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APPROXIMATING PHILLIPS OPERATORS BY MODIFIED SZASZ
- INVERSE BETA OPERATORS

Cristina S. CISMASIU!

Abstract

It is known that, the Szasz - Durrmeyer operator is the limit, in an appropiate
sense [2], of both the Bernstein - Durrmeyer and Baskakov - Durrmeyer operators. In
this paper we consider the modified Szdsz - Durrmeyer operators, which were intro-
duced by Phillips [14] and were studied by several other authors and we want to show
that these operators are the limit of the modified Szdsz - Inverse Beta operators and
we provide a rate of convergence.
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1 Indroduction

The Phillips operators [14] are defined by

Sr(f;x) = _T:Cf +T25r,k /Srk 1 )du
(1)
= /HT w)du, r € N, z >0,
0

for f:[0,00) — R any integrabile function, such that S, (|f];x) < oo for x > 0, with

srp(z) = e o (2)

Ho(u;x) = e "5(u +1"Zsrk )srp1(u), 2 >0, ke NU{0}, reN  (3)
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and d the Dirac’s Delta function, for which
[ 8t fwau = f00). @)
0

These operators preserve the linear functions and were obtained by Phillips [14] starting
from the Szasz - Mirakjan operators and having a similar construction as of the Goodman
and Sharma operators [7] . These operators were studied by several authors ( see [5], [§],
[9], [11], [12]) and are considered “the genuine Durrmeyer - Szdsz - Mirakjan operators”.
Note that, the definition (1) - (4) can be extended replacing » € N by r > 0 and an
interesting probabilistic mterpretation of these operators as the mean value of the random

variables f(Y,*) = f m) ,7 > 0,z > 0 was possible [2], having the probability

density H,(u;x), with {N( ) : v > 0} a standard Poisson process and {U, : r > 0} a
Gamma process independent of the former and defined on the same probability space:

S.(f50) =B 0] = B |1 (F2)] 0,00 5)

A generalization of these operators, using two continuous parameters was obtained by
Paltanea R. [13]. We consider now, other mixed operators, namely Szdsz - Inverse Beta
operators, which were intoduced by Gupta V., Noor M. A., [10] and were studied by Finta
Z., Govil N. K., Gupta V. [6] defined by

Li(fiz) = e ™ f(0) +Zstk x)/bt,k(u)f(u)du
0

k=1

Ji(u; ) f (u)du, (6)

Il
o3

for f :]0,00) — R any integrabile function, such that L; (| f|;z) < oo, for ¢ > 0, x > 0
with

Jt(u; .73) = 7”(5 + Z St,k bt k (7)
k=1

1 uk:—l

b(u) = B(k,t+1) ’ (1 + u)tHh+1’ u>0,keN (8)

an Inverse - Beta probability density ¢ and s;,(x) are defined above.
The Inverse - Beta probability density function can be represented with a negative
binomial probability

(L4 k w \"1 TPtk uk~1
poe-t) = ) (T 1+u T \k—1) (A +u)tthl )
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o0 1
t>0,u>0,keN, for which [ p;j_1(u)du = g and so
0

1 ubt Pt k—1(u)

Bk, t+1) (L+u)itkt — (t+ Dprg—1(v) = =

bt,k(u) = .
g P k—1(u)du

So, the probability density function (8) becomes
oo oo
Je(wsw) = e 75 (w) + Y spp(@)byr(u) = e 70 (u) + (t+1) D> ser(@)pr—i () (10)
k=1 k=1

and operators (6) have a Durrmeyer - type construction

Li(f;z) = e ™ f(0) +Z$’t,k

%
— _txf t—l—l Zstk /ptk 1 d (11)
k=1 0

Also, they can be represented [3] as the mean value of a random variable f(Z})

n(fio) =Bl @) =B |7 ()] 1z 0.0 20 (12)

Un(ta

with ZF = ‘]/V(t ) having the probability density function Ji(-;z) as (10),{N(t) : t > 0}
t+1

being a standard Poisson process, {U; : t > 0}, {V; : t > 0} being two mutually indepen-

dent Gamma processes, independent of the former and defined on the same probability
space. All of these independent stochastic processes starting at the origin , have station-
ary independent increments and without loss of generality it can be assumed [15] that
{U; :t >0}, {V;:t >0} for each t > 0 have a.s. non - decreasing right continuos paths.
On the other hand, the Szdsz - Inverse Beta operators (6) - (8) can be represented as the

& k
composition between the Szdsz Mirakjan operators M;(f;z) = > f (t) s () with
k=

st k(x) as (3) and Inverse - Beta operators T;(f; ) defined with Inverse - Beta probability
density function by 1+1(u) as (8):

00 tzfl
w)du = )bta du ,t>0,2>0
T(f;z) = B(tx t+1 of 1+utw+t+1f( v ff b1 (u)du s hr=

f(0) ,x=0.

So, Li(f;x) = (MyoT)(f;2), t >0, z > 0.
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2 Approximating Phillips operators by modified Szasz-Inverse
Beta operators

Using the same ideea as De la Cal J. , Luquin F. [4] or as Adell J. A., De la Cal J. [2],
we consider a new operator defined as the aid of Szédsz - Inverse Beta operator (6) - (8):

Bry(fix) = Ly (f(tu); %) = / %th <%, %) f(u)du
0
= [ e e () ()

r>0,t>0, 2z >0, where f is any real function defined on [0, c0) such that B,.(|f|); z) <
00.

Remark 1. In view of (11) with (13) we obtain a constuction of Durrmeyer - type for
this new operator.

Indeed,
k
Srt e (%) =e 7 (r]f!) = srk(7),
[rems (5) fdu= e 500)
0

uy k=1
1 (u) 1 1 (?)
7otk \ 7 t B(k,rt+1) (1 E)rt+k+1

t

ot Ltk w TN P
- t kE—1 utt u+t

u

rt + 1 u) . th k—1 (Z)

= Prtk—1 (* fprtk 1 ( ) o

,keN, u>0,t>0,r>0,

t t

k—1
oo

[e.e]
U\ g — rt+l<: du 1
Prtk—1 <¥> U= rt+k+1 rt+1_r+%'
0

0
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So,
Bry(f;z) = Ly (f(tu); %) = / %th (%, %) f(u)du
0
=/&[ww>+z»m<»wdﬂﬂww
0
= _Txf( Sp, rt, )d
( )z e / prticr (

On the other hand, we have in view of (12) that

Batsio) = 1o (10 2) = 1 (123)] = [ (152

23

(14)

and with (5) a bound for the difference |B,+(f;x) — S,(f;2)| means a bound for the total

variantion distance between the probability distributions of the random variables tZ,

U U
Y* respectively ¢ Nt2) and 222 , with the same mean.
r

rt+1

Theorem 1. Let x > 0, r,t,u > 0. If, f is a real bounded function on [0,00) then

r2z? + drz + 2

Bralfs) = So(fi0)] = | L (S00)s T ) = Se(fso)| < -

and we have uniform convergence as t — oo on every bounded interval [0,a], a > 0.

Proof. Using (1) - (3) and (14) we have

Lo (Ftw): ) = Su(fi2) = / _:}m (5:7) —Hr(u;x)} f(u)du
/|
= 070 Zsrk < rt,k (?) _rsr,kl(u)>] f(u)du

So,

L (0005 7) = S0 <A1 3 onate /| S

Lo (1000 ) =S50 < W13 s / (3 ) s (3) =rsesca(wida

and

(15)
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SVt —2) - (— 1
With the convention (,';) = -1t ;‘ (t—k+ ), t>0,keN,let

r (1 + %t) (rtj—k) (?)

k—1 rt+k+1
e D () (1+3)
k(W) = - ) =4~ (Tu)kil
’ re~"u
—1)!
1 e 1 u —rt—k—1 k 1 S
= () ()

be a function with & > 1, r,t,u > 0.
k + 1t— U <1 N u)—rt—k;—2 k

k+1
(1 + —) we have for u = + ,
1 r

Because hy.; . (u) =

k41 I B 5
Suphr,t,k(u) = hr,t,k () =1- ¢! <1+> H(l—F*)
u>0 T T
k+1 rt kil K s
= 1-eF (14 (1+2)
¢ ( rt ) <rt+kz+1> 81:[1 +7‘t
| ok 1+k+1 _rtﬁ rt+s
= —e e
rt o rt+k+1

= 1— k+1 1 1-— >
‘ ( L ) 11 rttk+ 1

s=1
k+1 s
< 1-]] <1 rt+k+1>
s=1
k+1
<

Zrt+k+1 7 2(rt+1) )
1 U . .,
Because ;brt’k (;) and s, ;_1(u) are probability densities on [0, +00) and
(o] (o]
1
/Tsrk 1 /tbrt k =1
0 0
o

we have [ Ay p(u)du =0 and [ |hygp(u)| du =2 Byt () du.
0 0

byt 1 (1) 20, u=>0
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So,
T 1 U
/’t rt,k — TSrk— l du_/‘( >prtk 1(t)_7n37”,k—1(u) du
0
= /[hm,k(u)\mnkl(u)du =2 / Pyt k(W) sy p—1 (u)du
0 hr i,k (W)>0,u>0
7 k2 +3k+2
<2 hr r < 1
sup ) [ e e < =2 e
0

o0
because [ 78y p—1(u)du = 1.
0

00 k 00 k
We obtain from (15) and (16) with ) ke™"* (r2) =rrxand Y k%" (rz) = (rz)’+

k=1 k! k=1 k!
rx, that
x > k2 +3k+2 r2z? + drax + 2
Lo (1005 ) 57300 171 St (B2 a2
B (1000 7) = S0 < W1 S o) (552 < W
O
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