Bulletin of the *Transilvania* University of Braşov • Vol 3(52) - 2010 Series III: Mathematics, Informatics, Physics, 159-162

A UNIVALENCE CONDITION Horiana TUDOR¹

Abstract

In this paper we obtain sufficient conditions for the analyticity and the univalence of the functions defined by an integral operator.

2000 Mathematics Subject Classification: 30C55 . Key words: analytic functions, univalence criteria.

1 Introduction

Let A be the class of analytic functions f in the unit disk $U = \{ z \in \mathbb{C} : |z| < 1 \}$ with f(0) = 0, f'(0) = 1. We denote by $U_r = \{ z \in \mathbb{C} : |z| < r \}$ the disk of z-plane, where $r \in (0, 1], U_1 = U$ and $I = [0, \infty)$.

In order to prove our main result we need the theory of Löewner chains; we recall the basic result of this theory, from Pommerenke.

A family of functions $\{L(z,t)\}$, $z \in U$, $t \in I$, is a Löewner chain if L(z,t) is analytic and univalent in U for all $t \in I$, and L(z,t) is subordinate to L(z,s) for all $0 \le t \le s$.

Theorem 1. ([3]). Let $L(z,t) = a_1(t)z + a_2(t)z^2 + \ldots$, $a_1(t) \neq 0$ be analytic in U_r , for all $t \in I$, locally absolutely continuous in I and locally uniformly with respect to U_r . For almost all $t \in I$, suppose that

$$z\frac{\partial L(z,t)}{\partial z}=p(z,t)\frac{\partial L(z,t)}{\partial t},\quad \forall z\in U_r,$$

where p(z,t) is analytic in U and satisfies the condition Re p(z,t) > 0, for all $z \in U$, $t \in I$. If $|a_1(t)| \to \infty$ for $t \to \infty$ and $\{L(z,t)/a_1(t)\}$ forms a normal family in U_r , then for each $t \in I$, the function L(z,t) has an analytic and univalent extension to the whole disk U.

We also need the following lemma of Carathéodory:

Lemma 1. ([2]). Let f be an analytic function in U, f(0) = 0 and a positive real number M. If Re $f(z) \leq M$ for all $z \in U$, then

$$|f(z)| \leq \frac{2M \cdot |z|}{1-|z|}$$
, for all $z \in U$.

¹Faculty of Mathematics and Informatics, *Transilvania* University of Braşov, Romania, e-mail: htudor@unitbv.ro

2 Main results

Theorem 2. Let α , c be complex numbers, $|\alpha - 1| < 1$, |c| < 1, $g \in A$ and h an analytic function in U, $h(z) = 1 + c_1 z + \dots$ If the inequality

$$\left| c|z|^{2} + (1 - |z|^{2}) \left[(\alpha - 1) \frac{zg'(z)}{g(z)} + \frac{zh'(z)}{h(z)} \right] \right| \le 1$$
(1)

is true for all $z \in U$, then the function

$$H(z) = \left(\alpha \int_0^z g^{\alpha - 1}(u)h(u)du\right)^{1/\alpha}$$
(2)

is analytic and univalent in U, where the principal branch is intended.

Proof. From the analyticity of function g it follows that function $h_1(z) = \frac{g(z)}{z}$ is analytic in U and since $h_1(0) = 1$ there is a disk U_{r_1} in which $h_1(z) \neq 0$. Therefore we can choose the uniform branch of $(h_1(z))^{\alpha-1}$ equal to 1 at the origin, denoted by h_2 . It is easy to see that the function

$$h_3(z,t) = \int_0^{e^{-tz}} u^{\alpha-1} h_2(u) h(u) du$$

can be written as $h_3(z,t) = z^{\alpha} h_4(z,t)$, where h_4 is also analytic in U_{r_1} . We define

$$L(z,t) = \left[\alpha z^{\alpha} h_4(z,t) + \frac{\alpha \left(e^{(2-\alpha)t} - e^{-\alpha t}\right) z^{\alpha}}{1+c} h_2(e^{-t}z) h(e^{-t}z)\right]^{1/2}$$

and it is easy to check that L(z,t) is analytic in a neighborhood U_{r_2} . Elementary calculation shows that $L(z,t) = a_1(t)z + a_2(t)z^2 + \ldots$, where

$$a_1(t) = e^{\frac{2-\alpha}{\alpha}t} \left[\frac{\alpha + (1+c-\alpha)e^{-2t}}{1+c}\right]^{1/\alpha}$$

Under the assumption of the theorem, we have $a_1(t) \neq 0$ and $\lim_{t\to\infty} |a_1(t)| = \infty$. Since L(z,t) is an analytic function in U_{r_2} , it results that there exist a number $0 < r_3 < r_2$ and a constant $k = k(r_3)$ such that

$$|L(z,t)/a_1(t)| < k, \qquad z \in U_{r_3},$$

and hence $\{L(z,t)/a_1(t)\}$ forms a normal family in U_{r_3} .

It can be easy see that $\frac{\partial L(z,t)}{\partial t}$ is an analytic function in U_{r_3} and therefore L(z,t) is locally absolutely continuous in I, locally uniform with respect to U_{r_3} . We define

$$p(z,t) = z \frac{\partial L(z,t)}{\partial z} / \frac{\partial L(z,t)}{\partial t}$$

and we will prove that function p(z,t) has an analytic extension with positive real part in U, for all $t \in I$. Let w(z,t) be the function defined by

$$w(z,t) = \frac{p(z,t) - 1}{p(z,t) + 1}$$

By simple calculation, we obtain

$$w(z,t) = ce^{-2t} + (1 - e^{-2t}) \left[(\alpha - 1)e^{-t}z \frac{g'(e^{-t}z)}{g(e^{-t}z)} + e^{-t}z \frac{h'(e^{-t}z)}{h(e^{-t}z)} \right]$$
(3)

We have

$$w(z,0) = c$$
 and $w(0,t) = ce^{-2t} + (1 - e^{-2t})(\alpha - 1)$

Since $|\alpha - 1| < 1$, |c| < 1 we obtain that

$$|w(z,0)| < 1$$
 and also $|w(0,t)| < 1$ (4)

Let t be a fixed positive number, $z \in U$, $z \neq 0$. Since $|e^{-t}z| \leq e^{-t} < 1$ for all $z \in \overline{U} = \{z \in \mathbb{C} : |z| \leq 1\}$ we conclude that function w(z,t) is analytic in \overline{U} . Using the maximum modulus principle it follows that for each t > 0, arbitrary fixed, there exists $\theta = \theta(t) \in \mathbb{R}$ such that

$$|w(z,t)| < \max_{|\xi|=1} |w(\xi,t)| = |w(e^{i\theta},t)|,$$
(5)

We denote $u=e^{-t}\cdot e^{i\theta}$. Then $|u|=e^{-t}<1$ and from (3) we get

$$w(e^{i\theta}, t) = c|u|^2 + (1 - |u|^2) \left[(\alpha - 1) \frac{ug'(u)}{g(u)} + \frac{uh'(u)}{h(u)} \right]$$

Since $u \in U$, the inequality (1) implies $|w(e^{i\theta}, t)| \leq 1$ and from (4) and (5) we conclude that |w(z, t)| < 1 for all $z \in U$ and $t \geq 0$.

From Theorem 1 it results that function L(z,t) has an analytic and univalent extension to the whole disk U, for each $t \in I$, in particular L(z,0). But L(z,0) = H(z). Therefore function H(z) defined by (2) is analytic and univalent in U.

Theorem 3. Let α be a complex number, $|\alpha - 1| < 1$, and h an analytic function in U, $h(z) = 1 + c_1 z + \dots$ If the inequality

$$Re\frac{zh'(z)}{h(z)} \le \frac{1-|\alpha-1|}{4} \tag{6}$$

is true for all $z \in U$, then function

$$H(z) = \left(\alpha \int_0^z u^{\alpha - 1} h(u) du\right)^{1/\alpha} \tag{7}$$

is analytic and univalent in U, where the principal branch is intended.

Proof. In the particular case $g(z) \equiv z$ and $c = \alpha - 1$, the inequality (1) becomes

$$\left| (\alpha - 1) + (1 - |z|^2) \frac{zh'(z)}{h(z)} \right| \le 1$$
(8)

and function H(z) from Theorem 2 is defined by (7).

Under the assumption (6) of the theorem, we can apply Lemma 1 to function $\frac{zh'(z)}{h(z)}$ and we get

$$\left| \begin{array}{l} (\alpha - 1) + (1 - |z|^2) \frac{zh'(z)}{h(z)} \right| \le |\alpha - 1| + (1 - |z|^2) \frac{2|z|}{1 - |z|} \cdot \frac{1 - |\alpha - 1|}{4} \\ = |\alpha - 1| + \frac{|z|}{2} (1 + |z|) \cdot (1 - |\alpha - 1|) \le |\alpha - 1| + (1 - |\alpha - 1|) = 1 \end{array} \right|$$

Inequality (8) is satisfied and from Theorem 2 it follows that function H(z) defined by (7) is analytic and univalent in U.

References

- [1] Goodman, A.W., Univalent Functions, Mariner Publishing Company Inc., 1984.
- [2] Pascu, N.N., Răducanu, D., Funcții complexe, Editura Univ. "Transilvania" Braşov, 1999.
- [3] Pommerenke, Ch., Univalent Functions, Vandenhoech Ruprecht in Göttingen, 1975.