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REPRESENTATION OF THE K - FUNCTIONAL K(f, C[a, b], C1[a, b], ·)
- A NEW APPROACH

Radu PĂLTĂNEA1

Abstract

We give a new proof of the equality K(f, C[a, b], C1[a, b], t) = 1
2 · ω̃(f, 2t), for

f ∈ C[a, b], 0 < t ≤ (b− a)/2.
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1 Introduction. Main result

The moduli of continuity and the K-functionals are crucial tools in study of the degree
of approximation by using positive linear operators. There is a strong relationship between
them. An extensive approach on these relations can be found in Peetre [5], Ditzian and
Totik [2], Lorentz and DeVore [1].

Recall that if (X, ‖ · ‖X) is a normed space of functions and Y ⊂ X is a subspace
endowed with a seminorm | · |Y , we can associate to the pair (X, Y ) the following K
functional:

K(f,X, Y, t) = inf{‖f − g‖X + t|g|Y }, f ∈ X, t > 0. (1)

Generally speaking the K functionals are equivalent with the suitable moduli of continuity
or smoothness. The K functional K(f,X, Y, t) is said to be equivalent to a certain modulus
Ω(f, t), if there are two constants C1 > 0, C2 > 0, such that

C1Ω(f, t) ≤ K(f,X, Y, t) ≤ C2Ω(f, t), for all f ∈ X, t > 0. (2)

However a more precise representation of the K functional K(f,X, Y, t) exists in the sim-
ple case where X = C[a, b], endowed with the sup-norm ‖f‖X := ‖f‖, where ‖f‖ =
maxx∈[a,b] |f(x)|, f ∈ C[a, b] and Y = Lip1, endowed with the seminorm |g|Y = |g|Lip1,
where |g|Lip1 = inf{M, |g(x) − g(y)| ≤ M, ∀x, y ∈ [a, b]}. Then the K functional
K(f, C[a, b], Lip1, t) can be expressed with an equality in terms of the least concave ma-
jorant of the modulus of continuity.
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In order to define this modulus, recall that the least concave majorant of a function
f : [a, b] → R is the function f̃ : [a, b] → R, defined by

f̃(x) = inf{g(x), g ≥ f, g concave}. (3)

From this definition it follows the formulae:

f̃(x) = inf{l(x), l ≥ f, l linear}. (4)

and

f̃(x) = sup{(t− x)f(s) + (x− s)f(t)
t− s

, a ≤ s ≤ x ≤ t ≤ b, s < t}. (5)

The first modulus of continuity of a bounded function f : [a, b] → R is defined by:

ω(f, h) = sup{|f(u)− f(v)|, u, v ∈ [a, b], |u− v| ≤ h}, for h > 0. (6)

If, for a given function f we construct the least concave majorant of the map t 7→ ω(f, t),
t ∈ [0, b − a], we obtain the least concave majorant of the first modulus of f , which is
denoted by ω̃(f, ·). This modulus was used intensively in various approximation problems.

With these data we have the following result of Kornechuk [4].

Theorem 1. For any f ∈ C[a, b] and any 0 < t ≤ (b− a)/2 we have

K(f, C[a, b], Lip1, t) =
1
2
· ω̃(f, 2t). (7)

For the proof see Mitjagin and Semenov [6], or De Vore and Lorentz [1].
Note that if we consider the subspace C1[a, b ⊂ C[a, b], endowed with the seminorm

|g′| = maxx∈[a,b] |g; (x)|, for g ∈ C1[a, b], we have

K(f, C[a, b], Lip1, t) = K(f, C[a, b], C1[a, b], t). (8)

Consequently we also have,

K(f, C[a, b], C1[a, b], t) =
1
2
· ω̃(f, 2t). (9)

Mentiom that an analougus theorem was proved by Petree [5], in the case of periodic
functions.

The aim of this note is to give a new proof for Theorem 1.

2 Results

Our proof is based essentially on the following lemma.
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Lemma 1. Let the points a = x0 < x1 < . . . < xn = b and let yi ∈ R, 0 ≤ i ≤ n. Suppose
that there are the numbers m ≥ 0 and q ≥ 0, such that

|yi − yj | ≤ m|xi − xj |+ 2q, ∀i, j.

Then, there are the numbers zi, 0 ≤ i ≤ n, such that

|zi − yi| ≤ q, ∀i and |zi − zj | ≤ m|xj − xi|,∀i, j.

Proof. Let
D =

∏
0≤i≤n

[yi − q, yi + q]

and the function Θ : D → R,

Θ(z0, . . . , zn) = max
i6=j

|zi − zj |
|xi − xj |

.

Since Θ is continuous on a compact, it admits a minimum µ. Let ad absurdum that
µ > m.

Denote the elements of D, by z̄ = (z0, . . . , zn). Put

D0 = {z̄ ∈ D, Θ(z̄) = µ}.

For z̄ ∈ D0, denote

p(z̄) = cardinal{(i, j), 0 ≤ i < j ≤ n,
|zj − zi|
xj − xi

= µ}.

Then define
p0 = min

z̄∈D0

p(z̄).

Choose z̄ ∈ D0, such that p(z̄) = p0. Then choose the pair (i, j), 0 ≤ i < j ≤ n
such that xj − xi is the greatest difference of two knots xk − xl, 0 ≤ l < k ≤ n for which
|zk−zl|
xk−xl

= µ. We can suppose, without any less of generality, that zj − zi > 0. So, we have

zj − zi

xj − xi
= µ. (10)

We have zi < yi + q or zj > yj − q, since otherwise we have: zi = yi + q and zj = yj − q
and then

yj − yi = zj − zi + 2q = µ(xj − xi) + 2q > m(xj − xi) + 2q.

Contradiction.
Suppose, for a choice, that

zi < yi + q. (11)

Now, suppose, ad absurdum that there is 0 ≤ k ≤ n, k 6= i, j, such that

zi − zk

|xi − xk|
= µ.
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We have three cases.

Case 1. k < i < j. We have zi−zk = µ(xi−xk) and zj−zi = µ(xj−xi). Consequently,
zj−zk = µ(xj−xk). But xj−xk > xj−xi and this contradicts the choice of the pair (i, j).

Case 2. i < k < j. We have zi−zk = µ(xk−xi) and zj−zi = µ(xj−xi). Consequently,

zj − zk = µ(xk + xj − 2xi) = µ(xj − xk + 2(xk − xi)) > µ(xj − xk).

Contradiction.

Case 3. i < j < k. We have zi − zk = µ(xk − xi) and xk − xi > xj − xi. This
contradicts the choice of the pair (i, j).

Therefore we proved that

zi − zk

|xi − xk|
< µ, 0 ≤ k ≤ n k 6= i, j. (12)

From relations (10), (11), (12) it follows that we can choose a number 0 < ρ, sufficiently
small, such that

zj − zi − ρ

xj − xi
≥ 0, (13)

zi + ρ < yi + q, (14)
zi + ρ− zk

|xi − xk|
< µ, 0 ≤ k ≤ n k 6= i, j. (15)

Replace component zi in vector z̄ by zi + ρ and denote ū the vector which is obtained.
Then ū ∈ D. We have

|ui − uk|
|xi − xk|

=
|zi + ρ− zk|
|xi − xk|

< µ, 0 ≤ k ≤ n k 6= i

and

|uk − ul|
xk − xl

=
|zk − zl|
xk − xl

, 0 ≤ l < k ≤ n k, l 6= i.

If p(z̄) = 1, then Θ(ū) < µ, which contradicts the definition of µ. If p(z̄) > 1 we
find p(ū) = p(z̄) − 1 < p0, which contradicts the definition of p0. Hence we obtained
contradiction in both the cases. It follows that the supposition µ > m is wrong. Then
µ ≤ m. Finally we can chose z̄ ∈ D, such that Θ(z̄) = µ. A such vector z̄ satisfies the
conditions in the lemma.
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Proof of Theorem 1

Let f ∈ C[a, b] be fixed. We denote, for simplicity, K(t) = K(f, C[a, b], C1[a, b], t) and
ω(t) = ω(f, t), for t > 0. First we prove the inequality:

K(t) ≥ 1
2
· ω̃(f, 2t), t ∈ [0, (b− a)/2]. (16)

The proof is reduced to the following simple facts: i) K is concave and ii) 2K(t) ≥ ω1(f, 2t).
Indeed,let t1, t2 > 0 and λ ∈ (0, 1). Let g ∈ C1[a, b]. We have

λK(t1) + (1− λ)K(t2) ≤
≤ λ[‖f − g‖+ t1‖g′‖] + (1− λ)[‖f − g‖+ t2‖g′‖] =
= ‖f − g‖+ (λt1 + (1− λ)t2).

Since g ∈ C1[a, b] was arbitrary taken we have

λK(t1) + (1− λ)K(t2) ≤ K(λt1 + (1− λ)t2),

i.e. the function K(t) is concave.
Also, let 0 < t ≤ 1

2 [b− a]. Chose ε > 0 arbitrary. We can find a function g ∈ C1[a, b]
such that ‖f − g‖ + t‖g′‖ < K(t) + ε. Let u, v ∈ [a, b], such that |v − u| ≤ 2t. Using
Lagrange theorem we have:

|f(v)− f(u)| ≤ |f(u)− g(u)|+ |f(v)− g(v)|+ |g(v − g(u)| ≤
≤ 2‖f − g‖+ ‖g′‖ · |v − u| ≤
≤ 2‖f − g‖+ 2t‖g′‖ ≤
≤ 2(K(t) + ε).

Since points u, v ∈ [a, b], |v − u| ≤ 2t were taken arbitrarily, it follows that ω(f, 2t) ≤
2(K(t) + ε). Since ε > 0 was taken arbitrarily we have ω(f, 2t) ≤ 2K(t).

Now, sice 2K is concave and 2K(t) ≥ ω(f, 2t), it follows 2K(t) ≥ ω̃(f, 2t), for t ∈
[0, (b− a)/2]. Relation (16) is proved.

We pass now to the converse inequality,

K(t) ≤ 1
2
· ω̃(f, 2t), t ∈ [0, (b− a)/2], (17)

which is the main part of the proof.
For the proof, fix t ∈ [0, (b − a)/2]. Suffice it to show that for any polynomial l, of

degree 1 such that ω ≤ l, on [0, b− a] and any ε > 0, there is g ∈ C1[a, b], such that

‖f − g‖+ t‖g′‖ ≤ 1
2
l(2t) + ε. (18)

Indeed, from (4) we have

ω̃(2t) = inf{l(2t)| l ∈ Π1, ω ≤ l}.
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Then, for an arbitrary ε > 0 we can choose l ∈ Π1, such that ω ≤ l and l(2t) < ω̃(2t)+ε.
If there exists a function g ∈ C1[a, b] with property (18), then we obtain

2K(t) ≤ 2(‖f − g‖+ t‖g′‖) ≤ l(2t) + 2ε ≤ ω̃(2t) + 3ε.

Since, ε > 0 was arbitrary, we arrive at relation (17).
In what follows we prove the existence of function g ∈ C1[a, b] satisfying (18). Let

l ∈ Π1, such that ω ≤ l, on [0, b − a] and let ε > 0. Write l in the form l(t) = mt + 2q,
t ∈ [0, b− a].

We can consider only the case m ≥ 0. Indeed, if we suppose that a function g, satisfying
(18) could be chosen for all linear functions l(t) = mt + 2q, with m ≥ 0, then g could
be chosen in the particular case when l is a constant function. Let now l(x) = mx + 2q,
with m < 0, such that ω ≤ l and let ε > 0. Let l0 be constant function l0(x) = ω(b− a),
x ∈ [0, b− a]. We have ω ≤ l0, on [0, b− a]. From the above it follows that we can choose
a function g ∈ C1[a, b], such that

‖f − g‖+ t‖g′‖ ≤ 1
2
l0(2t) + ε.

Then we have

‖f − g‖+ t‖g′‖ ≤ 1
2
l0(2t) + ε =

1
2
ω(b− a) + ε ≤ 1

2
l(b− a) + ε ≤ 1

2
l(2t) + ε.

So, consider m ≥ 0. Clear q ≥ 0, since l(0) ≤ ω(0).
Since f is uniformly continuous, we can find a number n ∈ N, such that m b−a

n < ε
4

and |f(u) − f(v)| < ε
4 , if |u − v| < b−a

n . Next consider the equidistant knots a = x0 <
. . . < xn = b. Denote yi = f(xi), 0 ≤ i ≤ n. Note that, for any i, j, we have

|yi − yj | ≤ ω(|xi − xj |) ≤ l(|xi − xj |) = m|xi − xj |+ 2q.

Apply Lemma and find points z0 < . . . < zn, which satisfy the given properties. Then
let h : [a, b] → R be the linear piecewise function which take the values h(xi) = zi,
0 ≤ i ≤ n and is linear on intervals [xi, xi+1].

Let u ∈ [a, b]. Let i such that u ∈ [xi, xi+1]. We have

|h(u)−f(u)| ≤ |h(u)−h(xi)|+|h(xi)−f(xi)|+|f(xi)−f(u)| ≤ m
b− a

n
+|zi−yi|+

ε

4
≤ q+

ε

2
.

So we obtained

‖h− f‖ ≤ q +
ε

2
and |h′(x)| ≤ m, x ∈ (xi−1, xi), 1 ≤ i ≤ n. (19)

Finally, we can find a function g ∈ C1[a, b], such that

‖g − h‖ <
ε

2
and ‖g′‖ ≤ m. (20)

Indeed, for 1 ≤ i ≤ n, and x ∈ (xi−1, xi) let write h(x) = βix + γi. Hence |βi| ≤ m and
from the continuity of h, we have βixi + γi = βi+1xi + γi+1, if 1 ≤ i ≤ n − 1. Choose
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0 < ρ < b−a
2n . Define the function g : [a, b] → R, such that g(x) = αi(x−xi +ρ)2 +βix+γi,

where αi = βi+1−βi

4ρ , if x ∈ (xi − ρ, xi + ρ), 1 ≤ i ≤ n− 1 and g(x) = h(x), if x ∈ [a, b] does
not belong to an interval (xi − ρ, x + ρ). We can verify immediately, that g ∈ C1[a, b].
Moreover, g′(x) = 1

2ρ [βi+1(x − xi + ρ) − βi(x − xi − ρ)], if x ∈ (xi − ρ, xi + ρ). From
this it follows that g′(x) is between βi and βi+1 on this interval. Consequently ‖g′‖ ≤ m,
for any 0 < ρ < b−a

2n . Moreover, for 1 ≤ i ≤ n − 1, and x ∈ (xi − ρ, xi + ρ), we have
|h(x) − g(x)| ≤ |h(xi) − g(xi)| = 1

4(βi+1 − βi)ρ. So, if we choose a sufficient small ρ > 0
we obtain ‖g − h‖ < ε

2 .
From relations (19) and (20) it follows ‖g − f‖ ≤ q + ε and hence

‖f − g‖+ t‖g′‖ ≤ q + tm + ε =
1
2
l(2t) + ε.

Hence relation (18) is proved.

References

[1] De Vore, R. and Lorentz, G. G., Constructive approximation, vol. I, Springer, Berlin,
(1993).

[2] Ditzian, Z. and Totik, V., Moduli of smoothness, Springer Verlag, Berlin, 1987.

[3] Gonska, H. H., On approximation in spaces of continuous functions , Bull. Austral.
Math. Soc. 28 (1983), 411-432.

[4] Korneicuk, N. P., The best uniform approximation of certain classes of continuous
functions, Dokl. 141 (1961), 304-307 (AMS Transl. 2, 1254-1259).

[5] Peetre, J., Exact interpolation theorems for Lipschitz continuous functions, Ricerche
Matematica, 18 (1969), 239-259.

[6] Mitjagin, B. S. and Semenov, E. M., Lack of interpolation of linear operators in spaces
of smooth functions, Math. USSR-Izv. 11 (1977), 1229-1266.



100 Radu Păltănea


