REPRESENTATION OF THE K - FUNCTIONAL $K\left(f, C[a, b], C^{1}[a, b], \cdot\right)$ - A NEW APPROACH

Radu PĂLTĂNEA ${ }^{1}$

Abstract

We give a new proof of the equality $K\left(f, C[a, b], C^{1}[a, b], t\right)=\frac{1}{2} \cdot \tilde{\omega}(f, 2 t)$, for $f \in C[a, b], 0<t \leq(b-a) / 2$.

2000 Mathematics Subject Classification: 26A15, 41A44, 46E35, 46E99, 46B70.
Key words: K-functional, least concave majorant of modulus of continuity

1 Introduction. Main result

The moduli of continuity and the K-functionals are crucial tools in study of the degree of approximation by using positive linear operators. There is a strong relationship between them. An extensive approach on these relations can be found in Peetre [5], Ditzian and Totik [2], Lorentz and DeVore [1].

Recall that if $\left(X,\|\cdot\|_{X}\right)$ is a normed space of functions and $Y \subset X$ is a subspace endowed with a seminorm $|\cdot|_{Y}$, we can associate to the pair (X, Y) the following K functional:

$$
\begin{equation*}
K(f, X, Y, t)=\inf \left\{\|f-g\|_{X}+t|g|_{Y}\right\}, \quad f \in X, t>0 \tag{1}
\end{equation*}
$$

Generally speaking the K functionals are equivalent with the suitable moduli of continuity or smoothness. The K functional $K(f, X, Y, t)$ is said to be equivalent to a certain modulus $\Omega(f, t)$, if there are two constants $C_{1}>0, C_{2}>0$, such that

$$
\begin{equation*}
C_{1} \Omega(f, t) \leq K(f, X, Y, t) \leq C_{2} \Omega(f, t), \quad \text { for all } f \in X, t>0 . \tag{2}
\end{equation*}
$$

However a more precise representation of the K functional $K(f, X, Y, t)$ exists in the simple case where $X=C[a, b]$, endowed with the sup-norm $\|f\|_{X}:=\|f\|$, where $\|f\|=$ $\max _{x \in[a, b]}|f(x)|, f \in C[a, b]$ and $Y=$ Lip1, endowed with the seminorm $|g|_{Y}=|g|_{\text {Lip1 } 1}$, where $|g|_{L i p 1}=\inf \{M,|g(x)-g(y)| \leq M, \forall x, y \in[a, b]\}$. Then the K functional $K(f, C[a, b], \operatorname{Lip} 1, t)$ can be expressed with an equality in terms of the least concave majorant of the modulus of continuity.

[^0]In order to define this modulus, recall that the least concave majorant of a function $f:[a, b] \rightarrow \mathbb{R}$ is the function $\tilde{f}:[a, b] \rightarrow \mathbb{R}$, defined by

$$
\begin{equation*}
\tilde{f}(x)=\inf \{g(x), g \geq f, g \text { concave }\} . \tag{3}
\end{equation*}
$$

From this definition it follows the formulae:

$$
\begin{equation*}
\tilde{f}(x)=\inf \{l(x), l \geq f, l \text { linear }\} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{f}(x)=\sup \left\{\frac{(t-x) f(s)+(x-s) f(t)}{t-s}, a \leq s \leq x \leq t \leq b, s<t\right\} \tag{5}
\end{equation*}
$$

The first modulus of continuity of a bounded function $f:[a, b] \rightarrow \mathbb{R}$ is defined by:

$$
\begin{equation*}
\omega(f, h)=\sup \{|f(u)-f(v)|, u, v \in[a, b],|u-v| \leq h\}, \quad \text { for } h>0 . \tag{6}
\end{equation*}
$$

If, for a given function f we construct the least concave majorant of the map $t \mapsto \omega(f, t)$, $t \in[0, b-a]$, we obtain the least concave majorant of the first modulus of f, which is denoted by $\tilde{\omega}(f, \cdot)$. This modulus was used intensively in various approximation problems.

With these data we have the following result of Kornechuk [4].
Theorem 1. For any $f \in C[a, b]$ and any $0<t \leq(b-a) / 2$ we have

$$
\begin{equation*}
K(f, C[a, b], \operatorname{Lip} 1, t)=\frac{1}{2} \cdot \tilde{\omega}(f, 2 t) \tag{7}
\end{equation*}
$$

For the proof see Mitjagin and Semenov [6], or De Vore and Lorentz [1].
Note that if we consider the subspace $C^{1}[a, b \subset C[a, b]$, endowed with the seminorm $\left|g^{\prime}\right|=\max _{x \in[a, b]}|g ;(x)|$, for $g \in C^{1}[a, b]$, we have

$$
\begin{equation*}
K(f, C[a, b], \operatorname{Lip} 1, t)=K\left(f, C[a, b], C^{1}[a, b], t\right) \tag{8}
\end{equation*}
$$

Consequently we also have,

$$
\begin{equation*}
K\left(f, C[a, b], C^{1}[a, b], t\right)=\frac{1}{2} \cdot \tilde{\omega}(f, 2 t) . \tag{9}
\end{equation*}
$$

Mentiom that an analougus theorem was proved by Petree [5], in the case of periodic functions.

The aim of this note is to give a new proof for Theorem 1.

2 Results

Our proof is based essentially on the following lemma.

Lemma 1. Let the points $a=x_{0}<x_{1}<\ldots<x_{n}=b$ and let $y_{i} \in \mathbf{R}, 0 \leq i \leq n$. Suppose that there are the numbers $m \geq 0$ and $q \geq 0$, such that

$$
\left|y_{i}-y_{j}\right| \leq m\left|x_{i}-x_{j}\right|+2 q, \quad \forall i, j
$$

Then, there are the numbers $z_{i}, 0 \leq i \leq n$, such that

$$
\left|z_{i}-y_{i}\right| \leq q, \forall i \quad \text { and } \quad\left|z_{i}-z_{j}\right| \leq m\left|x_{j}-x_{i}\right|, \forall i, j
$$

Proof. Let

$$
D=\prod_{0 \leq i \leq n}\left[y_{i}-q, y_{i}+q\right]
$$

and the function $\Theta: D \rightarrow \mathbf{R}$,

$$
\Theta\left(z_{0}, \ldots, z_{n}\right)=\max _{i \neq j} \frac{\left|z_{i}-z_{j}\right|}{\left|x_{i}-x_{j}\right|}
$$

Since Θ is continuous on a compact, it admits a minimum μ. Let ad absurdum that $\mu>m$.

Denote the elements of D, by $\bar{z}=\left(z_{0}, \ldots, z_{n}\right)$. Put

$$
D_{0}=\{\bar{z} \in D, \Theta(\bar{z})=\mu\}
$$

For $\bar{z} \in D_{0}$, denote

$$
p(\bar{z})=\operatorname{cardinal}\left\{(i, j), 0 \leq i<j \leq n, \frac{\left|z_{j}-z_{i}\right|}{x_{j}-x_{i}}=\mu\right\}
$$

Then define

$$
p_{0}=\min _{\bar{z} \in D_{0}} p(\bar{z})
$$

Choose $\bar{z} \in D_{0}$, such that $p(\bar{z})=p_{0}$. Then choose the pair $(i, j), 0 \leq i<j \leq n$ such that $x_{j}-x_{i}$ is the greatest difference of two knots $x_{k}-x_{l}, 0 \leq l<k \leq n$ for which $\frac{\left|z_{k}-z_{l}\right|}{x_{k}-x_{l}}=\mu$. We can suppose, without any less of generality, that $z_{j}-z_{i}>0$. So, we have

$$
\begin{equation*}
\frac{z_{j}-z_{i}}{x_{j}-x_{i}}=\mu \tag{10}
\end{equation*}
$$

We have $z_{i}<y_{i}+q$ or $z_{j}>y_{j}-q$, since otherwise we have: $z_{i}=y_{i}+q$ and $z_{j}=y_{j}-q$ and then

$$
y_{j}-y_{i}=z_{j}-z_{i}+2 q=\mu\left(x_{j}-x_{i}\right)+2 q>m\left(x_{j}-x_{i}\right)+2 q
$$

Contradiction.
Suppose, for a choice, that

$$
\begin{equation*}
z_{i}<y_{i}+q \tag{11}
\end{equation*}
$$

Now, suppose, ad absurdum that there is $0 \leq k \leq n, k \neq i, j$, such that

$$
\frac{z_{i}-z_{k}}{\left|x_{i}-x_{k}\right|}=\mu
$$

We have three cases.
Case 1. $k<i<j$. We have $z_{i}-z_{k}=\mu\left(x_{i}-x_{k}\right)$ and $z_{j}-z_{i}=\mu\left(x_{j}-x_{i}\right)$. Consequently, $z_{j}-z_{k}=\mu\left(x_{j}-x_{k}\right)$. But $x_{j}-x_{k}>x_{j}-x_{i}$ and this contradicts the choice of the pair (i, j).

Case 2. $i<k<j$. We have $z_{i}-z_{k}=\mu\left(x_{k}-x_{i}\right)$ and $z_{j}-z_{i}=\mu\left(x_{j}-x_{i}\right)$. Consequently,

$$
z_{j}-z_{k}=\mu\left(x_{k}+x_{j}-2 x_{i}\right)=\mu\left(x_{j}-x_{k}+2\left(x_{k}-x_{i}\right)\right)>\mu\left(x_{j}-x_{k}\right)
$$

Contradiction.
Case 3. $i<j<k$. We have $z_{i}-z_{k}=\mu\left(x_{k}-x_{i}\right)$ and $x_{k}-x_{i}>x_{j}-x_{i}$. This contradicts the choice of the pair (i, j).

Therefore we proved that

$$
\begin{equation*}
\frac{z_{i}-z_{k}}{\left|x_{i}-x_{k}\right|}<\mu, \quad 0 \leq k \leq n \quad k \neq i, j . \tag{12}
\end{equation*}
$$

From relations (10), (11), (12) it follows that we can choose a number $0<\rho$, sufficiently small, such that

$$
\begin{align*}
& \frac{z_{j}-z_{i}-\rho}{x_{j}-x_{i}} \geq 0, \tag{13}\\
& z_{i}+\rho<y_{i}+q \tag{14}\\
& \frac{z_{i}+\rho-z_{k}}{\left|x_{i}-x_{k}\right|}<\mu, \quad 0 \leq k \leq n \quad k \neq i, j . \tag{15}
\end{align*}
$$

Replace component z_{i} in vector \bar{z} by $z_{i}+\rho$ and denote \bar{u} the vector which is obtained. Then $\bar{u} \in D$. We have

$$
\frac{\left|u_{i}-u_{k}\right|}{\left|x_{i}-x_{k}\right|}=\frac{\left|z_{i}+\rho-z_{k}\right|}{\left|x_{i}-x_{k}\right|}<\mu, \quad 0 \leq k \leq n \quad k \neq i
$$

and

$$
\frac{\left|u_{k}-u_{l}\right|}{x_{k}-x_{l}}=\frac{\left|z_{k}-z_{l}\right|}{x_{k}-x_{l}}, \quad 0 \leq l<k \leq n \quad k, l \neq i
$$

If $p(\bar{z})=1$, then $\Theta(\bar{u})<\mu$, which contradicts the definition of μ. If $p(\bar{z})>1$ we find $p(\bar{u})=p(\bar{z})-1<p_{0}$, which contradicts the definition of p_{0}. Hence we obtained contradiction in both the cases. It follows that the supposition $\mu>m$ is wrong. Then $\mu \leq m$. Finally we can chose $\bar{z} \in D$, such that $\Theta(\bar{z})=\mu$. A such vector \bar{z} satisfies the conditions in the lemma.

Proof of Theorem 1

Let $f \in C[a, b]$ be fixed. We denote, for simplicity, $K(t)=K\left(f, C[a, b], C^{1}[a, b], t\right)$ and $\omega(t)=\omega(f, t)$, for $t>0$. First we prove the inequality:

$$
\begin{equation*}
K(t) \geq \frac{1}{2} \cdot \tilde{\omega}(f, 2 t), t \in[0,(b-a) / 2] . \tag{16}
\end{equation*}
$$

The proof is reduced to the following simple facts: i) K is concave and ii) $2 K(t) \geq \omega_{1}(f, 2 t)$.
Indeed, let $t_{1}, t_{2}>0$ and $\lambda \in(0,1)$. Let $g \in C^{1}[a, b]$. We have

$$
\begin{aligned}
& \lambda K\left(t_{1}\right)+(1-\lambda) K\left(t_{2}\right) \leq \\
\leq & \lambda\left[\|f-g\|+t_{1}\left\|g^{\prime}\right\|\right]+(1-\lambda)\left[\|f-g\|+t_{2}\left\|g^{\prime}\right\|\right]= \\
= & \|f-g\|+\left(\lambda t_{1}+(1-\lambda) t_{2}\right) .
\end{aligned}
$$

Since $g \in C^{1}[a, b]$ was arbitrary taken we have

$$
\lambda K\left(t_{1}\right)+(1-\lambda) K\left(t_{2}\right) \leq K\left(\lambda t_{1}+(1-\lambda) t_{2}\right)
$$

i.e. the function $K(t)$ is concave.

Also, let $0<t \leq \frac{1}{2}[b-a]$. Chose $\varepsilon>0$ arbitrary. We can find a function $g \in C^{1}[a, b]$ such that $\|f-g\|+t\left\|g^{\prime}\right\|<K(t)+\varepsilon$. Let $u, v \in[a, b]$, such that $|v-u| \leq 2 t$. Using Lagrange theorem we have:

$$
\begin{aligned}
|f(v)-f(u)| & \leq|f(u)-g(u)|+|f(v)-g(v)|+\mid g(v-g(u) \mid \leq \\
& \leq 2\|f-g\|+\left\|g^{\prime}\right\| \cdot|v-u| \leq \\
& \leq 2\|f-g\|+2 t\left\|g^{\prime}\right\| \leq \\
& \leq 2(K(t)+\varepsilon)
\end{aligned}
$$

Since points $u, v \in[a, b],|v-u| \leq 2 t$ were taken arbitrarily, it follows that $\omega(f, 2 t) \leq$ $2(K(t)+\varepsilon)$. Since $\varepsilon>0$ was taken arbitrarily we have $\omega(f, 2 t) \leq 2 K(t)$.

Now, sice $2 K$ is concave and $2 K(t) \geq \omega(f, 2 t)$, it follows $2 K(t) \geq \tilde{\omega}(f, 2 t)$, for $t \in$ $[0,(b-a) / 2]$. Relation (16) is proved.

We pass now to the converse inequality,

$$
\begin{equation*}
K(t) \leq \frac{1}{2} \cdot \tilde{\omega}(f, 2 t), t \in[0,(b-a) / 2], \tag{17}
\end{equation*}
$$

which is the main part of the proof.
For the proof, fix $t \in[0,(b-a) / 2]$. Suffice it to show that for any polynomial l, of degree 1 such that $\omega \leq l$, on $[0, b-a]$ and any $\varepsilon>0$, there is $g \in C^{1}[a, b]$, such that

$$
\begin{equation*}
\|f-g\|+t\left\|g^{\prime}\right\| \leq \frac{1}{2} l(2 t)+\varepsilon \tag{18}
\end{equation*}
$$

Indeed, from (4) we have

$$
\tilde{\omega}(2 t)=\inf \left\{l(2 t) \mid l \in \Pi_{1}, \omega \leq l\right\} .
$$

Then, for an arbitrary $\varepsilon>0$ we can choose $l \in \Pi_{1}$, such that $\omega \leq l$ and $l(2 t)<\tilde{\omega}(2 t)+\varepsilon$. If there exists a function $g \in C^{1}[a, b]$ with property (18), then we obtain

$$
2 K(t) \leq 2\left(\|f-g\|+t\left\|g^{\prime}\right\|\right) \leq l(2 t)+2 \varepsilon \leq \tilde{\omega}(2 t)+3 \varepsilon
$$

Since, $\varepsilon>0$ was arbitrary, we arrive at relation (17).
In what follows we prove the existence of function $g \in C^{1}[a, b]$ satisfying (18). Let $l \in \Pi_{1}$, such that $\omega \leq l$, on $[0, b-a]$ and let $\varepsilon>0$. Write l in the form $l(t)=m t+2 q$, $t \in[0, b-a]$.

We can consider only the case $m \geq 0$. Indeed, if we suppose that a function g, satisfying (18) could be chosen for all linear functions $l(t)=m t+2 q$, with $m \geq 0$, then g could be chosen in the particular case when l is a constant function. Let now $l(x)=m x+2 q$, with $m<0$, such that $\omega \leq l$ and let $\varepsilon>0$. Let l_{0} be constant function $l_{0}(x)=\omega(b-a)$, $x \in[0, b-a]$. We have $\omega \leq l_{0}$, on $[0, b-a]$. From the above it follows that we can choose a function $g \in C^{1}[a, b]$, such that

$$
\|f-g\|+t\left\|g^{\prime}\right\| \leq \frac{1}{2} l_{0}(2 t)+\varepsilon
$$

Then we have

$$
\|f-g\|+t\left\|g^{\prime}\right\| \leq \frac{1}{2} l_{0}(2 t)+\varepsilon=\frac{1}{2} \omega(b-a)+\varepsilon \leq \frac{1}{2} l(b-a)+\varepsilon \leq \frac{1}{2} l(2 t)+\varepsilon .
$$

So, consider $m \geq 0$. Clear $q \geq 0$, since $l(0) \leq \omega(0)$.
Since f is uniformly continuous, we can find a number $n \in \mathbf{N}$, such that $m \frac{b-a}{n}<\frac{\varepsilon}{4}$ and $|f(u)-f(v)|<\frac{\varepsilon}{4}$, if $|u-v|<\frac{b-a}{n}$. Next consider the equidistant knots $a=x_{0}<$ $\ldots<x_{n}=b$. Denote $y_{i}=f\left(x_{i}\right), 0 \leq i \leq n$. Note that, for any i, j, we have

$$
\left|y_{i}-y_{j}\right| \leq \omega\left(\left|x_{i}-x_{j}\right|\right) \leq l\left(\left|x_{i}-x_{j}\right|\right)=m\left|x_{i}-x_{j}\right|+2 q .
$$

Apply Lemma and find points $z_{0}<\ldots<z_{n}$, which satisfy the given properties. Then let $h:[a, b] \rightarrow \mathbf{R}$ be the linear piecewise function which take the values $h\left(x_{i}\right)=z_{i}$, $0 \leq i \leq n$ and is linear on intervals $\left[x_{i}, x_{i+1}\right]$.

Let $u \in[a, b]$. Let i such that $u \in\left[x_{i}, x_{i+1}\right]$. We have
$|h(u)-f(u)| \leq\left|h(u)-h\left(x_{i}\right)\right|+\left|h\left(x_{i}\right)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)-f(u)\right| \leq m \frac{b-a}{n}+\left|z_{i}-y_{i}\right|+\frac{\varepsilon}{4} \leq q+\frac{\varepsilon}{2}$.
So we obtained

$$
\begin{equation*}
\|h-f\| \leq q+\frac{\varepsilon}{2} \quad \text { and } \quad\left|h^{\prime}(x)\right| \leq m, \quad x \in\left(x_{i-1}, x_{i}\right), 1 \leq i \leq n . \tag{19}
\end{equation*}
$$

Finally, we can find a function $g \in C^{1}[a, b]$, such that

$$
\begin{equation*}
\|g-h\|<\frac{\varepsilon}{2} \text { and }\left\|g^{\prime}\right\| \leq m \tag{20}
\end{equation*}
$$

Indeed, for $1 \leq i \leq n$, and $x \in\left(x_{i-1}, x_{i}\right)$ let write $h(x)=\beta_{i} x+\gamma_{i}$. Hence $\left|\beta_{i}\right| \leq m$ and from the continuity of h, we have $\beta_{i} x_{i}+\gamma_{i}=\beta_{i+1} x_{i}+\gamma_{i+1}$, if $1 \leq i \leq n-1$. Choose
$0<\rho<\frac{b-a}{2 n}$. Define the function $g:[a, b] \rightarrow \mathbb{R}$, such that $g(x)=\alpha_{i}\left(x-x_{i}+\rho\right)^{2}+\beta_{i} x+\gamma_{i}$, where $\alpha_{i}=\frac{\beta_{i+1}-\beta_{i}}{4 \rho}$, if $x \in\left(x_{i}-\rho, x_{i}+\rho\right), 1 \leq i \leq n-1$ and $g(x)=h(x)$, if $x \in[a, b]$ does not belong to an interval $\left(x_{i}-\rho, x+\rho\right)$. We can verify immediately, that $g \in C^{1}[a, b]$. Moreover, $g^{\prime}(x)=\frac{1}{2 \rho}\left[\beta_{i+1}\left(x-x_{i}+\rho\right)-\beta_{i}\left(x-x_{i}-\rho\right)\right]$, if $x \in\left(x_{i}-\rho, x_{i}+\rho\right)$. From this it follows that $g^{\prime}(x)$ is between β_{i} and β_{i+1} on this interval. Consequently $\left\|g^{\prime}\right\| \leq m$, for any $0<\rho<\frac{b-a}{2 n}$. Moreover, for $1 \leq i \leq n-1$, and $x \in\left(x_{i}-\rho, x_{i}+\rho\right)$, we have $|h(x)-g(x)| \leq\left|h\left(x_{i}\right)-g\left(x_{i}\right)\right|=\frac{1}{4}\left(\beta_{i+1}-\beta_{i}\right) \rho$. So, if we choose a sufficient small $\rho>0$ we obtain $\|g-h\|<\frac{\varepsilon}{2}$.

From relations (19) and (20) it follows $\|g-f\| \leq q+\varepsilon$ and hence

$$
\|f-g\|+t\left\|g^{\prime}\right\| \leq q+t m+\varepsilon=\frac{1}{2} l(2 t)+\varepsilon .
$$

Hence relation (18) is proved.

References

[1] De Vore, R. and Lorentz, G. G., Constructive approximation, vol. I, Springer, Berlin, (1993).
[2] Ditzian, Z. and Totik, V., Moduli of smoothness, Springer Verlag, Berlin, 1987.
[3] Gonska, H. H., On approximation in spaces of continuous functions, Bull. Austral. Math. Soc. 28 (1983), 411-432.
[4] Korneicuk, N. P., The best uniform approximation of certain classes of continuous functions, Dokl. 141 (1961), 304-307 (AMS Transl. 2, 1254-1259).
[5] Peetre, J., Exact interpolation theorems for Lipschitz continuous functions, Ricerche Matematica, 18 (1969), 239-259.
[6] Mitjagin, B. S. and Semenov, E. M., Lack of interpolation of linear operators in spaces of smooth functions, Math. USSR-Izv. 11 (1977), 1229-1266.

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: radupaltanea@yahoo.com

