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Abstract

Spelling correctors are widely encountered in computer software applications and
they provide the most plausible replacements for words that are presumably incor-
rect. The paper proposes a spelling correction method starting from the Damerau-
Levenshtein edit distance and using Bayesian decision theory. The resulted algorithm
is tested on a bag of words from the New York Times news articles.
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1 Introduction

Spell checking and spell suggestion are nowadays widely used in word processors, spell
checkers and web search engines. Most popular spell checkers starts from a thesaurus
containing correctly spelled words and confront them to the words a user writes. Other
systems rely on a set of documents for which the correct forms of the words and their
frequencies are provided – the so-called bag-of-words model. This approach is used in our
paper. Other linguistic sources that can be used are lists of frequently misspelled words,
search query logs, domain specific data sources, e.g. IT or medical terms and technical
abbreviations.

The proposed model for providing correct and plausible forms of given word relies on
two components. The first one is an edit distance function and gives the closeness between
the word to be corrected and other words from the thesaurus. An edit distance gives the
number of transformations one has to make on the given word in order to reach a correct
form. These transformations include deleting, inserting, editing individual letters and
exchanging pairs of characters. The paper includes presentations of the Levenshtein and
Damerau-Levenshtein distances, commonly used to measure the spelling similarity of two
words.

The second component is based on Bayes’ theorem, which allows us to include the prior
probability of a candidate word. Intuitively, it make sense to favor the most frequent words
in use as being proposed as correct forms. The frequency gives a criterion for tie breaking,
that is to make a decision for some candidate words that have the same distance from
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the one to be corrected: we consider the most popular words are the the most plausible
suggestions, all other factors being equal; this makes our system adaptive, as some of
the values used to make predictions are built based on the provided data. Beside this
intuitive support, the Bayesian decision theory is known to lead to minimizing the average
probability of the error [1].

The resulted model produces spelling suggestions based both on the similarity between
the misspelled word and on the frequencies of the words in the thesaurus. As all we need
here is the thesaurus and the frequencies of the words, the bag-of-word structure is ideal
in our case; the grammar structure or word order is irrelevant for now.

The structure of the paper is as follows: section 2 describes and compares two popular
metrics used to compute word similarities. In section 3 we give the probabilistic model
built on the language model and that is able to incorporate any string distance function.
Finally, section 4 describes the data source used for building and testing the spelling
corrector and contains the experimental results.

2 Edit distances between words

2.1 The Levenshtein distance between words

The Levenshtein distance is a widely used metric for measuring how different two
given words are. The differences are considered here as the minimum number of editing
operations. In this case an editing consists of insertion, deletion, or substitution of a single
character. It was introduced in 1966 by Vladimir Levenshtein [2]. Beside spell checking
systems, his algorithm is used as an auxiliary tool for optical character recognition [3]
and natural language translation [4]. The algorithm implementing computation of this
distance is realized through dynamic programming and it was discussed in [5]. For two
words X = x1 . . . xm and Y = y1 . . . yn, we denote by D[i, j] the minimal number of edit
operations one has to make in order to transform the substring x1 . . . xi into y1 . . . yj , for
1 ≤ i ≤ m, 1 ≤ j ≤ n. D[m,n] is the sought Levenshtein distance between X and Y . The
algorithm relies on the following theorem:

Theorem 1. The transformation of a string X = x1 . . . xm into Y = y1 . . . yn can be made
with D[m,n] edit operations, where D[i, 0] = i, D[0, j] = j for 0 ≤ i ≤ m and 0 ≤ j ≤ n,
and for 1 ≤ i ≤ m, 1 ≤ j ≤ n D[i, j] is defined as:

D[i, j] =
{

D[i− 1, j − 1], if xi = yj

min {D[i− 1, j], D[i, j − 1], D[i− 1, j − 1]}+ 1, if xi 6= yj
(1)

Proof. The proof is made by contradiction and can be found, for example, in [6].

The pseudocode for the algorithm computing the matrix D is given below. Its complex-
ity is Θ(m ·n), both for execution time and for required memory. Its memory requirement
can be further improved by considering only the current and previous lines for each cycle
from lines 8–12. As a side note, the algorithms parallelize poorly due to high data depen-
dency. In the above algorithm the cost for every operation is considered to be 1, but it
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works for every positive cost assigned to each operation as done in Needleman–Wunsch
algorithm [7]. Although in Needleman–Wunsch algorithm the problem is to maximize the
similarity between two sequences, it has been shown that it is equivalent to minimizing
the Levenshtein distance [8].

EditDistanceLevenshtein(X, Y )

1 m← length[X]
2 n← length[Y ]
3 allocate space for the matrix D[0 . . .m, 0 . . . n]
4 for i← 1 to m
5 D[i, 0]← i
6 for j ← 1 to n
7 D[0, j]← j
8 for i← 1 to m
9 for j ← 1 to n

10 if xi = yj cost← 0
11 else cost← 1
12 D[i, j]← min {D[i− 1, j] + 1, D[i, j − 1] + 1, D[i− 1, j − 1] + cost}

2.2 The Damerau-Levenshtein distance

The three editing operations considered by the Levenshtein distance can be seen as
solutions for noises appearing due to misspelling. However, when typing, a human is
exposed to another more likely mistake: exchanging two adjacent letters. In [9], the
author argues that more than 80% of misspellings are due to letter transpositions. Hence,
the Damerau-Levenshtein distance refers to the minimal number of insertions, deletions,
editing and transpositions [9].

There are two versions of this algorithm: no substring is edited more than once —
also called “restricted edit distance” or “optimal string alignment” — and another one
without this restriction, allowing for adjacent transpositions. To understand the difference
between the two, we consider the following example: X=CA and Y =ABC. The optimal
string alignment distance is 3: CA→A→AB→ABC, while by using the later approach we
get edit distance 2: CA→AC→ABC. Exchanging two letters by mistake occurs often, but
producing a typo by adding letters between the switched characters can be seen as very
unlikely. Hence, we consider here only the restricted edit distance.

The RestrictedEditDistance algorithm for optimal string alignment is essentially the
same as the one for computing the Levenshtein distance with the following two statements
added after line 12, inside the “for j” cycle:

13 if i > 1 and j > 1 and xi = yj−1 and xi−1 = yj

14 D[i, j]← min(D[i, j], D[i− 2, j − 2] + cost)
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3 A probabilistic model for spell suggestion

We consider here Bayes’ theorem [10]: P (A|B) = P (B|A)P (A)
P (B) . We use it to predict the

probability of a correct spelling for a given word as:

P (correct spell|word) =
P (word|correct spelling)P (correct spelling)

P (word)
(2)

Note that eq. (2) contains the apriori probability P (correct spelling). We find this a
natural requirement, as the prior probability corresponds to the language model itself:
the more frequent a word is used, the more likely is to be the intended write of the
misspelled word. In our case, we approximated the apriori probability of a correct word
with the relative frequency of that word.

The term P (word|correct spelling) can be seen as a measure of the distance between
the two words used as arguments. To express this distance one can start from any of the
metrics described above. As the higher the distance between the words X and Y , the
lower the likelihood of X being the corrected version of Y , we conveniently consider:

P (word|correct spelling) =
1

σ
√

2π
exp

(
−edf(word, correct spelling)

2σ2

)
(3)

where edf(·, ·) is an edit distance function. Any normalized distance can be used in-
stead of the Gaussian from (3). The Gaussian without the scaling factor (σ

√
2π)−1 fre-

quently appears in other classification approaches, e.g. for building vector spaces when
using the kernel trick [11]. The appropriate value for σ is set empirically. Obviously,
P (word|correct spelling) reaches the maximal value if and only if word = correct spelling.

The denominator of eq. (2) is calculated by using the law of total probability:

P (word) =
∑
cs

P (word|cs)P (cs) (4)

where cs stands for correctly spelled word. In order to reduce the number of computations,
as cs we considered only these words whose lengths are sufficiently closed to the word to
be corrected.

The algorithm for suggesting spelling corrections for a given word is as follows:

SpellCorrect(X, bow, maxDist, edf, maxSuggestions)

1 S ← the set of correctly spelled words cs from bow with
|length(cs)− length(X)| ≤ maxDist

2 for cs ∈ S
3 compute P (cs|X) according to equations (2)–(4) and using the edf
4 return the first maxSuggestions terms from S having the highest P (cs|X) values

The parameters of SpellCorrect are as follows: X is the word to be corrected, bow is the
bag-of-words data used to perform spelling corrections, maxDist is used to limit the set
of word to be considered as potential correct forms for X, edf is a function computing the
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edit distance between two words, and maxSuggestions limits the number of suggestion
the algorithm returns. Note that one could use the Maximum a posteriori principle [1]
and return only one result from this procedure, but in practice multiple results are more
useful.

When implementing the SpellCorrect algorithm, one can improve the resulted code
by skipping the calculation of P (word), unless the conditional probability is required.
Furthermore, when searching for cs words fulfilling edf(cs,X) ≤ maxDist, one can stop
the computation of the matrix D when D[i, j] exceeds maxDist for both edit distance
functions considered in sections 2.1 and 2.2.

4 Experimental results and future works

4.1 Experimental results

The above described algorithm was implemented in C# under NET Framework 4.0.
The documents we used were text collections in the bag-of-words form as provided by [12].
From the five text collections we used the one corresponding to New York Times news
articles. It contains 300000 documents, 102660 distinct words and a total of approximately
one million words.

The best value for σ in eq. (3) was empirically found to be 0.1. As edf parameter in
SpellCorrect algorithm we considered the restricted edit distance, based on the discussion
on Levenshtein and general Damerau-Levenshtein distances from section 2.2. Table 1 gives
the first maxSuggestions = 3 spelling suggestions for few words we tested, and we set
maxDist = 5.

Misspelled Spell Conditional Likelihood Apriori Restricted
word suggest. (cs) prob. (eq. 2) (eq. 3) prob. P (cs) edit dist.

speling spelling 0.82460 7.69 · 10−22 2.04 · 10−5 1
spewing 0.17539 7.69 · 10−22 4.33 · 10−6 1
spending 1.03 · 10−64 5.52 · 10−87 0.00035 2

hotal total 0.50641 7.69 · 10−22 0.000277 1
hotel 0.49358 7.69 · 10−22 0.000270 1
local 8.08 · 10−66 5.52 · 10−87 0.000617 2

peice price 0.46735 7.69 · 10−22 0.00047 1
peace 0.32102 7.69 · 10−22 0.00032 1
piece 0.20833 7.69 · 10−22 0.00021 1

Table 1: Spell suggestions for some test words provided by the the proposed algorithm.

Obviously, changing the documents one uses to model the prior probabilities P (cs)
might change the order of spelling suggestions: thus, “hotel” might get a better rank than
“total” when the misspelled “hotal” is given as input. Based on the provided data, this is
the best one can do. Improving the quality of the spelling suggestions might arise from a
list of frequently misspelled words and/or from considering the context.
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The theoretical motivation of the method and the test results show that the proposed
algorithm has a suitable behavior for a spell checker system and produces expected results.
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