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SOME PROPERTIES OF COMPLEX BERWALD SPACES
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Abstract

The notions of complex Berwald-Finsler spaces and complex Berwald-Cartan spaces
are considered. Some new properties of this spaces concerning to the holonomy group
of complex Berwald connections in relation with similar properties from the real case,
see [6, 7, 8], are studied in the paper.
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1 Preliminaries

The geometry of the real Berwald-Cartan spaces can be found in the monograph [13]
Chs. 6-7, and in some papers of M. Anastasiei [7, 8], where new properties of this spaces
concerning to the holonomy group of Berwald connections are studied. In the framework
of Finsler (Lagrange) vector bundles, similar results can be found in the paper [6]. For the
geometry of real Berwald-Finsler spaces, see for instance [9, 11, 12, 17]. In the complex
setting, the study of complex Berwald spaces was initiated by T. Aikou in [2, 3]. Re-
cently N. Aldea and G. Munteanu [5], make an exhaustive study of complex Berwald and
Landsberg spaces and obtain a classification of two dimensional complex Berwald spaces.
Here we resume our study just to emphasize the holonomy group of the complex Berwald
connections and to prove some new properties of complex Berwald spaces in relation with
similar properties from the real case, see [6, 7, 8].

Let us begin our study with a short review of complex Finsler and Cartan geometry
and set up the basic notions and terminology. For more, see Ch. 4 and Ch. 6 from [15].

Let us consider V to be a finite dimensional vector spaces over C. Let {e1, ..., en} be
a basis of V and (v1, ..., vn) be complex coordinates of a vector v.

Definition 1. We say that a function f : V → R is a complex Minkowski norm on V if
it has the following properties:

(i) f(v) ≥ 0 for any v ∈ V and f(v) = 0 if and only if v = 0;

(ii) f(λv) = |λ|2f(v) for any λ ∈ C;
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(iii) f is C∞ on V − {0};

(iv) the hermitian matrix (∂2f/∂vi∂vj) is positively definite at any v 6= 0.

For more details on complex Minkowski metrics on the space V = Cn, see [16].
Let M be a complex n dimensional complex manifold and (zk), k = 1, ..., n the com-

plex coordinates in a local chart U . The complexified of the real tangent bundle TRM ,
denoted by TCM , splits into the direct sum of holomorphic tangent bundle T

′
M and an-

tiholomorphic tangent bundle T
′′
M , namely TCM = T

′
M ⊕ T

′′
M . The total space of

holomorphic tangent bundle π : T
′
M → M is in turn a 2n dimensional complex manifold

with u = (zk, ηk), k = 1, ..., n, the induced complex coordinates in the local chart π−1(U),
where η = ηk ∂

∂zk ∈ T
′
zM is a directional section.

Accordind to [1, 2, 15], a complex Finsler metric on M is given by a complex Minkowski
norm Lz = L(z, ·) on T

′
zM , for any z ∈ M . Consequently, from the homogeneity conditions

we have
∂L

∂ηk
ηk =

∂L

∂ηk
ηk = L ;

∂gij

∂ηk
ηk =

∂gij

∂ηk
ηk = 0 ; gijη

iηj = L, (1)

where gij = ∂2L/∂ηi∂ηj .
Roughly speaking, the geometry of a complex Finsler space consist in the study of the

geometric objects of complex manifold T
′
M endowed with a hermitian metric structure

defined by gij .

Let V
′
(T

′
0M) ⊂ T

′
(T

′
0M) be the holomorphic vertical bundle, locally spanned by { ∂

∂ηk }
and V

′′
(T

′
0M) be its conjugate, locally spanned by { ∂

∂ηk }. Here, T
′
0M = T

′
M − {0}. A

complex nonlinear connection, briefly c.n.c., on T
′
0M is a supplementary complex subbun-

dle to V
′
(T

′
0M) in T

′
(T

′
0M), namely T

′
(T

′
0M) = H

′
(T

′
0M) ⊕ V

′
(T

′
0M). The horizontal

subbundle H
′
(T

′
0M) is locally spanned by { δ

δzk = ∂
∂zk − N j

k
∂

∂ηj }, where N j
k(z, η) are the

coefficients of the c.n.c., which obey a certain rule of change at the local charts change
such that δ

δzk = ∂z
′j

∂zk
δ

δz′j
performs. Obviously, we also have that ∂

∂ηk = ∂z
′j

∂zk
∂

∂η′j . The

pair {δk := δ
δzk ;

.
∂k:= ∂

∂ηk }, k = 1, ..., n will be called the adapted frames of the c.n.c.

By conjugation, an adapted frame {δk ;
.
∂k} is obtained on T

′′
(T

′
0M). The dual adapted

bases are {dzk, δηk = dηk + Nk
j dzj , dzk, δηk = dηk + Nk

j
dzj}. A c.n.c. related only to

the fundamental function of the complex Finsler space (M,L) is almost classical now, the

Chern-Finsler c.n.c., locally given by
CF

N j
k= gmj ∂glm

∂zk ηl, where (gmj) denotes the inverse of
(gjm).

As we already know, the complex Finsler structure L on M determines a hermitian
metric on the holomorphic vertical bundle V

′
(T

′
0M) by

Gv(X, Y )(z, η) = gij(z, η)
.

Xi (z, η)
.

Y j (z, η) (2)

for all X =
.

Xi (z, η)
.
∂i, Y =

.

Y j (z, η)
.
∂j∈ Γ(V

′
(T

′
0M)).
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The unique hermitian connection ∇ of the hermitian bundle (V
′
(T

′
0M),Gv) is the so-

called Chern-Finsler linear connection of (M,L), see [1]. With respect to adapted frames

and coframes of
CF

N j
k , the (1, 0) connection forms of ∇ are given by

ωi
j = Li

jkdzk + Ci
jkδη

k (3)

with Li
jk = gmiδk(gjm) and Ci

jk = gmi
.
∂k (gjm). We notice that, we have Ci

jk = Ci
kj and

Li
jk =

.
∂k (

CF

N i
j).

Let us consider now, the holomorphic cotangent bundle π∗ : T
′∗M → M . As above,

T
′∗M has a natural structure of 2n dimensional complex manifold and a point is denoted

by u∗ = (zk, ζk), k = 1, ..., n, where (ζk) should be regarded as a momentum direction
ζ ∈ T

′∗
z M with respect to the canonical base {dzk|z}.

According to [14], a complex Cartan metric on M is given by a complex Minkowski
norm Hz = H(z, ·) on T

′∗
z M , for any z ∈ M . Similarly, we have

∂H

∂ζk
ζk =

∂H

∂ζk

ζk = H ;
∂hji

∂ζk
ζk =

∂hji

∂ζk

ζk = 0 ; hjiζiζj = H, (4)

where hji = ∂2H/∂ζi∂ζj .
Now, for T

′∗M complex manifold we consider T
′
(T

′∗
0 M) the holomorphic tangent bun-

dle of T
′∗
0 M . Let V

′
(T

′∗
0 M) ⊂ T

′
(T

′∗
0 M) be the holomorphic vertical bundle, locally

spanned by { ∂
∂ζk

} and V
′′
(T

′∗
0 M) be its conjugate, locally spanned by { ∂

∂ζk
}. A complex

nonlinear connection, briefly c.n.c., on T
′∗
0 M is a supplementary complex subbundle to

V
′
(T

′∗
0 M) in T

′
(T

′∗
0 M), namely T

′
(T

′∗
0 M) = H

′
(T

′∗
0 M)⊕ V

′
(T

′∗
0 M). The horizontal sub-

bundle H
′
(T

′∗
0 M) is locally spanned by { δ∗

δzk = ∂
∂zk +Njk

∂
∂ζj
}, where Njk(z, η) are the coef-

ficients of this c.n.c. The pair {δ∗k := δ∗

δzk ;
.
∂

k
:= ∂

∂ζk
}, k = 1, ..., n will be called the adapted

frames of the c.n.c. By conjugation, an adapted frame {δ∗
k
;

.
∂

k
} is obtained on T

′′
(T

′∗
0 M).

The dual adapted bases are {d∗zk, δζk = dζk − Nkjd
∗zj , d∗zk, δζ

k = dζk − Nk jd
∗zj}.

A c.n.c. related only to the fundamental function of the complex Cartan space (M,H)

is the Chern-Cartan c.n.c., locally given by
CC
Njk= −hjm

∂hml

∂zk ζl, where (hjm) denotes the
inverse of (hmj). Similarly, the Chern-Cartan linear connection denoted by ∇∗ is de-
fined by the following set of local coefficients (H i

jk , Cik
j ), where H i

jk = −hjmδk(hmi) and

Cik
j = −hjm

.
∂

k
(hmi). We also notice that Cik

j = Cki
j and H i

jk =
.
∂

i
(

CC
Njk).

2 Complex Berwald-Finsler spaces

Following a definition given by T. Aikou [2, 3], recently N. Aldea and G. Munteanu
[5], make an exhaustive study of complex Berwald and Landsberg spaces and obtain a
classification of two dimensional complex Berwald spaces. Here we resume our study just
to emphasize the holonomy group of the complex Berwald connections.
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Definition 2. A complex Finsler space (M,L) is said to be a complex Berwald-Finsler
space if the horizontal Chern-Finsler connection coefficients in natural coordinates have
no η dependence, namely Li

jk(z, η) = Li
jk(z), and the space is Kähler, i.e. Li

jkη
j = Li

kjη
j.

We will denote such a connection by
B

Li
jk (z).

Let X = Xi∂i be a holomorphic vector field on M , where ∂i := ∂
∂zi . Using the

coefficients
B

Li
jk (z) we may define a covariant derivative of X by

B
∇ X = (∂kX

i + Xj
B

Li
jk)∂i ⊗ dzk. (5)

We restrict X to a complex curve on M , γ : t 7→ z(t), t ∈ R, and define the covariant
derivative of X along γ by

B
∇ X

dt
= (

dXi

dt
+

B

Li
jk Xj dzk

dt
)∂i,

and we say that X is parallel along γ if
B
∇X
dt = 0. Then, according to [15], p. 101, γ is the

projection on M of a geodesic curve γ̃ of the complex Finsler space (M,F ), with respect
to the Chern-Finsler connection.

According to [2] p. 19, if X is parallel along γ, then the function A : t 7→ L(z(t), X(t)),
t ∈ R, is constant. Indeed,

dA

dt
= (∂kL)

dzk

dt
+ (

.
∂k L)

dXk

dt
+ (∂kL)

dzk

dt
+ (

.
∂k L)

dX
k

dt
. (6)

Taking into account
B
∇X
dt = 0 we have dXk

dt = −
B

Lk
ij Xi dzj

dt and its conjugate. Now,

replacing dXk

dt and dX
k

dt into (6) we obtain

dA

dt
= (δkL)

dzk

dt
+ (δkL)

dzk

dt
= 0 (7)

where we used the fact that along the curve γ we have
CF

N j
k=

B

Lj
ik Xi and the known result

from complex Finsler geometry, see for instance [15] p. 61, that δkL = δkL = 0.
Thus, we get

Proposition 1. If the holomorphic vector field X is parallel along the complex curve
γ : t 7→ z(t), then the function A(t) := L(z(t), X(t)) is constant along the curve γ.

For the complex Berwald-Finsler spaces, we have the following theorem:

Theorem 1. Let (M,L) be a complex Berwald-Finsler space. Whenever M is connected
the complex Minkowski spaces (T

′
zM,Lz) are all linearly isometric to each other.
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Proof. Let γ : [0, 1] → M be a complex curve on M and z, w two points of M joined by
the curve γ such that γ(0) = z and γ(1) = w. Let be Z ∈ T

′
zM . We consider the unique

solution X = (Xi) of the system of linear equations dXi

dt +
B

Li
jk Xj dzk

dt = 0 with the initial
condition X(0) = Z and we associate to Z the element Z

′
= X(1) of T

′
wM . The mapping

ϕ : T
′
zM → T

′
wM given by ϕ(Z) = Z

′
is a linear isomorphism of complex vector spaces.

By Proposition 1, L(z(t), X(t)) has the same values at t = 0. Hence Lz(Z) = Lw(Z
′
).

This means that the complex Minkowski spaces (T
′
zM,Lz) and (T

′
wM,Lw) are linearly

isometric for every z, w ∈ M .

The application Pγ := ϕ constructed in the above theorem is called parallel transla-
tion along γ. Now, if we consider all loops on M in z ∈ M , the corresponding parallel
translations as linear isomorphisms T

′
zM → T

′
zM provide a group with respect to their

composition, called the holonomy group φ(z) of
B
∇ in z ∈ M . When M is connected, by

the above theorem, all these groups are isometric and one speaks about the holonomy

group φ of
B
∇.

Let us consider S
′
z(M) = {η ∈ T

′
zM / Lz(η) = gijη

iηj = 1} ⊂ T
′
zM the complex

indicatrix of L. If we consider G(S
′
z(M)) the group of all linear isomorphisms of T

′
zM

which leave invariant the indicatrix S
′
z(M), then by Theorem 1, it follows:

Proposition 2. The holonomy group φ(z) is a subgroup of G(S
′
z(M)).

Let us continue to consider a parallel translation along γ, ϕ : T
′
zM → T

′
wM . Its

differential ϕ∗,u, u ∈ T
′
M is a linear isomorphism V

′
u(T

′
M) → V

′

ũ(T
′
M) for ũ = ϕ(u) and

we denote it by ϕv.
In particular, the differentials of the elements of φ(z) are linear isomorphisms of

V
′
u(T

′
M) with π(u) = z and these provide a group φv(u) that is a subgroup of GL(V

′
u(T

′
M)).

We call φv(u) the vertical lift of φ(z). On the other hand, by (2), for every u ∈ T
′
M , we

have that (V
′
u(T

′
M),Gv

u) is a hermitian space.

Theorem 2. The mappings ϕv : V
′
u(T

′
M) → V

′

ũ(T
′
M), ũ = ϕv(u), are linear isometries

of hermitian spaces. In particular, the group φv(u) is a subgroup of the isometries of
(V

′
u(T

′
M),Gv

u).

Proof. Let us denote by (P i
j ) the matrix of ϕ : T

′
zM → T

′
wM in the basis {∂k|z} and

{∂k|w}. The matrix of ϕv is the same (P i
j ) in the basis {

.
∂k |u} and {

.
∂k |ũ}. Then by a

similar argument from the real case, see [6], we obtain gjk(u) = glm(ũ)P l
jP

m
k

. This exactly
means that ϕv is an isometry of hermitian spaces (V

′
u(T

′
M),Gv

u) and (V
′

ũ(T
′
M),Gv

ũ).

3 Complex Berwald-Cartan spaces

In this section we give a dual version of the results from the previous section. The
notions are introduced by analogy with similar results from the real case, see [7, 8].
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Definition 3. A complex Cartan space (M,H) is said to be a complex Berwald-Cartan
space if the horizontal Chern-Cartan connection coefficients in natural coordinates have
no ζ dependence, namely H i

jk(z, ζ) = H i
jk(z), and the space is Kähler, i.e. H i

jkζi = H i
kjζi.

We will denote such a connection by
B

H i
jk (z).

Let ω = ωidzi be a holomorphic 1-form and X = Xj(z)∂j a holomorphic vector field

on M . Using the coefficients
B

H i
jk (z) we may define a covariant derivative of ω in the

direction of X by
B

∇∗X ω = Xk(∂kωj−
B

H i
jk ωi)dzj . (8)

We restrict ω to a complex curve γ : t 7→ z(t), t ∈ R, on M , define the covariant
derivative of ω along γ by

B
∇∗ ω

dt
= (

dωj

dt
−

B

H i
jk ωi

d∗zk

dt
)dzj ,

and we say that ω is parallel along γ if
B
∇∗ω
dt = 0.

We show that if ω is parallel along γ then the function B : t 7→ H(z(t), ω(t)), t ∈ R, is
constant. Indeed,

dB

dt
= (∂kH)

d∗zk

dt
+ (

.
∂

k
H)

dωk

dt
+ (∂kH)

d∗zk

dt
+ (

.
∂

k
H)

dωk

dt
. (9)

Taking into account
B
∇∗ω
dt = 0 we have dωk

dt =
B

H i
kj ωi

d∗zj

dt and its conjugate. Now, replacing
dωk
dt and dωk

dt into (9) we obtain

dB

dt
= (δ∗kH)

d∗zk

dt
+ (δ∗

k
H)

d∗zk

dt
= 0 (10)

because along the curve γ we have
CC
Njk=

B

H i
jk ωi and δ∗kH = δ∗

k
H = 0.

Thus, we get

Proposition 3. If the holomorphic 1-form ω is parallel along the complex curve γ : t 7→
z(t), then the function B(t) := H(z(t), ω(t)) is constant along the curve γ.

For the complex Berwald-Cartan spaces, we have the following theorem:

Theorem 3. Let (M,H) be a complex Berwald-Cartan space. Whenever M is connected
the complex Minkowski spaces (T

′∗
z M,Hz) are all linearly isometric to each other.

Proof. Let γ : [0, 1] → M be a complex curve on M and z, w two points of M joined by
the curve γ such that γ(0) = z and γ(1) = w. Let be α ∈ T

′∗
z M . We consider the unique

solution ω = (ωi) of the system of linear equations dωj

dt −
B

H i
jk ωi

d∗zk

dt = 0 with the initial
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condition ω(0) = α and we associate to α the element α
′
= ω(1) of T

′∗
w M . The mapping

ϕ∗ : T
′∗
z M → T

′∗
w M given by ϕ∗(α) = α

′
is a linear isomorphism of complex vector spaces.

By Proposition 3, H(z(t), ω(t)) has the same values at t = 0. Hence Hz(α) = Hw(α
′
).

This means that the complex Minkowski spaces (T
′∗
z M,Hz) and (T

′∗
w M,Hw) are linearly

isometric for every z, w ∈ M .

The application P ∗γ := ϕ∗ constructed in the above theorem is called parallel transla-
tion along γ. Now, if we consider all loops on M in z ∈ M , the corresponding parallel
translations as linear isomorphisms T

′∗
z M → T

′∗
z M provide a group with respect to their

composition, called the holonomy group φ∗(z) of
B
∇∗ in z ∈ M . When M is connected,

by the above theorem, all these groups are isometric and one speaks about the holonomy

group φ∗ of
B
∇∗.

As in the previous section let us consider S
′∗
z (M) = {ζ ∈ T

′∗
z M / Hz(ζ) = hjiζiζj =

1} ⊂ T
′∗
z M , the complex indicatrix of H. If we consider G(S

′∗
z (M)) the group of all linear

isomorphisms of T
′∗
z M which leave invariant the indicatrix S

′∗
z (M), then by Theorem 3,

it follows:

Proposition 4. The holonomy group φ∗(z) is a subgroup of G(S
′∗
z (M)).

Finally, let us consider G∗v the hermitian metric defined by hji(z, ζ), on the vertical
bundle V

′
(T

′∗M), see [14]. If we consider ϕ∗v and φ∗v(u∗) the differential of ϕ∗ and the
vertical lift of φ∗(z), respectively, one gets

Theorem 4. The mappings ϕ∗v : V
′
u∗(T

′∗M) → V
′

ũ∗(T
′∗M), ũ∗ = ϕ∗v(u∗), are linear

isometries of hermitian spaces. In particular, the group φ∗v(u∗) is a subgroup of the
isometries of (V

′
u∗(T

′∗M),G∗vu∗).

Remark 1. The properties studied in this paper can be also extended in the framework
of holomorphic vector bundles endowed with a complex Finsler structure of Berwald type,
[4], according to similar results from the real case, see [6].
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