GEODESICS ON THE INDICATRIX OF A COMPLEX FINSLER MANIFOLD

Gheorghe MUNTEANU ${ }^{1}$

Abstract

In this note the geometry of the indicatrix (\mathbf{I}, \tilde{L}) is studied as a hypersurface of a complex Finsler space (M, L). The induced Chern-Finsler and Berwald connections are defined and studied. The induced Berwald connection coincides with the intrinsic Berwald connection of the indicatrix bundle.

We considered a special projection of a geodesic curve on a complex Finsler space (M, L), called the induced complex geodesic, and a complex geodesic curve on the indicatrix (\mathbf{I}, \tilde{L}) obtained by using the variational problem for their horizontal lift to $T_{C}\left(T^{\prime} M\right)$. Then we determined the circumstances in which the induced geodesic coincides with the complex geodesic on the indicatrix. If (M, L) is a weakly Kähler Finsler space, then one condition for these curves to coincide is that the weakly Kähler character conveys to the indicatrix via the induced Chern-Finsler connection.

2000 Mathematics Subject Classification: 53B40.
Key words: complex Finsler space, indicatrix, geodesics.

1 Preliminaries and settings

Let us begin our study with a short survey of complex Finsler geometry and with a set up of the basic notions and terminology. For more, see $[\mathrm{A}-\mathrm{P}, \mathrm{Mu}]$.

Let M be a complex manifold, $\left(z^{k}\right)$ complex coordinates in a local chart.
The complexified of the real tangent bundle $T_{C} M$ splits into the sum of holomorphic tangent bundle $T^{\prime} M$ and its conjugate $T^{\prime \prime} M$. The bundle $T^{\prime} M$ is in its turn a complex manifold, the local coordinates in a chart being denoted by $\left(z^{k}, \eta^{k}\right)$.

A complex Finsler space is a pair (M, \mathbf{F}), where $\mathbf{F}: T^{\prime} M \rightarrow \mathbb{R}^{+}$is a continuous function satisfying the conditions:
i) $L:=\mathbf{F}^{2}$ is smooth on $\widetilde{T^{\prime} M}:=T^{\prime} M \backslash\{0\}$;
ii) $\mathbf{F}(z, \eta) \geq 0$, the equality holds if and only if $\eta=0$;
iii) $\mathbf{F}(z, \lambda \eta)=|\lambda| \mathbf{F}(z, \eta)$ for $\forall \lambda \in \mathbb{C}$, the homogeneity condition;
$i v)$ the Hermitian matrix $\left(g_{i \bar{j}}(z, \eta)\right)$, with $g_{i \bar{j}}=\frac{\partial^{2} L}{\partial \eta^{2} \bar{\eta}^{j}}$ the fundamental metric tensor, is positively definite. Equivalently, it means that the indicatrix $\mathbf{I}_{z}=\left\{\eta / g_{i \bar{j}}(z, \eta) \eta^{i} \bar{\eta}^{j}=1\right\}$ is strongly pseudoconvex for any $z \in M$.

[^0]Consequently, from iii) we have:

$$
\begin{equation*}
\frac{\partial L}{\partial \eta^{k}} \eta^{k}=\frac{\partial L}{\partial \bar{\eta}^{k}} \bar{\eta}^{k}=L ; \frac{\partial g_{i \bar{j}}}{\partial \eta^{k}} \eta^{k}=\frac{\partial g_{i \bar{j}}}{\partial \bar{\eta}^{k}} \bar{\eta}^{k}=0 \tag{1.1}
\end{equation*}
$$

and $L=g_{i \bar{j}} \eta^{i} \bar{\eta}^{j}$.
Roughly speaking, in complex Finsler geometry we want to study the geometric objects on the complex manifold $T^{\prime} M$ endowed with a Hermitian metric structure defined by $g_{i \bar{j}}$.

In this sense, the first step is the study of sections of the complexified tangent bundle of $T^{\prime} M$ which is decomposed into the sum $T_{C}\left(T^{\prime} M\right)=T^{\prime}\left(T^{\prime} M\right) \oplus T^{\prime \prime}\left(T^{\prime} M\right)$. Let $V\left(T^{\prime} M\right) \subset$ $T^{\prime}\left(T^{\prime} M\right)$ be the vertical bundle, locally spanned by $\left\{\frac{\partial}{\partial \eta^{k}}\right\}$ and let $V\left(T^{\prime \prime} M\right)$ be its conjugate.

At this point the idea of complex nonlinear connection, briefly (c.n.c.), is instrumental in 'linearizing' this geometry. A (c.n.c.) is a supplementary complex subbundle to $V\left(T^{\prime} M\right)$ in $T^{\prime}\left(T^{\prime} M\right)$, i.e. $T^{\prime}\left(T^{\prime} M\right)=H\left(T^{\prime} M\right) \oplus V\left(T^{\prime} M\right)$. The horizontal distribution $H_{u}\left(T^{\prime} M\right)$ is locally spanned by $\left\{\frac{\delta}{\delta z^{k}}=\frac{\partial}{\partial z^{k}}-N_{k}^{j} \frac{\partial}{\partial \eta^{j}}\right\}$, where $N_{k}^{j}(z, \eta)$ are the coefficients of the (c.n.c.), which obey a certain rule of change at the charts changes such that $\frac{\delta}{\delta z^{k}}=\frac{\partial z^{\prime j}}{\partial z^{k}} \frac{\delta}{\delta z^{\prime j}}$ holds true. Obviously, we also have that $\frac{\partial}{\partial \eta^{k}}=\frac{\partial z^{\prime \prime}}{\partial z^{k}} \frac{\partial}{\partial \eta^{\prime j}}$. The pair $\left\{\dot{\partial}_{k}:=\frac{\partial}{\partial \eta^{k}}, \delta_{k}:=\frac{\delta}{\delta z^{k}}\right\}$ will be called the adapted frame of the (c.n.c.). By conjugation everywhere an adapted frame $\left\{\dot{\partial}_{\bar{k}}, \delta_{\bar{k}}\right\}$ is obtained on $T_{u}^{\prime \prime}\left(T^{\prime} M\right)$. The dual adapted bases are $\left\{d z^{k}, \delta \eta^{k}\right\}$ and $\left\{d \bar{z}^{k}, \delta \bar{\eta}^{k}\right\}$.

Let us consider the Sasaki type lift of the metric tensor $g_{i \bar{j}}$,

$$
\begin{equation*}
G=g_{i \bar{j}} d z^{i} \otimes d \bar{z}^{j}+g_{i \bar{j}} \delta \eta^{i} \otimes \delta \bar{\eta}^{j} \tag{1.2}
\end{equation*}
$$

Certainly, one main problem in this geometry is to determine a (c.n.c.) related only to the fundamental function of the complex Finsler space (M, L). One (c.n.c.) which has been extensively used is the Chern-Finsler (c.n.c.) ([A-P, Mu]):

$$
\begin{align*}
& { }_{N}^{C F} \tag{1.3}\\
& N_{j}^{k}
\end{align*} g^{\bar{m} k} \frac{\partial g_{l \bar{m}}}{\partial z^{j}} \eta^{l} .
$$

The next step is to specify the action of a derivative law D on the sections of $T_{C}\left(T^{\prime} M\right)$.
A Hermitian connection D, of $(1,0)$-type, which satisfies in addition $D_{J_{X}} Y=J D_{X} Y$, for all horizontal vectors X and J the natural complex structure of the manifold, is the so called Chern-Finsler linear connection, in brief C-F, which is locally given by the following set of coefficients (cf. [Mu]):

$$
\begin{equation*}
\stackrel{C F}{L_{j k}^{i}}=g^{\bar{l} i} \delta_{k}\left(g_{j \bar{l}}\right) ; \stackrel{C F}{C_{j k}^{i}}=g^{\bar{l} i} \dot{\partial}_{k}\left(g_{j \bar{l}}\right) ; \stackrel{C F}{L_{\bar{j} k}^{i}}=0 ; \stackrel{C F}{C_{\bar{j} k}^{\bar{i}}}=0, \tag{1.4}
\end{equation*}
$$

where $D_{\delta_{k}} \delta_{j}=L_{j k}^{i} \delta_{i}, D_{\delta_{k}} \dot{\partial}_{j}=L_{j k}^{i} \dot{\partial}_{j}, D_{\dot{\partial}_{k}} \dot{\partial}_{j}=C_{j k}^{i} \dot{\partial}_{i}, D_{\dot{\partial}_{k}} \delta_{j}=C_{j k}^{i} \delta_{i}$ etc. Of course, $\overline{D_{X} Y}=D_{\bar{X}} \bar{Y}$ is performed.

On $T_{C}\left(T^{\prime} M\right)$ the following 1-form is well defined:

$$
\begin{equation*}
\omega=\omega^{\prime}+\omega^{\prime \prime}:=\eta_{k} d z^{k}+\bar{\eta}_{k} d \bar{z}^{k} \tag{1.5}
\end{equation*}
$$

where $\eta_{k}:=g_{k j} \bar{\eta}^{j}=\frac{\partial L}{\partial \eta^{k}}$. Also, from (1.1) it follows that $C_{j k}^{i} \eta^{j}=C_{j k}^{i} \eta^{k}=0$.

In [A-P], a complex Finsler space is said to be weakly Kähler iff $g_{i \bar{l}}\left(L_{j k}^{i}-L_{k j}^{i}\right) \eta^{k} \bar{\eta}^{l}=0$, Kähler iff $L_{j k}^{i} \eta^{j}=L_{k j}^{i} \eta^{j}$ and strongly Kähler iff $L_{j k}^{i}=L_{k j}^{i}$. Actualy, the Kähler condition coincides with that of strongly Kähler, [C-S]

Further on, an index will have a superscript bar to denote the conjugate object, i.e. $\bar{\eta}^{j}:=\eta^{\bar{j}}$.

2 The intrinsic geometry of complex indicatrix

The study of the indicatrix of a real Finsler space is one of interest, first, because it is a compact and strictly convex set surrounding the origin ([B-C-S], p. 84). It is the motive that, for instance, the indicatrix plays a special role in the definition of the volume on a Finsler space. The geometry of the indicatrix as a hypersurface of the total space is studied in [AZ], p. 147, and it is proved that it plays a special role in obtaining necessary and sufficient conditions for an isotropic Finsler manifold to be of constant sectional curvature. A smooth compact and connected manifold with the properties of an indicatrix was called by R. Bryant ([Br]) with generalized Finsler structure. In this last study the Kähler structure of a generalized Finsler space with constant positive flag curvature is taken into account. The unit tangent bundle of a Riemannian or Hermitian manifold is a more general position of an indicatrix bundle and here there are some interesting results, see [$\mathrm{Bl}, \mathrm{Na}, \mathrm{Bo}, \mathrm{BY}]$, etc.

Let us consider $\operatorname{dim}_{C} M=n+1$ and $\pi: T^{\prime} M \rightarrow M$ be its holomorphic bundle, $\left(z^{k}, \eta^{k}\right)_{k=\overline{1, n+1}}$ complex coordinates on the manifold $T^{\prime} M, \operatorname{dim}_{C} T^{\prime} M=2 n+2$.

We consider $\mathbf{I}_{z}=\left\{\eta / g_{i \bar{j}}(z, \eta) \eta^{i} \bar{\eta}^{j}=1\right\}$ the indicatrix at z of a complex Finsler space (M, L) and $\pi_{I}: \mathbf{I} \rightarrow M$ the indicatrix bundle (or, cf. [Bl] p.142, the holomorphic spheric bundle), $\mathbf{I}=\cup_{z \in M} \mathbf{I}_{z}$.
$\mathbf{I} \subset T^{\prime} M$ is a compact and strictly connected hypersurface of $T^{\prime} M$. Certainly, I is not a complex manifold since it is odd dimensional. In [Mu2] we marked out the existence of an almost contact structure on I intrinsical related to complex Finsler structure (M, L).

Further on we will study the geometry of hypersurface \mathbf{I} of the complex manifold $T^{\prime} M$. If we consider $\left(\tilde{z}^{k}, \theta^{\alpha}\right)_{\alpha=\overline{1, n}}$ a parametric representation of the indicatrix hypersurface, then we have the following local representation:

$$
\begin{equation*}
\tilde{z}^{k}=z^{k} \text { and } \eta^{k}=B_{\alpha}^{k}(z) \theta^{\alpha}, \text { with } \operatorname{rank}\left(B_{\alpha}^{k}\right)=n . \tag{2.1}
\end{equation*}
$$

The tangent vectors are:

$$
\begin{equation*}
\frac{\partial}{\partial \tilde{z}^{k}}=\frac{\partial}{\partial z^{k}}+B_{\alpha k}^{j} \theta^{\alpha} \frac{\partial}{\partial \eta^{j}} ; \quad \frac{\partial}{\partial \theta^{\alpha}}=B_{\alpha}^{k} \frac{\partial}{\partial \eta^{k}}, \tag{2.2}
\end{equation*}
$$

where $B_{\alpha k}^{j}=\frac{\partial B_{\alpha}^{j}}{\partial z^{k}}$. The dual frames are connected by

$$
\begin{equation*}
d z^{k}=d \tilde{z}^{k} \text { and } d \eta^{k}=B_{\alpha j}^{k} \theta^{\alpha} d \tilde{z}^{j}+B_{\alpha}^{k} d \theta^{\alpha} . \tag{2.3}
\end{equation*}
$$

By $\frac{\partial}{\partial \tilde{z}^{k}}, \frac{\partial}{\partial \theta^{\alpha}}$ we denote the tangent vectors obtained by conjugation everywere in (2.2).

The distribution $V \mathbf{I}$ spanned by $\left\{\dot{\partial}_{\alpha}:=\frac{\partial}{\partial \theta^{\alpha}}\right\}$, is called vertical, and it is a subdistribution of $V\left(T^{\prime} M\right)$.

On indicatrix I we have $L\left(\tilde{z}^{k}, \eta^{k}(\theta)\right)=1$ and by differentiation with respect to $\dot{\partial}_{\alpha}$ it results that:
$\frac{\partial g_{i \bar{j}}}{\partial \eta^{k}} B_{\alpha}^{k} \eta^{i} \bar{\eta}^{j}+g_{i \bar{j}} B_{\alpha}^{i} \bar{\eta}^{j}=0$.
On account of (1.1) homogeneity conditions $\frac{\partial g_{i \overline{\bar{j}}}}{\partial \eta^{k}} \eta^{i}=0$ it follows $g_{i \bar{j}} B_{\alpha}^{i} \bar{\eta}^{j}=0$, which is to say that the Liouville vector $\mathbf{N}=\eta^{k} \frac{\partial}{\partial \eta^{k}}$ is normal to the vertical distribution $V \mathbf{I}$ spanned by the tangential vectors $\dot{\partial}_{\alpha}$ to the hypersurface \mathbf{I}. Moreover, \mathbf{N} is a unitary vector since $\eta_{k} \eta^{k}=1$.

Let us consider the frame $\mathcal{R}=\left\{\dot{\partial}_{\alpha}=B_{\alpha}^{k} \frac{\partial}{\partial \eta^{k}}, \mathbf{N}=\eta^{k} \frac{\partial}{\partial \eta^{k}}\right\}$ along $V \mathbf{I}$ and $\mathcal{R}^{-1}=$ $\left\{B_{k}^{\alpha}, \eta_{k}\right\}$ the inverse matrices of this frame, that is:

$$
\begin{equation*}
B_{k}^{\alpha} B_{\beta}^{k}=\delta_{\beta}^{\alpha} ; B_{k}^{\alpha} \eta^{k}=0 ; B_{\alpha}^{k} \eta_{k}=0 ; B_{\alpha}^{k} B_{j}^{\alpha}+\eta^{k} \eta_{j}=\delta_{j}^{k} ; \eta_{k} \eta^{k}=1 \tag{2.4}
\end{equation*}
$$

The fundamental function $\tilde{L}(\tilde{z}, \theta)=L(z, \eta(\theta))$ of the complex Finsler space defines a metric tensor on indicatrix I, $g_{\alpha \bar{\beta}}=B_{\alpha}^{j} B_{\bar{\beta}}^{\bar{k}} g_{j \bar{k}}$, where $B_{\bar{\beta}}^{\bar{k}}=\overline{B_{\beta}^{k}}$. It is easy to check that $g^{\bar{\beta} \alpha}=g^{\bar{j} i} B_{i}^{\alpha} B_{\bar{j}}^{\bar{\beta}}$ is the inverse of $g_{\alpha \bar{\beta}}$ and $g^{\bar{j} i}=B_{\alpha}^{i} B_{\bar{\beta}}^{\bar{j}} g^{\bar{\alpha} \alpha}+\eta^{i} \eta^{\bar{j}}$. Also on indicatrix \mathbf{I}_{z} from $\eta_{k} \eta^{k}=1$ it follows that $\theta_{\alpha} \theta^{\alpha}=1$, where $\theta_{\alpha}=g_{\alpha \bar{\beta}} \theta^{\bar{\beta}}$.

Let us consider the local frame $\left\{\tilde{\delta}_{k}=\frac{\partial}{\partial \tilde{z}^{k}}-\tilde{N}_{k}^{\alpha} \frac{\partial}{\partial \theta^{j \alpha}} ; \dot{\partial}_{\alpha}=\frac{\partial}{\partial \theta^{\alpha}}\right\}$, which spans the horizonthal distibution of $T^{\prime}\left(T^{\prime} M\right)$, and its dual frame $\left\{d \tilde{z}^{k} ; \delta \theta^{\alpha}=d \theta^{\alpha}+\tilde{N}_{j}^{\alpha} d \tilde{z}^{j}\right\}$, where \tilde{N}_{k}^{α} will be called, by abuse of terminology, the coefficients of the induced (c.n.c.) iff $\delta \theta^{\alpha}=$ $B_{k}^{\alpha} \delta \eta^{k}$, that is $d \theta^{\alpha}+\tilde{N}_{j}^{\alpha} d \tilde{z}^{j}=B_{k}^{\alpha}\left(d \eta^{k}+N_{j}^{k} d z^{j}\right)$, and therefore in view of (2.3) it satisfies

$$
\begin{equation*}
\tilde{N}_{j}^{\alpha}=B_{k}^{\alpha}\left(B_{\beta j}^{k} \theta^{\beta}+N_{j}^{k}\right) . \tag{2.5}
\end{equation*}
$$

 have:

Proposition 1. The induced (c.n.c.) by the Chern-Finsler (c.n.c.) $\stackrel{C F}{N_{j}^{k}}$ coincides with ${ }^{C F}{ }_{N}^{\alpha}$.

Proof. A straightforward computation using (2.2) and (2.4) implies:

$$
\begin{aligned}
& C F \\
& N_{j}^{\alpha}=g^{\bar{\beta} \alpha} \frac{\partial^{2} \tilde{L}}{\partial \tilde{z}^{j}} \theta^{\bar{\beta}}=g^{\bar{\beta} \alpha} \frac{\partial}{\partial \tilde{z}^{j}}\left(B_{\bar{\beta}}^{\bar{k}} \frac{\partial \tilde{L}}{\partial \eta^{k}}\right)=g^{\bar{\beta} \alpha} B_{\bar{\beta}}^{\bar{k}}\left(\frac{\partial^{2} L}{\partial z^{j} \partial \eta^{k}}+B_{\gamma j}^{l} \theta^{\gamma} g_{l \bar{k}}\right) \\
& =g^{\bar{m} p} B_{p}^{\alpha} B_{\bar{\beta}}^{\bar{\beta}} B_{\bar{\beta}}\left(\frac{\partial^{2} L}{\partial z^{j} \partial \eta^{k}}+B_{\gamma j}^{l} \theta^{\gamma} g_{l \bar{k}}\right)=g^{\bar{m} p} B_{p}^{\alpha}\left(\delta_{\bar{m}}^{\bar{k}}-\eta_{\bar{m}} \eta^{\bar{k}}\right)\left(\frac{\partial^{2} L}{\partial z^{j} \partial \eta^{k}}+B_{\gamma j}^{l} \theta^{\gamma} g_{l \bar{k}}\right) \\
& =B_{p}^{\alpha}\left(g^{\bar{m} p} \frac{\partial^{2} L}{\partial z^{j} \partial \eta^{m}}+B_{\gamma j}^{p} \theta^{\gamma}-\eta^{p} \eta^{\bar{k}} \frac{\partial^{2} L}{\partial z^{j} \partial \eta^{k}}-\eta^{p} \eta_{l} B_{\gamma j}^{l} \theta^{\gamma}\right) \\
& =B_{p}^{\alpha}\left(B_{\gamma j}^{p} \theta^{\gamma}+N_{j}^{k}\right)=\tilde{N}_{j}^{\alpha} .
\end{aligned}
$$

We take in reductions from the last part the fact that $B_{p}^{\alpha} \eta^{p}=0$.

We note that in general $\left\{\tilde{\delta}_{k}\right\}$ are not d-tensor fields, i.e. they do not change like vectors on the manifold. Also by inclusion tangent map, $\mathbf{i}_{*}\left(\tilde{\delta}_{k}\right)$, which for convenience will be often identified with $\tilde{\delta}_{k}$ on $T^{\prime} M$, is written as:
$\tilde{\delta}_{k}=\frac{\partial}{\partial \tilde{z}^{k}}-\tilde{N}_{k}^{\alpha} B_{\alpha}^{j} \frac{\partial}{\partial \eta^{j}}=\frac{\partial}{\partial z^{k}}+\left(B_{\alpha k}^{j} \theta^{\alpha}-\tilde{N}_{k}^{\alpha} B_{\alpha}^{j}\right) \frac{\partial}{\partial \eta^{j}}$ and, by using (2.4) and (2.5), we have:

$$
\begin{equation*}
\tilde{\delta}_{k}=\delta_{k}+H_{k}^{0} \mathbf{N} \text { and } \dot{\partial}_{k}=B_{k}^{\alpha} \dot{\partial}_{\alpha}-\eta_{k} \mathbf{N} \tag{2.6}
\end{equation*}
$$

where $H_{k}^{0}=\left(B_{\alpha k}^{j} \theta^{\alpha}+N_{k}^{j}\right) \eta_{j}$.
Further, let us consider the dual induced coframe $\tilde{d} z^{k}=d \tilde{z}^{k}$ and $\delta \theta^{\alpha}=d \theta^{\alpha}+N_{j}^{\alpha} d \tilde{z}^{j}$. The induced frame and coframe on the whole $T_{C} \mathbf{I}$ and the induced metric structure are obtained by conjugation everywhere:

$$
\begin{equation*}
\tilde{G}=g_{i \bar{j}} \tilde{d} z^{i} \otimes \tilde{d} \bar{z}^{j}+g_{\alpha \bar{\beta}} \delta \theta^{\alpha} \otimes \delta \bar{\theta}^{\beta} \tag{2.7}
\end{equation*}
$$

where $g_{i \bar{j}}(\tilde{z}, \eta(\theta))$ is the metric tensor of the space along the points of the indicatrix.
In [Mu1] we pointed out that another (c.n.c.) has a special meaning in the study of geodesics of a complex Finsler space, namely the canonical (c.n.c.), given by $N_{j}^{i}:=\frac{1}{2} \dot{\partial}_{j}$ ($\left.\stackrel{C F}{N_{k}^{i}} \eta^{k}\right)=\stackrel{1}{2}\left(L_{j k}^{i} \eta^{k}+\stackrel{C F}{N_{j}^{i}}\right)$. This connection will play an essential role in the construction of the complex Berwald connection and it comes from a spray (see [Mu]). Let us study the same problem of its induced canonical (c.n.c.),

$$
\begin{aligned}
\stackrel{c}{\tilde{N}_{j}^{\alpha}} & =B_{k}^{\alpha}\left(B_{\beta j}^{k} \theta^{\beta}+\stackrel{c}{N_{j}^{k}}\right)=B_{k}^{\alpha}\left\{B_{\beta j}^{k} \theta^{\beta}+\frac{1}{2}\left(L_{j i}^{k} \eta^{i}+\stackrel{C F}{N_{j}^{k}}\right)\right\} \\
& =\frac{1}{2} B_{k}^{\alpha}\left(B_{\beta j}^{k}+B_{\beta}^{i} \stackrel{C F}{L_{j i}^{k}}\right) \theta^{\beta}+\frac{1}{2} \tilde{N}_{j}^{\alpha} .
\end{aligned}
$$

Indeed, an intrinsic canonical (c.n.c.) on $T^{\prime} \mathbf{I}$ is unnecessary because the problem of a complex spray is undesirable on $T^{\prime} \mathbf{I}$.

Now, let us proceed to find the induced C-F linear connection. For this we consider the Gauss-Weingarten equations of the hypersurface \mathbf{I} with respect to the C-F complex linear connection. Consider for any $X \in \Gamma\left(T_{C} \mathbf{I}\right)$ and $Y \in \Gamma\left(V_{C} \mathbf{I}\right)$ the decomposition:

$$
\begin{equation*}
D_{X} Y=\tilde{D}_{X} Y+H(X, Y) \tag{2.8}
\end{equation*}
$$

where $\tilde{D}_{X} Y \in \Gamma\left(V_{C} \mathbf{I}\right)$ is the tangential component and $H(X, Y)$ is the normal component.
Denote $\stackrel{C F}{\tilde{D}} \tilde{\delta}_{k} \dot{\partial}_{\beta}=\stackrel{C F}{\tilde{L}_{\beta k}^{\alpha}} \dot{\partial}_{\alpha}$ and $\stackrel{C F}{\tilde{D}} \dot{\partial}_{\gamma} \dot{\partial}_{\beta}=\stackrel{C F}{\tilde{C}}{ }_{\beta \gamma}^{\alpha} \dot{\partial}_{\alpha}$. Since D preserves the distributions and $V \mathbf{I}$ is spanned by $\dot{\partial}_{\alpha}=B_{\alpha}^{j} \dot{\partial}_{j}$ and $V^{\perp} \mathbf{I}$ is generated by \mathbf{N}, we have
$\stackrel{C F}{\tilde{D}_{\tilde{\delta}_{k}}} \dot{\partial}_{\beta}=\stackrel{C F}{D} \tilde{\delta}_{k} B_{\beta}^{j} \dot{\partial}_{j}=\tilde{\delta}_{k}\left(B_{\beta}^{j}\right) \dot{\partial}_{j}+B_{\beta}^{j} \stackrel{C F}{D}_{\delta_{k}+H_{k}^{0} \mathbf{N}} \dot{\partial}_{j}=\left\{B_{\beta k}^{i}+B_{\beta}^{j} \stackrel{C F}{L_{j k}^{i}}+B_{\beta}^{j} H_{k}^{0} \eta^{p}{ }_{C_{j p}^{i}}^{C F}\right\}$ $\dot{\partial}_{i}$. But in view of the homogeneity of Finsler metrics $\eta^{p} C_{j i p}^{i}=0$, we have:

$$
\begin{equation*}
\stackrel{C F}{\tilde{L}_{\beta k}^{\alpha}}=B_{i}^{\alpha}\left(B_{\beta k}^{i}+B_{\beta}^{j}\binom{C F}{L_{j k}^{i}} .\right. \tag{2.9}
\end{equation*}
$$

Similarly we find that $\stackrel{C}{C} \tilde{C}_{\beta \gamma}^{\alpha}=B_{i}^{\alpha} B_{\beta}^{j} B_{\gamma}^{k} \stackrel{C F}{C_{j k}^{i}}$ and $\stackrel{C F}{\tilde{L}_{\beta \bar{k}}^{\alpha}}=\stackrel{C F}{\tilde{C}_{\beta \bar{\gamma}}^{\alpha}}=0$.

For the normal component we have $G\left({ }_{D}^{C F} \dot{\partial}_{\alpha}, \overline{\mathbf{N}}\right)=G\left(H\left(X, \dot{\partial}_{\alpha}\right), \overline{\mathbf{N}}\right)$ and furthermore if we take X to be a vector of the adapted frames $\tilde{\delta}_{k}, \tilde{\delta}_{\bar{k}}$, we easily obtain that

$$
H_{\alpha k}=B_{\alpha k}^{j} \eta_{j}+B_{\alpha}^{j} \stackrel{C F}{L_{j k}^{i}} \eta_{i} \text { and } H_{\alpha \bar{k}}=0
$$

If X is $\dot{\partial}_{\beta}$ or $\dot{\partial}_{\bar{\beta}}$, then the fundamental form will be $H_{\alpha \beta}=B_{\alpha}^{j} B_{\beta}^{k} \stackrel{C F}{C_{j k}^{i}} \eta_{i}$ and $H_{\alpha \bar{\beta}}=0$.
Further, if $\stackrel{C F}{\tilde{D}} \tilde{\delta}_{k} \tilde{\delta}_{j}=\stackrel{C F}{\tilde{L}_{j k}^{i}} \tilde{\delta}_{i}$, then direct computation of $\stackrel{C F}{\tilde{D}} \tilde{\delta}_{k} \tilde{\delta}_{j}={ }^{C F}{ }_{\delta_{k}+H_{k}^{0} \mathbf{N}}\left(\delta_{j}+H_{j}^{0} \mathbf{N}\right)$, by using the homogeneity conditions, finally get that $\begin{gathered}C F \\ \tilde{L}_{j k}^{i}={ }_{C}^{C F} \\ L_{j k}^{i}\end{gathered}$, because of $\stackrel{C F}{D}{ }_{\mathbf{N}} \delta_{j}=0$, and the normal part is $H_{k j}=\delta_{k}\left(H_{j}^{0}\right)+N_{k}^{0} \mathbf{N}\left(H_{j}^{0}\right)-H_{i}^{0} L_{j k}^{i}$.

It is obvious that even if the C-F connection is a normal one, that is $D_{\delta_{k}} \delta_{j}=$ $L_{j k}^{i} \delta_{i}, D_{\delta_{k}} \dot{\partial}_{j}=L_{j k}^{i} \dot{\partial}_{j}$, the induced connection is not a normal one. Another property of interest which is not preserved by this projection is that of Berwald type connection, namely it is well known that $\stackrel{C F}{L_{j k}^{i}}=\dot{\partial}_{j} \stackrel{C F}{N} N_{k}^{i}$, while for the induced connection we have:
$\dot{\partial}_{\beta} \stackrel{C F}{\tilde{N}_{k}^{\alpha}}=\dot{\partial}_{\beta}\left\{B_{j}^{\alpha}\left(B_{\gamma k}^{j} \theta^{\gamma}+\stackrel{C F}{N_{k}^{j}}\right)\right\}=B_{j}^{\alpha}\left(B_{\beta k}^{j}+B_{\beta}^{i} \stackrel{C F}{L_{i k}^{j}}\right)=\stackrel{C F}{\tilde{L}} \underset{\beta k}{\alpha}+B_{j}^{\alpha} B_{\beta}^{k}\left(L_{k i}^{j}-\stackrel{C F}{L_{i k}^{j}}\right)$, and hence it reduces to $\stackrel{C F}{\tilde{L}} \underset{\beta k}{\alpha}$ if the space is Kähler for instance.

Now let us introduce another useful linear connection for our study, the complex Berwald connection. We proved in [Mu1] that it plays an interesting role in the characterization of totally geodesic curves on a holomorphic subspace. Let us consider ${ }_{c}^{c} N_{j}^{k}$ the canonical (c.n.c.) introduced above and we define the complex Berwald connection as being

$$
\begin{equation*}
\left.\stackrel{B}{D} \Gamma=\stackrel{c}{N_{k}^{i}}, \stackrel{B}{L_{j k}^{i}}=\frac{\stackrel{c}{N_{k}^{i}}}{\partial \eta^{j}}, \stackrel{B}{L_{j k}^{i}}=0, \stackrel{B}{C_{j k}^{i}}=0, \stackrel{B}{C_{j k}^{i}}=0\right) \tag{2.10}
\end{equation*}
$$

We see that the Berwald connection is in the vertical bundle $V\left(T^{\prime} M\right)$ and it is easy to check that

$$
\stackrel{c}{N_{k}^{i}}=\frac{1}{2}\left(\begin{array}{c}
C F \\
L_{k 0}^{i}
\end{array}+\stackrel{C F}{N}_{N_{k}^{i}}\right) \text { and } \stackrel{B}{L_{j k}^{i}}=\frac{1}{2}\left(\begin{array}{c}
C F \\
L_{j k}^{i}
\end{array}+\stackrel{C F}{L_{k j}^{i}}\right)+\frac{1}{2} \dot{\partial}_{j}\binom{C F}{L_{k m}^{i}} \eta^{m} .
$$

By using again the G-W decomposition, since ${ }_{B}^{B}{ }_{j k}^{i}=0$, it is easy to obtain that the
 we can not talk about horizontal components $\tilde{L}_{j k}^{i}$.

But the induced Berwald connection has the property that it is of Berwald type. Indeed, starting from:

$$
\dot{\partial}_{\beta} \tilde{N}_{j}^{\alpha}=\frac{1}{2} \dot{\partial}_{\beta}\left\{B_{i}^{\alpha}\left(B_{\gamma k}^{i} \theta^{\gamma}+\stackrel{C F}{L_{j k}^{i}} \eta^{k}\right)+\stackrel{C F}{\tilde{N}_{j}^{\alpha}}\right\}
$$

$$
=\frac{1}{2} B_{i}^{\alpha}\left\{\left(B_{\beta j}^{i}+B_{\beta}^{k} \stackrel{C F}{L_{j k}^{i}}+\underset{C F}{\dot{\partial}_{\beta}\left(L_{j k}^{i}\right)} \begin{array}{c}
C F \\
{ }^{k}
\end{array}\right\}+\frac{1}{2} \stackrel{C F}{\dot{\partial}_{\beta} \tilde{N}_{j}^{\alpha}}\right.
$$

and replacing the expression of $\dot{\partial}_{\beta} \tilde{N}_{k}^{\alpha}$, after reducing the same terms, it results:
$\dot{\partial}_{\beta} \stackrel{c}{\tilde{N}_{j}^{\alpha}}=\frac{1}{2} B_{i}^{\alpha}\left\{\left(B_{\beta j}^{i}+B_{\beta}^{k} \stackrel{C F}{L_{k j}^{i}}+B_{\beta}^{m} \dot{\partial}_{m}\left(\stackrel{C F}{L_{j k}^{i}}\right) \eta^{k}\right\}+\frac{1}{2} \stackrel{C F}{\tilde{L}_{\beta j}^{\alpha}}\right.$.
On the other hand from (2.9),

$$
\begin{aligned}
\begin{array}{c}
B \\
\tilde{L}_{\beta j}^{\alpha}
\end{array} & =B_{i}^{\alpha}\left(B_{\beta j}^{i}+B_{\beta}^{k} L_{j k}^{i}\right)=B_{i}^{\alpha}\left\{B_{\beta j}^{i}+\frac{1}{2} B_{\beta}^{k}\left(\begin{array}{c}
C F \\
i \\
L_{j k}
\end{array}+L_{k j}^{i}\right)+\frac{1}{2} B_{\beta}^{k} \dot{\partial}_{j}\left(L_{k m}^{i}\right) \eta^{m}\right\} \\
& =\frac{1}{2} B_{i}^{\alpha}\left\{\left(B_{\beta j}^{i}+B_{\beta}^{k} L_{k j}^{i}+B_{\beta}^{m} \dot{\partial}_{m}\left(L_{j k}^{i}\right) \eta^{k}\right\}+\frac{1}{2} \tilde{L}_{\beta k}^{\alpha} .\right.
\end{aligned}
$$

Comparing the last lines, we get
Proposition 2. The induced Berwald connection coincides with the intrinsic Berwald connection of the indicatrix bundle, that is:

$$
\begin{equation*}
\stackrel{\tilde{L}_{\beta j}^{B}}{\tilde{L}^{\alpha}}=\frac{\partial \tilde{N}_{j}^{c}}{\partial \theta^{\beta}} \tag{2.11}
\end{equation*}
$$

Similarly, following the general settings from the geometry of hypersurfaces ([Mu1]), a linear connection D induces a normal connection D^{\perp} and let $A_{\mathbf{N}} X:=A(X) \in V \mathbf{I}$ be the shape operator. Then we have:

$$
D_{X} \mathbf{N}=-A_{\mathbf{N}} X+D_{X}^{\perp} \mathbf{N} .
$$

From $G\left(D_{X} \mathbf{N}, \dot{\partial}_{\bar{k}}\right)=-G\left(A(X), \dot{\partial}_{\bar{k}}\right)$, where X is taken to be one of the vectors $\tilde{\delta}_{k}, \tilde{\delta}_{\bar{k}}, \dot{\partial}_{\beta}$ or $\dot{\partial}_{\bar{\beta}}$, we obtain that:
$A_{k}^{\alpha}=B_{l}^{\alpha}\left(N_{k}^{l}-\eta^{j} L_{j k}^{l}\right) ; A_{\bar{k}}^{\alpha}=0 ; A_{\beta}^{\alpha}=-B_{k}^{\alpha}$ and $A_{\bar{\beta}}^{\alpha}=0$. Let us remark that both C-F and canonical (c.n.c.) are homogeneous and hence $N_{k}^{l}=\eta^{j} L_{j k}^{l}$. Consequently for the C-F or Berwald connections it results that $A_{k}^{\alpha}=0$.

We compute below the normal component of the Berwald connection. For $X=\tilde{\delta}_{k}^{c}$, we have
$\stackrel{B}{D_{\underset{\delta}{c}}^{c}} \mathbf{N}=\left\{\stackrel{c}{\tilde{\delta}_{k}}\left(\eta^{i}\right)+\stackrel{c}{N_{k}^{l}} \eta_{l} \eta^{i}\right\} \dot{\partial}_{i}+\eta^{j} \stackrel{C F}{L_{j k}^{i}} \dot{\partial}_{i}=\left(\eta^{j} \stackrel{C F}{L_{j k}^{i}}-\stackrel{c}{N_{k}^{i}}\right) \dot{\partial}_{i}+\stackrel{c}{N_{k}^{l}} \eta_{l} \mathbf{N}=\stackrel{c}{N_{k}^{l}} \eta_{l} \mathbf{N}$
Thus we proved that

$$
A_{\mathbf{N}} \stackrel{c}{\tilde{\delta}_{k}}=0 \text { and } \stackrel{B}{D_{\tilde{\delta}_{k}}^{\perp}} \mathbf{N}=\stackrel{c}{N_{k}^{l}} \eta_{l} \mathbf{N} .
$$

For $X=\stackrel{c}{\tilde{\delta}_{\bar{k}}}$, we deduce that $A_{\mathbf{N}} \stackrel{c}{\tilde{\delta}_{\bar{k}}}=0$ and $\stackrel{B}{\underset{\tilde{\delta}_{k}}{\perp}} \mathbf{N}=\mathbf{0}$.
Similar computations get :

$$
A_{\mathbf{N}} \dot{\partial}_{\gamma}=-\dot{\partial}_{\gamma} \text { and } \stackrel{B}{D_{\dot{\partial}_{\gamma}}^{\perp}} \mathbf{N}=-B_{\gamma}^{l} \eta_{l} \mathbf{N} ; A_{\mathbf{N}} \dot{\partial}_{\bar{\gamma}}=0 \text { and } \stackrel{B}{D_{\dot{\partial}_{\bar{\gamma}}}^{\perp}} \mathbf{N}=0 .
$$

For the Berwald connection the torsion and curvature tensors are denoted by:

$$
\begin{array}{ll}
v T\left(\delta_{k}^{c},{ }_{\delta}^{c}\right)=\Omega_{j k}^{i} \dot{\partial}_{i} \text { where } & \Omega_{j k}^{i}={ }_{j}^{c} N_{k}^{c} N_{k}^{i}-\delta_{k}^{c} N_{j}^{c} \\
v T\left(\delta_{\bar{k}}^{c}, \delta_{j}^{c}\right)=\Theta_{j \bar{k}}^{i} \dot{\partial}_{i} & \Theta_{j \bar{k}}^{i}=\delta_{\bar{k}}^{c} N_{j}^{i} \tag{2.12}\\
v T\left(\dot{\partial}_{\bar{k}},{ }_{j}^{c}\right)=\rho_{j \bar{k}}^{i} \dot{\delta}_{i} & \rho_{j \bar{k}}^{i}=\dot{\partial}_{\bar{k}} N_{j}^{i}
\end{array}
$$

and the nonzero curvatures:

$$
\begin{array}{ll}
R_{j k h}^{i} X_{i}=R(\stackrel{c}{\delta h}, \stackrel{c}{\delta k}) X_{j} & R_{j \bar{k} h}^{i} X_{i}=R\left(\stackrel{c}{\delta_{h}}, \stackrel{c}{\delta_{\bar{k}}}\right) X_{j} \\
P_{j k h}^{i} X_{i}=R\left(\dot{\partial}_{h}, \delta_{k}^{c}\right) X_{j} & P_{j \bar{k} h}^{i} X_{i}=R\left({ }_{\delta}, \dot{\delta}_{\bar{k}}\right) X_{j}
\end{array}
$$

where X_{i} is first ${ }_{\delta}^{c}$ and then $\dot{\partial}_{i}$.
The computation of these curvatures leads to

$$
\begin{align*}
& R_{j k h}^{i}=\stackrel{c}{c} \stackrel{B}{\delta_{h} L_{j k}^{i}}-\stackrel{c}{{ }_{\delta}}{ }_{k} L_{j h}^{i}+\begin{array}{c}
B \\
L_{j k}^{l} \\
L_{l h}^{i}
\end{array}-\stackrel{B}{B} L_{j h}^{l} L_{l k}^{i} ; \tag{2.13}\\
& R_{j \bar{k} h}^{i}=-\stackrel{c}{c} \stackrel{B}{\delta_{\bar{k}} L_{j h}^{i}} ; \quad P_{j k h}^{i}=\dot{\partial}_{h} \stackrel{B}{L_{j k}^{i}} ; \quad P_{j \bar{k} h}^{i}=-\dot{\partial}_{\bar{k}} \stackrel{B}{L_{j h}^{i}} \text {. }
\end{align*}
$$

Proposition 3. The induced torsions and curvature with respect to Berwald connection are given by:
i) $\tilde{\Omega}_{j k}^{\alpha}=B_{i}^{\alpha} \Omega_{j k}^{i} ; \quad \tilde{\Theta}_{j \bar{k}}^{\alpha}=B_{i}^{\alpha} \Theta_{j \bar{k}}^{i} ; \quad \tilde{\rho}_{j \bar{\beta}}^{\alpha}=B_{\bar{\beta}}^{\bar{k}} B_{i}^{\alpha} \rho_{j \bar{k}}^{i}$.
ii)

$$
\begin{aligned}
\tilde{R}_{\beta k h}^{\alpha} & =B_{i}^{\alpha}\left\{B_{\beta}^{j} R_{j k h}^{i}+{ }_{\delta}^{c}\left(B_{\beta}^{j}\right) \stackrel{L_{j k}^{i}}{i}-{ }_{\delta}^{c}\left(B_{\beta}^{j}\right) L_{j h}^{i}+B_{\beta}^{j} \stackrel{c}{i}\left(N_{h}^{0} L_{l k}^{i}-N_{k}^{c} L_{l h}^{i}\right)\right\} ; \\
\tilde{R}_{\beta \bar{k} h}^{\alpha} & =-B_{i}^{\alpha}\left\{B_{\beta}^{j} R_{j \bar{k} h}^{i}+B_{\beta}^{j} \eta_{\bar{k}} \eta^{\bar{l}} P_{j \overline{l h}}^{i}\right\} ; \\
\tilde{P}_{\beta k \gamma}^{\alpha} & =B_{\gamma}^{h}\left\{B_{\beta k}^{i}+B_{\beta}^{j} L_{j k}^{i}\right)\left(\dot{\partial}_{h} B_{i}^{\alpha}+\eta_{h} \mathbf{N}\left(B_{i}^{\alpha}\right)+B_{i}^{\alpha} B_{\beta}^{j} P_{j k h}^{i}+\eta_{h} B_{i}^{\alpha} B_{\beta}^{j} L_{j k}^{i} ;\right. \\
\tilde{P}_{\beta \bar{k} \gamma}^{\alpha} & =-B_{i}^{\alpha} B_{\beta}^{j} P_{j \bar{k} h}^{i}-B_{\gamma}^{h} B_{\beta \bar{k}}^{i}\left(\dot{\partial}_{h} B_{i}^{\alpha}+\eta_{h} \mathbf{N}\left(B_{i}^{\alpha}\right) .\right.
\end{aligned}
$$

With these computations the Gauss, respectively H-Codazzi equations of the indicatrix subspace (\mathbf{I}, \tilde{L}) are deduced from:

$$
\begin{equation*}
\mathbf{G}(R(X, Y) v Z, \bar{v} U)=\tilde{\mathbf{G}}(\tilde{R}(X, Y) \tilde{v} Z, \overline{\tilde{v}} U)+\tilde{\mathbf{G}}\left(A_{H(X, \tilde{v} Z)} Y-A_{H(Y, \tilde{v} Z)} X, \overline{\tilde{v}} U\right) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{align*}
\mathbf{G}(R(X, Y) v Z, W)= & \tilde{\mathbf{G}}\left(\left(D_{X} H\right)(Y, v Z)-\left(D_{Y} H\right)(X, v Z), W\right) \\
& +\tilde{\mathbf{G}}(H(\tilde{T}(X, Y), Z), W) \tag{2.15}
\end{align*}
$$

where $W \in \Gamma\left(\overline{V_{C}^{\perp} T^{\prime} \mathbf{I}}\right)$ and $v, \bar{v}, \tilde{v}, \overline{\tilde{v}}$ are the projectors on the corresponding vertical distributions.

Similarly, equating the components from $V_{C} T^{\prime} \mathbf{I}$ and $V_{C} T^{\prime} \mathbf{I}^{\perp}$ of the normal curvatures we obtain the following $A-C o d a z z i$, respectively Ricci equations:

$$
\begin{align*}
\mathbf{G}(R(X, Y) W, \bar{v} Z)= & \tilde{\mathbf{G}}\left(\left(\tilde{D}_{Y} A\right)(W, X)-\left(\tilde{D}_{X} A\right)(W, Y), \overline{\tilde{v}} Z\right)- \\
& \tilde{\mathbf{G}}\left(A_{W}(T(X, Y), \overline{\tilde{v}} Z)\right. \tag{2.16}
\end{align*}
$$

and

$$
\begin{align*}
\mathbf{G}(R(X, Y) W, \bar{v} N)= & \tilde{\mathbf{G}}\left(\tilde{R}^{\perp}(X, Y) W, \overline{\tilde{v}} N\right)+ \tag{2.17}\\
& \tilde{\mathbf{G}}\left(H\left(Y, A_{W} X\right)-H\left(X, A_{W} Y\right), \overline{\tilde{v}} N\right)
\end{align*}
$$

for $\forall X, Y \in \Gamma\left(T_{C} T^{\prime} \mathbf{I}\right)$ and $W, N \in \Gamma\left(V_{C} T^{\prime} \mathbf{I}^{\perp}\right)$.
An expansive writting for these formulas can be obtained by replacing the vectors with the adapted frames of the Berwald (c.n.c.).

3 Complex geodesics on (I, \tilde{L})

Let us consider $\sigma: t \rightarrow\left(z^{k}(t), \eta^{k}(t)=\frac{d z^{k}}{d t}\right)$ a complex geodesic curve on the complex Finsler space (M, L). According to $[\mathrm{A}-\mathrm{P}]$, p. 101, it satisfies the system

$$
\begin{equation*}
\frac{d^{2} z^{i}}{d t^{2}}+\stackrel{C F}{N_{k}^{i}}(z(t), \eta(t)) \frac{d z^{k}}{d t}=\Theta^{* i}, i=\overline{1, n+1} \tag{3.1}
\end{equation*}
$$

where $\stackrel{C F}{N_{k}^{i}}$ are the coefficients of the Chern-Finsler (c.n.c.), and

$$
\Theta^{* i}=g^{\bar{m} i} g_{j \bar{l}}\left\{\begin{array}{c}
C \bar{F} \tag{3.2}\\
L_{\bar{n} \bar{m}}^{\bar{l}}-L^{\bar{l}} \bar{m} \bar{n}
\end{array}\right\} \eta^{j} \bar{\eta}^{n} .
$$

In $[\mathrm{Mu}]$ we proved that an equivalent expression for $\boldsymbol{\Theta}^{* i}$ is $\boldsymbol{\Theta}^{* i}=g^{\bar{m} i}{ }_{\delta}^{c} \bar{m}_{\bar{m}} L$.
If $\boldsymbol{\Theta}^{* i}=0$ then the space is weakly Kähler, therefore we call the form $\boldsymbol{\Theta}^{*}=g^{\bar{m} i} g_{j \bar{l}} \begin{gathered}C F \\ \bar{L} \\ \bar{n} \bar{m}\end{gathered}$ $\left.-{ }^{C F} L_{\bar{m} \bar{n}}^{\bar{l}}\right\} d z^{j} \wedge d \bar{z}^{n} \otimes \delta_{i}$ the weakly Kähler form. If in addition the torsion of the CF linear connection satisfies a supplementary condition, a special geodesic is obtained, named c-geodesic complex curve, which is the correspondent via a holomorphic map of a geodesic from the unit disc with the Poincaré metric. We point out that there is a sensitive difference between these geodesics. Taking into account the 1 -homogeneity of the coefficients of C-F (c.n.c.), we readily check that $\stackrel{c}{N_{0}^{i}}=\stackrel{C F}{N_{0}^{i}}$. Thus, the equations (3.1) will be rewritten equivalently as

$$
\begin{equation*}
\frac{d^{2} z^{i}}{d t^{2}}+\stackrel{c}{N_{k}^{i}}(z(t), \eta(t)) \frac{d z^{k}}{d t}=\Theta^{* i}, i=\overline{1, n+1} \tag{3.3}
\end{equation*}
$$

From $\stackrel{B}{L_{j k}^{i}} \eta^{j} \eta^{k}=\frac{\stackrel{c}{c}_{k}^{i}}{\partial \eta^{j}} \eta^{j} \eta^{k}=\stackrel{c}{N_{k}^{i}} \eta^{k}=N_{0}^{i}$, it results that (3.3) becomes

$$
\frac{d^{2} z^{i}}{d t^{2}}+\stackrel{B}{j}_{j k}^{i}(z(t), \eta(t)) \frac{d z^{j}}{d t} \frac{d z^{k}}{d t}=\boldsymbol{\Theta}^{* i} \quad, i=\overline{1, n+1}
$$

which implies that if the space is weakly Kähler, then a complex geodesic is an horizontal curve with respect to the Berwald connection.

On the other hand, since $\eta^{k}=\frac{d z^{k}}{d t}$ and $\stackrel{c}{\delta} \eta^{i}=d \eta^{i}+\stackrel{c}{N_{k}^{i}} d z^{k}$, along a complex geodesic curve we have

Now, contracting in (3.4) with B_{i}^{α} and taking into account the request of induced (c.n.c.) ${ }_{\delta}^{c} \theta^{\alpha}=B_{i}^{\alpha} \stackrel{c}{\delta} \eta^{i}$, we obtain an induced curve $\tilde{\sigma}: t \rightarrow\left(\tilde{z}^{i}(t), \theta^{\alpha}(t)\right)$ on (\mathbf{I}, \tilde{L}) by the complex geodesic curve σ from (M, L). It satisfies the equations:
where $\frac{{ }^{\delta} \theta^{\alpha}(t)}{d t}=\frac{d \theta^{\alpha}}{d t}+\stackrel{N}{N}_{i}^{\alpha} \frac{d z^{i}}{d t}$ and $\boldsymbol{\Theta}^{* \alpha}(t)=B_{i}^{\alpha} \boldsymbol{\Theta}^{* i}(t)=B_{i}^{\alpha} g^{\bar{m} i}{ }^{c} \delta_{\bar{m}}^{c} L$ along the points of $\tilde{\sigma}$.
Let $\dot{\sigma}(t)=\frac{d z^{i}}{d t} \frac{\partial}{\partial z^{i}}$ be the tangent vector to σ and $l(\sigma)=\int_{a}^{b} \mathbf{F}\left(z^{i}(t), \dot{\sigma}^{i}(t)\right) d t$ the length arc, $t \in[a, b]$.

Since $\eta^{i}=\frac{d z^{i}}{d t}=\frac{d \tilde{z}^{i}}{d t}$ and $\eta^{i}=B_{\alpha}^{i} \theta^{\alpha}$ along the induced curve $\tilde{\sigma}$, then its tangent vector will be $\dot{\tilde{\sigma}}(t)=\frac{d \tilde{z}^{i}}{d t} \frac{\partial}{\partial \tilde{z}^{i}}=B_{\alpha}^{i} \theta^{\alpha}(t) \frac{\partial}{\partial \tilde{z}^{i}}$ and hence, using the homogeneity of the Finsler function the length arc of the induced geodesic curve will be $l(\tilde{\sigma})=\int_{a}^{b}\left|B_{\alpha}^{i}\right| \tilde{\mathbf{F}}\left(\tilde{z}^{i}(t), \theta^{\alpha}(t)\right) d t$. We note that from $\eta_{i} \eta^{i}=1$ it follows that $\dot{\tilde{\sigma}}(t)$ is a unitary tangent vector to the indicatrix.

Thus, any complex geodesic curve on (M, L) induces a curve on (\mathbf{I}, \tilde{L}) with unit tangent vector. Conversely, let $\tilde{\sigma}: t \rightarrow\left(\tilde{z}^{i}(t), \theta^{\alpha}(t)\right)$ be a curve on (\mathbf{I}, \tilde{L}), with $\theta^{\alpha} \theta_{\alpha}=1$, that is the tangent vector to $\tilde{\sigma}$ is unitary. It can be lifted to a curve $\sigma: t \rightarrow\left(z^{i}(t), \frac{d z^{i}}{d t}=B_{\alpha}^{i} \theta^{\alpha}(t)\right)$ on (M, L). Certainly, its induced curve on the indicatrix by the above procedure is just $\tilde{\sigma}$.

The frames $\left\{\tilde{\delta}_{i}\right\}$ are linearly independent and span a distribution $\tilde{H} \mathbf{I}$ which is not diffeomorphic to $T^{\prime} M$ because $\tilde{\delta}_{i}$ are not d-tensor fields. We know that $T^{\prime} M$ is diffeomorphic with $H\left(T^{\prime} M\right)$ via the horizontal lift $\frac{\partial}{\partial z^{i}} \xrightarrow{l^{h}} \frac{\delta}{\delta z^{i}}$. For an appropriate study with that made in $[\mathrm{A}-\mathrm{P}]$ for the first variation, along the curve $\tilde{\sigma}$ we consider the following lift of the tangent vector

$$
\begin{equation*}
\dot{\tilde{\sigma}}(t)=\frac{d \tilde{z}^{i}}{d t} \frac{\partial}{\partial \tilde{z}^{i}} \xrightarrow{l^{i}} \tilde{T}^{h}=\frac{d \tilde{z}^{i}}{d t} \frac{C F}{\delta} \frac{z^{i}}{\delta}=B_{\alpha}^{i} \theta^{\alpha}(t) \frac{C F}{\delta z^{i}} \tag{3.6}
\end{equation*}
$$

along the curve $\tilde{\sigma}$. Of course since $G\left(\stackrel{C F}{\delta} \underset{i}{ },{ }_{\delta}^{C F} \bar{j}\right)=g_{i \bar{j}}$ we deduce that $\left\|\tilde{T}^{h}\right\|=1$. Let us consider $s \in(-\varepsilon, \varepsilon)$ and $\tilde{\Sigma}_{s}$ a variation of the curve $\tilde{\sigma}$ with fixed points, $\left(\tilde{z}^{i}(t, s), \theta^{\alpha}(t, s)\right)$,
and for the tangent vector $\tilde{U}=\frac{d \tilde{\Sigma}^{i}}{d s} \frac{\partial}{\partial \tilde{z}^{i}}$ consider their lift to $T^{\prime} M$ denoted by $\tilde{U}^{h}=\frac{d \tilde{\Sigma}^{i}}{d s} \frac{\delta F}{\delta z^{i}}$. We assume here that the variation of $\tilde{\sigma}$ is such that $\left\|\tilde{U}^{h}\right\|=1$, which is not a strong restriction.

By this, the same construction from Theorem 2.4.1 from [A-P], for the first variation, we get that $\tilde{\sigma}$ is a complex geodesic of (\mathbf{I}, \tilde{L}) space iff

$$
\begin{equation*}
\stackrel{C F}{D}_{\tilde{T}^{h}+\overline{\tilde{T}}^{h}} \tilde{T}^{h}=\Xi^{*}\left(\tilde{T}^{h}, \overline{\tilde{T}^{h}}\right) \tag{3.7}
\end{equation*}
$$

where Ξ^{*} convey the weakly Kähler form on $\tilde{\sigma}$ from (\mathbf{I}, \tilde{L}), with respect to induced C-F linear connection, that is $\Xi^{* i}=g^{\bar{m} i} g_{j j}\left\{\begin{array}{c}C F \\ \tilde{L} \overline{\tilde{n}} \bar{m} \\ \bar{l} \\ \tilde{L} \\ \tilde{L} \\ \bar{m} \bar{n} \bar{n}\end{array}\right\} \tilde{\sigma}^{j} \overline{\tilde{\sigma}^{n}}$ along the curve $\tilde{\sigma}$.

The (3.7) equation of the geodesic says:
$\left(\dot{\tilde{\sigma}}^{j} \dot{C}_{\delta}^{\delta}{ }_{j}\left(\dot{\tilde{\sigma}^{i}}\right)+\stackrel{C F}{\tilde{L}_{j k}^{i}} \dot{\tilde{\sigma}}^{j} \dot{\tilde{\sigma}}^{k}\right) \stackrel{C F}{\delta}_{i}+\left(\overline{\dot{\tilde{\sigma}}^{j}}{ }^{C F}{ }_{j}\left(\dot{\tilde{\sigma}}^{i}\right)\right) \stackrel{C F}{\delta}_{i}=\Xi^{* i} \stackrel{C F}{\delta}_{i}$ and because $\frac{d}{d t}=\frac{C F}{d t} \stackrel{\delta}{\dot{\sigma}}^{d F}{ }^{C F}{ }_{j}$

$$
\begin{equation*}
\frac{d}{d t}\left(\dot{\tilde{\sigma}}^{i}\right)+\stackrel{C}{\tilde{L}_{j k}^{i}} \dot{\tilde{\sigma}^{\prime}} \dot{\tilde{\sigma}} \dot{\tilde{c}}^{k}=\Xi^{* i} \tag{3.8}
\end{equation*}
$$

is the equation of a geodesic on (\mathbf{I}, \tilde{L}).
Now by taking into account that along the $\tilde{\sigma}$ curve we have $\dot{\tilde{\sigma}}^{i}=B_{\alpha}^{i}(t) \theta^{\alpha}(t)$ and $\stackrel{C F}{\tilde{L}_{j k}^{i}}$ coincides with $\stackrel{C F}{L_{j k}^{i}}$ it results:

$$
\frac{d}{d t}\left(B_{\alpha}^{i} \theta^{\alpha}\right)+\stackrel{C F}{L_{j k}^{i}} B_{\beta}^{j} B_{\gamma}^{k} \theta^{\beta} \theta^{\gamma}=\Xi^{* i}
$$

that is,

$$
\begin{equation*}
\frac{d \theta^{\alpha}}{d t}+B_{i}^{\alpha}\left(\frac{d}{d t}\left(B_{\beta}^{i} \theta^{\beta}+\stackrel{C F}{L_{j k}^{i}} B_{\beta}^{j} B_{\gamma}^{k} \theta^{\beta} \theta^{\gamma}\right)=\Xi^{* \alpha},\right. \tag{3.9}
\end{equation*}
$$

where $\Xi^{* \alpha}=B_{i}^{\alpha} \Xi^{* i}$.
But C-F is a normal connection, i.e. $D_{\delta_{k}} \delta_{j}=\stackrel{C F}{L_{j k}^{i}} \delta_{i}$ and $D_{\delta_{k}} \dot{\partial}_{j}=\stackrel{C F}{L_{j k}^{i}} \dot{\partial}_{j}$, for which we can consider its induced vertical connection (2.9), and hence for (3.9) we get

$$
\frac{d \theta^{\alpha}}{d t}+B_{i}^{\alpha}\left(\frac{d}{d t}\left(B_{\beta}^{i}\right) \theta^{\beta}-B_{\beta k}^{i} B_{\gamma}^{k} \theta^{\beta} \theta^{\gamma}\right)+\stackrel{C}{C F} \tilde{L}_{\beta k}^{\alpha} B_{\gamma}^{k} \theta^{\beta} \theta^{\gamma}=\Xi^{* \alpha} .
$$

We remark that B_{β}^{i} depends on t only by means of $z(t)$ and therefore $\frac{d B_{\beta}^{i}}{d t}=\frac{d B_{\beta}^{i}}{d z^{k}} \frac{d z^{k}}{d t}=$ $B_{\beta k}^{i} \eta^{k}$ along the curve σ. Accordingly the last bracket became:
$\frac{d}{d t}\left(B_{\beta}^{i}\right) \theta^{\beta}-B_{\beta k}^{i} B_{\gamma}^{k} \theta^{\beta} \theta^{\gamma}=B_{\beta k}^{i} \theta^{\beta} \eta^{k}-B_{\beta k}^{i} \theta^{\beta} \eta^{k}=0$, and thus the equation of the complex geodesic on (\mathbf{I}, \tilde{L}) reduces to: $\frac{d \theta^{\alpha}}{d t}+\stackrel{C}{C F} \tilde{L}_{\beta k}^{\alpha} B_{\gamma}^{k} \theta^{\beta} \theta^{\gamma}=\Xi^{* \alpha}$, or else written:

$$
\begin{equation*}
\frac{d \theta^{\alpha}}{d t}+\stackrel{C F}{\tilde{L}_{\beta k}^{\alpha}} \theta^{\beta} \frac{d \tilde{z}^{k}}{d t}=\Xi^{* \alpha} . \tag{3.10}
\end{equation*}
$$

Further, let see the circumstances in which it coincides to the induces geodesic on (M, L) given by (3.5).

We proved that $\dot{\partial}_{\beta} \stackrel{C F}{\tilde{N}_{k}^{\alpha}}=\underset{C F}{C F} \underset{\tilde{L}_{\beta k}^{\alpha}}{\alpha}+B_{j F}^{\alpha} B_{\beta}^{k}\left(L_{k i}^{j}-\stackrel{C F}{L_{i k}^{j}}\right)$ and $d \theta^{\alpha}=\stackrel{c}{\delta} \theta^{\alpha}-\stackrel{c}{c} \tilde{N}_{k}^{\alpha} d \tilde{z}^{k}$, which replaced in (3.10), forasmuch $\left(L_{k i}^{j}-L_{i k}^{j}\right) \eta^{i} \eta^{k}=0$, it results

$$
\frac{\stackrel{c}{\delta} \theta^{\alpha}}{d t}+\binom{\stackrel{C F}{\tilde{N}_{k}^{\alpha}}}{\dot{\partial}_{\beta}^{\beta}-\stackrel{c}{\tilde{N}_{k}^{\alpha}}} \frac{d \tilde{z}^{k}}{d t}=\Xi^{* \alpha}
$$

 equations become

$$
\frac{{\stackrel{c}{\delta} \theta^{\alpha}}_{d t}^{d t}+\left(\tilde{N}_{k}^{\alpha}-\stackrel{\tilde{N}_{k}^{c}}{c}\right) \frac{d \tilde{z}^{k}}{d t}=\Xi^{* \alpha}}{}
$$

Now, $\stackrel{C F}{\tilde{N}} \tilde{k}_{k}^{\alpha}$ and $\stackrel{c}{\tilde{N}_{k}^{\alpha}}$ are induced (c.n.c.) and hence they satisfy formula (2.5). By reducing the same terms, we have:

$$
\frac{\stackrel{c}{\delta} \theta^{\alpha}}{d t}+B_{i}^{\alpha}\left(N_{k}^{i}-\stackrel{c}{N_{k}^{i}}\right) \frac{d \tilde{z}^{k}}{d t}=\Xi^{* \alpha} .
$$

Since along the geodesic curve on $(\mathbf{I}, \tilde{L}), \stackrel{C F}{N_{k}^{i}} \eta^{k}=\stackrel{c}{N_{k}^{i}} \eta^{k}$ (by using the homogeneity condition in their definitions), with $\eta^{k}=\frac{d \tilde{z}^{k}}{d t}$, it results that the equations of complex geodesic curve $\tilde{\sigma}$ reduce to

$$
\begin{equation*}
\frac{\stackrel{c}{\delta}^{c} \theta^{\alpha}}{d t}=\Xi^{* \alpha} \tag{3.11}
\end{equation*}
$$

In conclusion
Theorem 1. The induced geodesic from (M, L) complex Finsler space coincides with the defined complex geodesic on the indicatrix space (\mathbf{I}, \tilde{L}), if and only if the induced weakly Kähler form Θ^{*} coincides with Ξ^{*}.

In particular,
Corollary 1. If (M, L) complex Finsler space with weakly Kähler Finsler metrics, then the induced geodesics will be a complex geodesic for (\mathbf{I}, \tilde{L}) indicatrix space if and only if the weakly Kähler character conveys to the indicatrix via the induced Chern-Finsler induced connection.

References

[A-P] Abate, M., Patrizio, G. Finsler Metrics - A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag, 1994.
[AZ] Akbar-Zadeh, H., Initiation to global Finsler geometry, North-Holland Math. Library, 68, Elsevier, 2006.
[Al] Aldea, N., Contributions to the study of holomorphic curvature, PHD Thesis, Brasov, 2004.
[B-C-S] Bao, D., Chern, S. S., Shen, Z., An Introduction to Riemannian Finsler Geom., Graduate Texts in Math., 200, Springer-Verlag, 2000.
[Bl] Blair, D.E., Riemannian geometry of contact and symplectic manifolds, Progress in Math, 203, Birkhauser, 2001.
[Bl1] Blair, D.E., A complex geodesic flow, RIGA 2007, Bull. of Transilvania Univ., 14(49)s (2007), 29-42.
[Bo] Boecks, E., A Case for curvature: the unit tangent bundle, in Complex, contact and symetric manifolds, Progress in Math. 234 (2005), Birkhauser, 15-25.
[BY] Borisenko, A. A., Yampo-l'sky, A. L., Riemannian geometry for Bundles, Uspekhi Math. Nauk, 46 (1991), no. 6(282), 51-96.
[Br] Bryant, R., Some remarks on Finsler manifolds with constant flag curvature, Houston J. of Math., 28 (2002), 221-262.
[C-S] Chen, B., Shen, Y., Kähler Finsler metrics are actually strongly Kähler, Chin. Ann. Math. Ser. B, 30 (2009), no. 2, 173-178.
[Ma] Matsumoto, M., Fundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsu, 1986.
[Mu] Munteanu, G., Complex Spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Acad. Publ., FTPH 141, 2004.
[Mu1] Munteanu, G., Totally geodesics holomorphic subspaces, Nonlinear Analysis, Real World Appl. 8(2007), no. 4, 1132-1143.
[Mu2] Munteanu, G., On the geometry of indicatrice of a complex Finsler space Bull. Transilvania Univ. of Brasov, 1(50) (2008), Serie III, 253-262.
[Na] Nagy, P. T., Geodesics on the tangent sphere bundle of a Riemannian manifold, Geom. Dedicata 7 (1978), 233-243.
[Ni] Nishikawa, S., Harmonic maps of Finsler manifolds, Topics in differential geometry, 207-247, Ed. Acad. Române, Bucharest, 2008.
[Sh] Shen, Z., Lectures on Finsler Geometry, World Scientific Publishers, 2001.
[Ta] Tamassy, L., Angle, area and isometries in Finsler spaces, Bull. Transilvania Univ. of Brasov, 1(50), (2008), Series III, 395-404.

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: gh.munteanu@unitbv.ro

