimum cost flow problem is pervasive in practice.

Let G = (N,A) be a directed graph, defined by a set N of n nodes and a set A of m
arcs. Each arc (x, y) ∈ A has a capacity c(x, y) and a cost b(x, y). We associate with each
node x ∈ N a number v(x) which indicates its supply or demand depending on whether
v(x) > 0 or v(x) < 0. In the directed network G = (N,A, c, b, v), the minimum cost flow
problem is to determine the flow f(x, y) on each arc (x, y) ∈ A which

minimize
∑

(x,y)∈A

b(x, y)f(x, y) (1)

subject to ∑
y|(x,y)∈A

f(x, y)−
∑

y|(y,x)∈A

f(y, x) = v(x), ∀x ∈ N (2)

0 ≤ f(x, y) ≤ c(x, y), ∀(x, y) ∈ A. (3)
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A flow f satisfying the last two conditions is a feasible flow.
Let n = |N | and m = |A|.
Let C denote the largest magnitude of any supply/demand or finite arc capacity, that

is

C = max(max{v(x)|x ∈ N},max{c(x, y)|(x, y) ∈ A, c(x, y) < ∞}).

Let B denote the largest magnitude of any arc cost, that is

B = max{b(x, y)|(x, y) ∈ A}.

The residual network G(f) = (N,A(f)) corresponding to a flow f is defined as follows.
We replace each arc (x, y) ∈ A by two arcs (x, y) and (y, x). The arc (x, y) has cost b(x, y)
and residual capacity r(x, y) = c(x, y)−f(x, y) and the arc (y, x) has cost b(y, x) = −b(x, y)
and residual capacity r(y, x) = f(x, y). The residual network consists only of arcs with
positive residual capacity.

We shall assume that the minimum cost flow problem satisfies the following assump-
tions:

1. All data (cost, supply/demand and capacity) are integral.

2. The network contains no directed negative cost cycle of infinite capacity.

3. All arc costs are nonnegative.

4. The supplies/demands at the nodes satisfy the condition
∑

x∈N v(x) = 0 and the
minimum cost flow problem has a feasible solution.

5. The network contains an uncapacitated directed path (i.e. each arc in the path has
infinite capacity) between every pair of nodes.

All these assumptions can be made without any loss of generality (for details see [1]).
We associate a real number π(x) with each node x ∈ N . We refer to π(x) as the

potential of node x. For a given set of node potentials π, we define the reduced cost of an
arc (x, y) as

bπ (x, y) = b(x, y)− π(x) + π(y).

The reduced costs are applicable to the residual network as well as to the original
network.

Theorem 1. [1](a) For any directed path P from node w to node z we have∑
(x,y)∈P bπ (x, y) =

∑
(x,y)∈P b(x, y)− π(w) + π(z)

(b) For any directed cycle W we have∑
(x,y)∈W bπ (x, y) =

∑
(x,y)∈W b(x, y)
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Theorem 2. (Negative Cycle Optimality Conditions) [1] A feasible solution f is an op-
timal solution of the minimum cost flow problem if and only if it satisfies the following
negative cycle optimality conditions:

the residual network G(f) contains no negative cost directed cycle.

Theorem 3. (Reduced Costs Optimality Conditions) [1] A feasible solution f is an optimal
solution of the minimum cost flow problem if and only if some set of node potentials π
satisfy the following reduced cost optimality conditions:

bπ (x, y) ≥ 0 for every arc (x, y) in G(f)

Theorem 4. (Complementary Slackness Optimality Conditions) [1] A feasible solution f
is an optimal solution of the minimum cost flow problem if and only if for some set of
node potentials π, the reduced costs and flow values satisfy the following complementary
slackness optimality conditions for every arc (x, y) ∈ A:

If bπ(x, y) > 0, then f(x, y) = 0 (4)

If 0 < f(x, y) < c(x, y), then bπ(x, y) = 0 (5)

If bπ(x, y) < 0, then f(x, y) = c(x, y) (6)

A pseudoflow is a function f : A → R+ satisfying only conditions (3). For any
pseudoflow f , we define the imbalance of node x as

e(x) = v(x) + f(N,x)− f(x, N), for all x ∈ N .
If e(x) > 0 for some node x, we refer to e(x) as the excess of node x; if e(x) < 0, we

refer to −e(x) as the deficit of node x. If e(x) = 0 for some node x, we refer to node x as
the balanced.

The residual network corresponding to a pseudoflow is defined in the same way as we
define the residual network for a flow.

The optimality conditions can be extended for pseudoflows.
We refer to a flow or a pseudoflow f as ε-optimal for some ε > 0 if for some node

potentials π , the pair (f, π) satisfies the following ε-optimality conditions:

If bπ(x, y) > ε, then f(x, y) = 0 (7)

If − ε ≤ bπ(x, y) ≤ ε, then 0 ≤ f(x, y) ≤ c(x, y) (8)

If bπ(x, y) < −ε, then f(x, y) = c(x, y) (9)

These conditions are relaxations of the (exact) complementary slackness optimality
conditions (4) - (6) and they reduce to complementary slackness optimality conditions
when ε = 0.
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For solving a minimum cost flow problem, based on these optimality conditions, several
algorithms were developed from the primal-dual algorithm proposed by Ford and Fulker-
son in 1962 to the polynomial-time cycle-canceling algorithms described by Sokkalingam,
Ahuja and Orlin in 2001.

The basic algorithms for minimum cost flow can be divided into two classes: those
that maintain feasible solutions and strive toward optimality and those that maintain
infeasible solutions that satisfy optimality conditions and strive for feasibility. Algorithms
from the first class are: the cycle-canceling algorithm and the out-of-kilter algorithm. The
cycle-canceling algorithm maintains a feasible flow at every iteration, augments flow along
negative cycle in the residual network and terminates when there is no more negative cycle
in the residual network, which means (from Theorem 2) that the flow is a minimum cost
flow. The out-of-kilter algorithm maintains a feasible flow at every iteration and augments
flow along the shortest path in order to satisfy the optimality conditions. Algorithms from
the second class are: the successive shortest path algorithm and primal-dual algorithm.
The successive shortest path algorithm maintains a pseudoflow that satisfies the optimality
conditions and augments flow along the shortest path from excess nodes to deficit nodes
in the residual network in order to convert the pseudoflow into an optimal flow. The
primal-dual algorithm also maintains a pseudoflow that satisfies the optimality conditions
and solves maximum flow problems in order to convert the pseudoflow into an optimal
flow.

Starting from the basic algorithms for minimum cost flow, several polynomial-time al-
gorithms were developed. Most of them were obtained by using the scaling technique. By
capacity scaling, by cost scaling or by capacity and cost scaling, the following polynomial-
time algorithms were developed: capacity scaling algorithm, cost scaling algorithm, double
scaling algorithm, repeated capacity scaling algorithm and enhanced capacity scaling al-
gorithm.

Another approach for obtaining polynomial-time algorithms is to select carefully the
negative cycles in the cycle-canceling algorithm.

2 The minimum cost flow problem with surplus

Applications from several different domains can be modelled and solved as minimum
flow cost problem in which the sum of the supplies exceeds the sum of the demands.
For instance, problems from economy, manufacturing, transportation and distribution.
In these problems, assumption 4 is not satisfied, because the supplies/demands at the
nodes do not satisfy the condition

∑
x∈N v(x) = 0; more precisely the supplies exceed the

demands.
In the directed network G = (N,A, c, b, v), the minimum cost flow problem with surplus

is to determine the flow f(x, y) on each arc (x, y) ∈ A which

minimize
∑

(x,y)∈A

b(x, y)f(x, y) (10)

subject to
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∑
y|(x,y)∈A

f(x, y)−
∑

y|(y,x)∈A

f(y, x) ≤ v(x), ∀x ∈ S (11)

∑
y|(x,y)∈A

f(x, y)−
∑

y|(y,x)∈A

f(y, x) = v(x), ∀x ∈ N − S (12)

0 ≤ f(x, y) ≤ c(x, y), ∀(x, y) ∈ A. (13)

where S = {x ∈ N |v(x) > 0} and T = {x ∈ N |v(x) < 0}.
In a minimum cost flow problem with surplus,

∑
x∈S v(x) > |

∑
x∈T v(x)|

We can transform this problem into a standard minimum cost flow problem in the
transformed network G′ = (N ′, A′, c′, b′, v′), where

N ′ = N ∪ {t′}
A′ = A ∪At′ , At′ = {(x, t′) ∈ A|x ∈ S}
c′(x, y) = c(x, y),∀(x, y) ∈ A, c′(x, y) = ∞,∀(x, y) ∈ At′

b′(x, y) = b(x, y),∀(x, y) ∈ A, b′(x, y) = 0,∀(x, y) ∈ At′

v′(x) = v(x),∀x ∈ N , v′(t′) = −
∑

x∈N v(x)

Theorem 5. There is a feasible solution of the minimum cost flow problem with surplus
in the network G = (N,A, c, b, v) if and only if there is a feasible solution of the standard
minimum cost flow problem in the transformed network G′ = (N ′, A′, c′, b′, v′).

Proof. Let f be a feasible solution of the minimum cost flow problem with surplus in
the network G = (N,A, c, b, v). We can determine a feasible flow f ′ in the transformed
network G′ = (N ′, A′, c′, b′, v′) in the following manner:

f ′(x, y) = f(x, y),∀(x, y) ∈ A
f ′(x, t′) = v(x)−

∑
y|(x,y)∈A f ′(x, y) +

∑
y|(y,x)∈A f ′(y, x),∀(x, t′) ∈ At′

We have∑
x|(t′,x)∈A′ f ′(t′, x)−

∑
x|(x,t′)∈A′ f(x, t′) =

= −
∑

x|(x,t′)∈A′ f(x, t′) =
= −(

∑
x∈N v(x)−

∑
x∈N

∑
y|(x,y)∈A f ′(x, y) +

∑
x∈N

∑
y|(y,x)∈A f ′(y, x)) =

= −
∑

x∈N v(x) =
= v′(t)
For any x ∈ S we have∑

y|(x,y)∈A′ f ′(x, y)−
∑

y|(y,x)∈A′ f ′(y, x) =
=

∑
y|(x,y)∈A f ′(x, y) + f(x, t′)−

∑
y|(y,x)∈A f ′(y, x) =

=
∑

y|(x,y)∈A f ′(x, y)+v(x)−
∑

y|(x,y)∈A f ′(x, y)+
∑

y|(y,x)∈A f ′(y, x)−
∑

y|(y,x)∈A f ′(y, x) =
= v(x) = v′(x)
For any x ∈ N − S we have∑

y|(x,y)∈A′ f ′(x, y)−
∑

y|(y,x)∈A′ f ′(y, x) =
=

∑
y|(x,y)∈A f ′(x, y)−

∑
y|(y,x)∈A f ′(y, x) =

= v(x) = v′(x)
Thus,

∑
y|(x,y)∈A′ f ′(x, y)−

∑
y|(y,x)∈A′ f ′(y, x) = v′(x),∀x ∈ N ′.

Obviously, 0 ≤ f ′(x, y) ≤ c′(x, y),∀(x, y) ∈ A′.
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Consequently, f ′ is a feasible flow in the transformed network G′ = (N ′, A′, c′, b′, v′).
Reciprocaly, let f ′ be a feasible flow in the transformed network G′ = (N ′, A′, c′, b′, v′).

Then f = f ′|A is obviously a feasible solution of the minimum cost flow problem with
surplus in the network G = (N,A, c, b, v).

Theorem 6. There is an optimal solution of the minimum cost flow problem with surplus
in network G = (N,A, c, b, v) if and only if there is an optimal solution of the standard
minimum cost flow problem in the transformed network G′ = (N ′, A′, c′, b′, v′).

Proof. It follows directly from Theorem 5 and from the fact that the flow f in G and
the flow f ′ in G′ have the same cost, because all the additional arcs from At′ have zero
cost.

Consequently, we can solve the minimum cost flow problem with surplus in the net-
work G = (N,A, c, b, v) by applying any minimim cost flow algorithm in the transformed
network G′ = (N ′, A′, c′, b′, v′). Let f ′ be a minimum cost flow in the transformed network
G′. Then f = f ′|A is obviously an optimal solution of the minimum cost flow problem
with surplus in the network G.
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