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Abstract: This paper deals with the kinematics solution of biped robots. It 
debates the direct and inverse kinematics problems of Leg’s 5-dof biped robot, 
with which a leg can accumulate a position by multiple angle combinations. 
The symbolic solution for kinematics equations of biped robots is of great 
importance for the efficient controllability of these robots. The symbolic form 
of the kinematics equations describes explicitly in trigonometric form the biped 
robots’ sole’s position and orientation according to the joint coordinates. 
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1. Introduction 
 
For a biped robot the sole position and 

orientation is known, defined within the 
domain of exterior coordinates [6], [2], [3] if 
a qr  vector is given with join coordinates. In 
the case of a robot with n freedom degree, 
the vector of joint variables is the following: 

 
T

nn qqqqq ],,...,,[ 121 −=
r , (1) 

 
and the vector of unknown exterior 
coordinates is the following: 

 
T

qnqkqqq xxxxx ],,...,,[ 121 −= . (2) 
 
The equation below is the only solution 

for the so called direct kinematics problem: 
 

)(qfxq
r

= . (3) 
 
If we know sum of the joint’s setup and 

from this we define the coordinate 

system’s position, according to the sole’s 
centre point, as well as its orientation, thus 
we solved the direct kinematics problem. 

Inverse kinematics problem means that if 
the sole’s expected position and orientation 
(within the exterior coordinates) is known, 
and then with which joint setups can we 
obtain this. In other words we can say that 
we are looking for an optimal solution: 

 
)(1

qxfq −=
r . (4) 

 
This task is more complex, and for the 

direct kinematics problem, since it is not 
linear, we have to solve equations 
containing trigonometric functions. 

 
2. The Symbolic Solution for the Direct 

Kinematics Task  
 

The symbolic solution for kinematics 
equations of biped robots is of great 
importance for the efficient controllability 
of these robots. 
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In the world of low-cost computers, the 
real-time motion control is an increasingly 
important [6], [3] requirement. In order to 
achieve this feature, the lowest computational 
demand requesting method has to be used. 
The use of symbolic solution, opposing to 
numerical methods, is important because 
accelerates the manipulator trajectory 
control signals needed to be determined 
according to the track. 

The symbolic form of the kinematics 
equations describes explicitly in 
trigonometric form the biped robots sole’s 
position and orientation according to the 
joint coordinates. In this case, the equation 
in the range of real numbers can be solved 
with the minimal possible operations. 

 
3. Forward and Backward Progressing 

Symbolic links in the Symbolic 
Solution of Direct Kinematics Task 

 
This method makes possible the 

homogenous transformation matrices 
forwards and backwards progressing 
recursive symbolic computation. The 
direction of the [6], [2], [3] computations 
is determined by, the sole’s centre point 
coordinate systems position. Orientation is 
investigated backwards to the ankles, knees, 
hips. In basis coordinates, the study is 
focused on the torso, hip, knee, and finally 
on the sole’s centre point coordinates. 

The Ti-1,i homogenous transformation 
matrix creates a bond with neighbouring 
coordinate systems so that the Li-s 
coordinates are drafted in the Li-1-s local 
coordinates. During the task’s symbolic 
solution, these transformation matrices are 
used for making the T0,n homogenous 
transformation matrix. This matrix defines 
the sole centre point Ln coordinate system 
according to the basis. If we succeed to 
determine T0,n elements in the case of qr  
joint coordinates, then we easily obtain the 
exterior coordinates. If Cartesian 
coordinates are used, then the fourth 

column of the matrix immediately provides 
the right position. In the case of cylindrical 
and spherical coordinates we get results 
with the help up well-known relationships 
from the literature. On this basis we assume 
that for the direct kinematics task’s 
solution it is sufficient to determine T0,n 
homogenous transformation matrix in 
relation with qr  joint coordinates: 

 
nnn TTTT ,12,11,0,0 ... −⋅⋅= . (5) 

 
The multiplication of matrices in the 

equation (5) can be done by starting on the 
right side. In this case, we respectively 
multiply with the Ti-1,i (i = n-1,...1) matrices, 
from the left side. By starting on the left 
side we multiply with the Ti-1,i (i = 2,..., n) 
matrices from the right. 

For T0,n calculus, we multiplication from 
right to left. In this case, we are talking 
about backwards progressing symbolic 
solution (Figure 1): 

 
)))(...(( ,11,22,11,0,0 nnnnn TTTTT −−− ⋅= . (6) 

 
Applying the formula from one foot to 

the biped robot (Figure 3) we get next 
symbolic solution: 
 

))))(((( 6,55,44,33,22,11,06,0 TTTTTTT ⋅= . (7) 
 

The following backwards progressing 
relations provide the partial results: 
 

⋅−=⋅= −− 1,...,1,,,1,1 niTTT niiini  (8) 
 

Ti-1,n-s upper left 3x3 part-matrix, 
describes the orientation of the Ln local 
system in the Li-1 local system (Figure 1), 
while the fourth column the tool centre 
point (Ln origin’s) is the position vector 
compared to Li-1 local origin. Ti-1,n matrices 
elements define the velocity data, and can 
be used in the future to solve the so-called 
inverse kinematics problem. 
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Fig. 1. Backward recursive relations on the 

basis of Vukobratoviĉ (Ti-1,n (i = 0,…,n-1)) 
homogenous transformation matrix, Z0…i 

coordinate axis 
 

 
Fig. 2. Forward recursive relations on the 

basis of Vukobratoviĉ (Ti-1, n(i = 0,…,n-1)) 
homogenous transformation matrix, Z0…i 

coordinate axis 
 

If we start the multiplication from the 
other side, the T0,n matrix can be determined 
as follows (Figure 2): 
 

nnnnn TTTTT ,11,22,11,0,0 ))...)((( −−−⋅= . (9) 
 

Applying the formula from one foot to 
the biped robot (Figure 3) we get next 
symbolic solution: 
 

)))))((((( 6,55,44,33,22,11,06,0 TTTTTTT ⋅= . (10) 
 

The forward recursive symbolic links are 
provided by the following matrices: 

niTTT iiii ,...,2,,11,0,0 =⋅= −− . (11) 
 

 
Fig. 3. Kinematic model  

 
4. Kinematic Modelling 

 
Direct kinematics problem is to define all 

relationships that end-effector position 
(foot of biped robot) based on joint 
coordinates practically [3], [5], it ensures 
internal coordinates conversion (joint) 
Coordinate external (operational). 

Biped robot kinematics equations are 
(Figure 3): 
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Employ the equation (7) this Biped robot 
model (Figure 3) and the following 
backwards progressing relations provide 
the partial results: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅−−−
−

+⋅−

=⋅=

1000
)sin()sin()cos(0

0001
)cos()cos()sin(0

1555

21555

6,55,46,4 lqqq

llqqq

TTT , (18) 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅−−−
⋅+⋅⋅⋅⋅−−
+⋅+⋅⋅⋅⋅−

=⋅=

1000
)()()(0

)()()()()()()()(
)()()()()()()()(

1555

2415454544

32415454544

6,44,36,3 lqsqsqc
lqclqcqcqcqsqsqsqc

llqclqcqcqsqcqsqcqs

TTT , (19) 

 

⎢
⎢
⎢
⎢

⎣

⎡

−
+⋅
+⋅

+⋅−
+⋅−

+
+

=⋅=

0
)(

)()(
)()(

0
)(

)()(
)()(

0
0

)(
)(

5

435

435

5

435

435

43

43

6,33,26,2 qs
qqsqc
qqcqc

qc
qqsqs
qqcqs

qqc
qqs

TTT  

 

⎥
⎥
⎥
⎥

⎦

⎤

⋅
⋅+⋅++⋅+⋅
+⋅+⋅++⋅+⋅

1
)(

)()()()(
)()()()(

15

332431435

4332431435

lqs
lqslqqslqqsqc

llqclqqclqqcqc

, (20) 

 



Mate, Cs.Z., et al.: The Symbolic Solution for the Kinematic Task of a Biped Robot 29

⎢
⎢
⎢
⎢

⎣

⎡

++⋅

++⋅

++⋅−

++⋅−

++

++

=⋅=

0
)()(

)(
)()(

0
)()(

)(
)()(

0
)(

0
)(

4325

5

4325

4325

5

4325

432

432

6,22,16,1 qqqsqc
qs

qqqcqc

qqqsqs
qc

qqqcqs

qqqc

qqqs

TTT  

 

⎥
⎥
⎥
⎥

⎦

⎤

⋅++⋅+++⋅++⋅
⋅

+⋅+⋅++⋅+++⋅++⋅

1
)()()()(

)(
)()()()()(

332243214325

15

542332243214325

lqqslqqqslqqqsqc
lqs

llqclqqclqqqclqqqcqc

, (21) 

 

⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅+⋅−
⋅⋅+⋅

⋅

⋅⋅−⋅
⋅⋅−⋅

⋅

⋅
⋅

−

=⋅=

0
)()()()()(

)()()()()(
)()(

0
)()()()()(
)()()()()(

)()(

0
)()(
)()(

)(

5115

5115

5

5115

5115

5

1

1
611060 rcqcqcqsqs

rcqcqsqcqs
rsqc

rcqsqcqsqc
rsqsqsqcqc

rsqs

rsqc
rsqs

rc

TTT ,,,  

 

⎥
⎥
⎥
⎥

⎦

⎤

⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅+⋅++⋅
⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅+⋅++⋅

⋅−⋅+⋅+⋅⋅−

1
)()()()()()())()()()()(()(
)()()()()()())()()()()(()(

)()()()()(

412312111515651

412312111515651

423215

lqcqcltcqclrcqclrcqsqcqcqsllqc
lqsqcltcqslrcqslrcqsqcqcqsllqs

lqsltslrslrcqc

,  (22) 

 
c(r), s(r), c(t), s(t), c(qi) and s(qi) is symbol, where c(qi) = cos(qi), s(qi) = sin(qi), 

c(r) = cos(q2 + q3 + q4), s(r) = sin(q2 + q3 + q4), c(t) = cos(q2 + q3), s(t) = sin(q2 + q3). 
 
Convert coordinate joint operational 

details is done by solving the direct 
kinematics problem and coordinate joint 
operational coordinate conversion is done 
by solving the inverse kinematics problem. 

Inverse kinematics problem allows the 
calculation [4], [2] coordinates of the 
joints, which provide end-effector in the 
desired position and orientation, given the 
absolute coordinates (operational). When 
the problem is the inverse kinematics 
solution, it is the inverse geometrical model. 
If we cannot find an analytical solution for 
inverse kinematics problem (which happens 
quite frequently) we resort to numerical 
methods, but whose weakness is the sheer 
volume of calculations. The most common 
method is Newton-Raphson method. 
Among these features is remarkable for the 

way it offers and Khalil Pieper and Paul's 
method. Pieper and Khalil's method allows 
solving inverse kinematics problem regardless 
of the values of the robot geometrical. 

 
5. Inverse Kinematics Problem Solving 

Opportunities 
 
In other word we can say that we are 

searching for the equations solution, where 
qr  the searched joint is coordinates vector, 
and xq is the known external coordinate’s 
vector: 

 
)(1

qxfq −=
r

. (23) 
 

The solution for the inverse kinematics 
problem, generally speaking is unclear. In 
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the case of the so-called cinematically 
redundant robots [6], [1], [3], where the 
mobility number is greater than the 
dimension of the external coordinates, an 
infinite number of vector qr  can be found, 
which satisfies the f( qr ) = xq equation.  

In the case of the cinematically non-
redundant robots only a finite number of 
solutions exist. Easy to imagine, for 
example, we can approach the same point 
with the same hand-coordination with 
raised and lowered elbow position as well. 
Furthermore the possibilities for solving 
the inverse problem are discussed only for 
non-redundant manipulators. 

During the solution of the problem, non-
linear equations have to be solved. For the 
determination of the roots, two modes of 
approach are found in the literature: a 
general numerical solution method is 
applied (eg. Newton's method) and other 
techniques the given biped robot in closed 
form searches for symbolic solutions. 
 
6. The Inverse Matrix Method 
 

The inverse matrix method [1], [7], can 
be applied for most biped robots, if 
homogeneous transformation’s description 
leads to trigonometric equations. During 
the solution we try to choose such 
equations, of which the joint variables can 
be expressed in the form of a two variable 
arctangent function. 

If for example the 5 mobility degree 
biped robot limb’s T0,6 transformation 
matrix, is known from the direct task 
symbolic solution, then the next 5, can be 
calculated with the known matrix 
multiplication methods: 

 
6,55,44,33,22,11,06,0 TTTTTTT ⋅⋅⋅⋅⋅= . (24) 

 
In the case of the inverse task, the left 

side matrix is known in the following 
form: 
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where *

6,0T  are boards control homogenous 
transformation matrix: 

 

6,0
*

6,0 TT = . (26) 
 
If we multiply the equation respectively 

with the inverse of matrices from the left, 
then 4 matrix equations are obtained. To 
determine the inverses, the properties of 
ortho-normal matrices can be used: 
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To find the corresponding joint variables 

q1, q2, q3, q4, and q5 we must solve the 
following simultaneous set of nonlinear 
trigonometric equations (26). 

The equations this example is, of course, 
much too difficult to solve directly in 
closed form. This is the case for most 
biped robot leg's. Therefore, we need to 
develop efficient and systematic 
techniques that exploit the particular 
kinematic structure [7], [4] of the biped 
robot. Whereas the forward or backward 
kinematics problem always has a unique 
solution that can be obtained simply by 
evaluating the forward and backward 
equations, the inverse kinematics problem 
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may or may not have a solution. Even if a 
symbolic solution exists, it may or may not 
be unique. 

Furthermore, because these forward or 
backward kinematic equations are in 
general complicated nonlinear functions of 
the joint variables, the symbolic solutions 
may be difficult to obtain even when they 
exist. 

Employ the equation (26) and the 
following a symbolic solution symbolic 
solution is obtained from q1, q5 and q2, q3, 
q4 this amount: 
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On the left side of the (27…31) 

equations the known *
6,0T  matrix and the 

we get symbolic solution’s in a q2, q3 and 
q4 joint variable is used. This matrix is 
known from the backward progressing 
symbolic solution. If so, we look for the 
first element on the left-hand side 
containing the joint coordinates, for which 
the suitable element on the right-hand side 
is constant or 0. Thus (27…31) equation 
the joint variable q2, q3 and q4 can be 
determined. 

In equation (27…31) we once again look 
for a matrix element on the left-hand side, 
from which we express the q2, q3 and q4 
joint coordinate in simple form, in turn the 
right-hand side is constant. Continuing this 
technique step-by-step, from each matrix 
element newer and newer joint variables 
can be expressed. We obtained the joint 
coordinates from the solution of the 

equations: 
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where m is: 
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7. Conclusions 

 
The method described in this paper is 

well suited to obtain symbolical inverse 
functions for the practical relevant 
redundant kinematics with parallel and/or 
perpendicular joint axes. The symbolic 
solution is derived in a closed form and 
contain the parameters of the additional 
geometrical constraints. They allows a 
simple selection of the solution sets, which 
describe the different possible biped robot 
poses. The optimization of these poses to 
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the given biped robots task may be 
fulfilled through any criterion, including 
nonanalytic. 

If a biped robot’s inverse kinematics 
problem is symbolic solved well, then this 
helps a lot on the stability, because the 
well positioned ligament’s overall centre 
of weight has to fall in the given sole’s 
polygon, so that the robot wouldn’t tumble 
over.  
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