GENERALIZED QUATERNIONIC STRUCTURES ON THE TOTAL SPACE OF A COMPLEX FINSLER SPACE

Annamária SZÁSZ ${ }^{1}$
Communicated to the conference:
Finsler Extensions of Relativity Theory, Braşov, Romania, Aug. 20-Sept. 4, 2011

Abstract

In this note our goal is to introduce a generalized quaternionic structures, on the total space of a complex Finsler space. Some important properties of this structures are emphasized. A special approach is devoted to the commutative almost quaternionic connections.

2000 Mathematics Subject Classification: 53B40, 53C26.
Key words: commutative quaternion structure; generalized Sasaki metric; almost hyper-Hermitian structures; almost hyper-Kähler structures; metric compatible connections.

1 Introduction

Let (M, F) be a complex Finsler manifold, i.e., M is a smooth manifold and F is a Finsler metric on M. In this paper, we introduce the following metric G on $T^{\prime} M$ (cf. Section 3):

$$
\begin{equation*}
G(z, \eta)=g_{i \bar{j}}(z, \eta) \mathrm{d} z^{i} \otimes \mathrm{~d} \bar{z}^{j}+a(L) g_{i \bar{j}}(z, \eta) \delta \eta^{i} \otimes \delta \bar{\eta}^{j} \tag{1.1}
\end{equation*}
$$

where $a: \operatorname{Im}(L) \subset \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, and $L:=F^{2}$.
We define an almost hyper-complex structure $\left(G, J_{1}, J_{2}\right)$, on the complexified holomorphic tangent bundle $T^{\prime} M$ of a complex manifold M, where J_{1} is the natural complex structure and J_{2} is an almost complex structure defined by the help of $a=a(L)$. We demonstrate that $\left(T^{\prime} M, J_{1}, J_{2}, J_{3}\right)$ is a commutative quaternion structure, [Mu2], where $J_{3}=J_{1} \circ J_{2}$.

In the rest of the $\S 4$ we are concerned with the integrability conditions of the structures. How J_{1} is the natural complex structure, his Nijenhuis tensor field is vanishing, but the case of J_{2} is more complicated. Theorem 3.3. is the main result of this section, and tells when the $\left(J_{1}, J_{2}\right)$ structure is integrable.

[^0]In Section 4 we evaluate under what conditions ($T^{\prime} M, G, J_{1}, J_{2}$) an almost hyperHermitian is almost hyper-Kählerian or at least hyper-Kählerian structure. This conditions are in the Proposition 4.1., Theorem 4.2. and Theorem 4.3.

The last part ot this paper is about the construction of a metric compatible linear connection with the commutative quaternion structure $\left(J_{1}, J_{2}\right)$.

2 Preliminaries

Let M be a complex manifold, $\operatorname{dim}_{C} M=n$ and $\left(z^{k}\right)$ local complex coordinates in a chart (U, φ). The holomorphic tangent bundle $T^{\prime} M$ has a natural structure of complex manifold, $\operatorname{dim}_{C} T^{\prime} M=2 n$, and the induced coordinates in a local chart in $u \in T^{\prime} M$ are $u=\left(z^{k}, \eta^{k}\right)$. The changes of local coordinates in u are given by:

$$
\begin{align*}
\frac{\partial}{\partial z^{k}} & =\frac{\partial z^{\prime h}}{\partial z^{k}} \frac{\partial}{\partial z^{\prime h}}+\frac{\partial^{2} z^{\prime h}}{\partial z^{j} \partial z^{k}} \frac{\partial}{\partial \eta^{\prime h}} \tag{2.2}\\
\frac{\partial}{\partial \eta^{k}} & =\frac{\partial z^{\prime h}}{\partial z^{k}} \frac{\partial}{\partial \eta^{\prime h}}
\end{align*}
$$

Consider the sections of the complexified tangent bundle of $T^{\prime} M$. Let $V T^{\prime} M \subset T^{\prime}\left(T^{\prime} M\right)$ be the vertical bundle, locally spanned by $\left\{\frac{\partial}{\partial \eta^{k}}\right\}$, and $V T^{\prime \prime} M$ its conjugate. The idea of complex nonlinear connection, briefly (c.n.c.), is an instrument in 'linearization' of the geometry of $T^{\prime} M$ manifold. A (c.n.c.) is a supplementary complex subbundle to $V T^{\prime} M$ in $T^{\prime}\left(T^{\prime} M\right)$, i.e. $T^{\prime}\left(T^{\prime} M\right)=H T^{\prime} M \oplus V T^{\prime} M$. The horizontal distribution $H_{u} T^{\prime} M$ is locally spanned by

$$
\begin{equation*}
\frac{\delta}{\delta z^{k}}=\frac{\partial}{\partial z^{k}}-N_{k}^{j} \frac{\partial}{\partial \eta^{j}} \tag{2.3}
\end{equation*}
$$

where $N_{k}^{j}(z, \eta)$ are the coefficients of the (c.n.c.). The pair $\left\{\delta_{k}:=\frac{\delta}{\delta z^{k}}, \dot{\partial}_{k}:=\frac{\partial}{\partial \eta^{k}}\right\}$ will be called the adapted frame of the (c.n.c.) which obey to the change rules $\delta_{k}=\frac{\partial z^{\prime \prime}}{\partial z^{k}} \delta_{j}^{\prime}$ and $\dot{\partial}_{k}=\frac{\partial z^{\prime j}}{\partial z^{k}} \dot{\partial}_{j}^{\prime}$. By conjugation everywhere we obtain an adapted frame $\left\{\delta_{\bar{k}}, \dot{\partial}_{\bar{k}}\right\}$ on $T_{u}^{\prime \prime}\left(T^{\prime} M\right)$. The dual adapted bases are $\left\{d z^{k}, \delta \eta^{k}\right\}$ and $\left\{d \bar{z}^{k}, \delta \bar{\eta}^{k}\right\}$.

The action of natural complex structure on $T_{C}\left(T^{\prime} M\right)$ is

$$
\begin{equation*}
J\left(\partial_{k}\right)=i \partial_{k} ; \quad J\left(\dot{\partial}_{k}\right)=i \dot{\partial}_{k} ; \quad J\left(\partial_{\bar{k}}\right)=-i \partial_{\bar{k}} ; \quad J\left(\dot{\partial}_{\bar{k}}\right)=i \dot{\partial}_{\bar{k}} \tag{2.4}
\end{equation*}
$$

wich in view of (2.3) yields

$$
\begin{equation*}
J\left(\delta_{k}\right)=i \delta_{k} ; \quad J\left(\dot{\partial}_{k}\right)=i \dot{\partial}_{k} ; \quad J\left(\delta_{\bar{k}}\right)=-i \delta_{\bar{k}} ; \quad J\left(\dot{\partial}_{\bar{k}}\right)=i \dot{\partial}_{\bar{k}} \tag{2.5}
\end{equation*}
$$

and hence $H\left(T^{\prime} M\right)$ and $\overline{H\left(T^{\prime} M\right)}$ are J invariant.
The base manifold of a complex Finsler space is $T^{\prime} M$ and the main objects of this geometry operate on the section of the complexified tangent bundle $T_{C}\left(T^{\prime} M\right)$, which itself is decomposed into horizontal, vertical and their conjugates subbundles by a complex nonlinear connection N, uniquely determined by the complex Finsler function, [3], [5].

Definition 2.1. A complex Finsler metric on M is a continuous function $F: T^{\prime} M \rightarrow \mathbb{R}_{+}$ satisfying:
(a) $L:=F^{2}$ is smooth on $\widetilde{T^{\prime} M}:=T M \backslash\{0\}$.
(b) $F(z, \eta) \geq 0$, the equality holds if and only if $\eta=0$;
(c) $F(z, \lambda \eta)=|\lambda| F(z, \eta)$ for $\forall \lambda \in \mathbb{C}$;
(d) the Hermitian matrix

$$
g_{i \bar{j}}(z, \eta)=\frac{\partial^{2} L}{\partial \eta^{i} \partial \bar{\eta}^{j}}
$$

is positive-definite on $\widetilde{T^{\prime} M}$.
Definition 2.2. The pair (M, F) is called a complex Finsler space.
The assertion (c) says that L is positively homogeneous with respect to the complex norm, i.e. $L(z, \lambda \eta)=\lambda \bar{\lambda} L(z, \eta)$ for any $\lambda \in \mathbb{C}$. The assertion (d) allows us to define a Hermitian metric structure on $T^{\prime} M$, because $g_{i \bar{j}}$ is a d-tensor complex nondegenerate, called in [5] as the fundamental metric tensor of the complex Finsler space (M, F), with the inverse $g^{\bar{j} i}$, and $g^{\bar{j} i} g_{i \bar{k}}=\delta_{\bar{k}}^{\bar{j}}$.

The homogenity condition of the complex Finsler metric allows us to enumerate some important results. Applying the Euler's Theorem for $L=F^{2}$, we have:

Proposition 2.1. The complex Finsler metric satisfies the conditions
(a) $\frac{\partial L}{\partial \eta^{k}} \eta^{k}=L ; \frac{\partial L}{\partial \bar{\eta}^{k}} \eta^{k}=L$;
(b) $g_{i \bar{j}} \eta^{i}=\frac{\partial L}{\partial \bar{\eta}^{j}} ; g_{i \bar{j}} \bar{\eta}^{j}=\frac{\partial L}{\partial \eta^{i}} ; L=g_{i \bar{j}} \eta^{i} \bar{\eta}^{j}$;
(c) $\frac{\partial g_{i \bar{j}}}{\partial \eta^{k}} \eta^{k}=0 ; \frac{\partial g_{i \bar{j}}}{\partial \bar{\eta}^{k}} \eta^{k}=0 ; \frac{\partial g_{i \bar{j}}}{\partial \eta^{k}} \eta^{i}=0$;
(d) $g_{i j} \eta^{i}=0 ; \frac{\partial g_{i \bar{j}}}{\partial \eta^{k}} \bar{\eta}^{j}=g_{i k}$, where $g_{i j}=\frac{\partial^{2} L}{\partial \eta^{i} \partial \eta^{j}}$.

A fundamental problem in a complex Finsler space remains that of determinating the (c.n.c) function only on complex Finsler metric F. A well-known solution is provided by the complex Chern-Finsler connection, [3]. Determined from the technique of good vertical connection, it is proved that the Chern-Finsler connection is a unique $N-($ c.l.c) of $(1,0)$ type. With the notations in [5], the Chern-Finsler connection is: $\left.\stackrel{C F}{\mathrm{D}} \stackrel{(\underset{\sim}{C F}}{\left(N_{j}^{i}, L_{j k}^{i}\right.}, C_{j k}^{i}\right)$, where

$$
\begin{align*}
& C F \tag{2.6}\\
& N_{j}^{i}=g^{\bar{m} i} \frac{\partial g_{l \bar{m}}}{\partial z^{j}} \eta^{l}=g^{\bar{m} i} \frac{\partial^{2} L}{\partial z^{j} \partial \bar{\eta}^{m}} ; \quad \begin{array}{l}
C F \\
L_{j k}^{i}
\end{array}=g^{\bar{m} i} \frac{\delta g_{j \bar{m}}}{\delta z^{k}} ; \quad C_{j k}^{i}=g^{\bar{m} i} \frac{\partial g_{j \bar{m}}}{\partial \eta^{k}},
\end{align*}
$$

and $\stackrel{C F}{L_{j k}^{i}}=\stackrel{C F}{C_{j}^{i}}=0$.
With a straightforward computation we obtained that $\stackrel{C F}{L_{j k}^{i}}=\dot{\partial_{j} N_{k}^{i}}$.

Observation 2.1. As a direct consequance of (2.6) it results

$$
\begin{equation*}
\delta_{k} L=\delta_{\bar{k}} L=\delta_{\bar{k}}\left(\frac{\partial L}{\partial \eta^{j}}\right)=0 \tag{2.7}
\end{equation*}
$$

Observation 2.2. We will use the notation for the Chern-Finsler connection whithout the indexes $C F$.

Locally, in adapted frame fields of the (c.n.c) Chern-Finsler N, the components of the Lie brackets are:

$$
\begin{align*}
{\left[\delta_{j}, \delta_{k}\right] } & =\left(\delta_{k} N_{j}^{i}-\delta_{j} N_{k}^{i}\right) \dot{\partial}_{i}=0 \tag{2.8}\\
{\left[\delta_{j}, \delta_{\bar{k}}\right] } & =\left(\delta_{\bar{k}} N_{j}^{i}\right) \dot{\partial}_{i}-\left(\delta_{j} N_{\bar{k}}^{\bar{\imath}}\right) \dot{\partial}_{\bar{\imath}} \\
{\left[\delta_{j}, \dot{\partial}_{k}\right] } & =\left(\dot{\partial}_{k} N_{j}^{i}\right) \dot{\partial}_{i} \\
{\left[\delta_{j}, \dot{\partial}_{\bar{k}}\right] } & =\left(\dot{\partial}_{\bar{k}} N_{j}^{i}\right) \dot{\partial}_{i} \\
{\left[\dot{\partial}_{j}, \dot{\partial}_{k}\right] } & =0 ;\left[\dot{\partial}_{j}, \dot{\partial}_{\bar{k}}\right]=0
\end{align*}
$$

A simple computation get:

$$
\begin{equation*}
\left(\dot{\partial}_{\bar{k}} N_{j}^{i}\right) g_{i \bar{m}}=\left(\dot{\partial}_{\bar{m}} N_{j}^{i}\right) g_{i \bar{k}} \tag{2.9}
\end{equation*}
$$

Now we can add that the nonzero torsion of the complex Chern-Finsler connection are only:

$$
\begin{equation*}
T_{j k}^{l}=L_{j k}^{l}-L_{k j}^{l}=\dot{\partial}_{j} N_{k}^{l}-\dot{\partial}_{k} N_{j}^{l} ; \quad Q_{j k}^{l}=C_{j k}^{l} ; \quad \Theta_{j \bar{k}}^{l}=\delta_{\bar{k}} N_{j}^{l} ; \quad \rho_{j \bar{k}}^{l}=\dot{\partial}_{\bar{k}} N_{j}^{l} \tag{2.10}
\end{equation*}
$$

In the terminology of Abate and Patrizio, [3], the complex Finsler space (M, F) is strongly Kähler iff $T_{j k}^{i}=0$, Kähler iff $T_{j k}^{i} \eta^{k}=0$, and weakly Kähler iff $g_{i \bar{l}} T_{j k}^{i} \eta^{k} \bar{\eta}^{l}=0$. In [4] is proved that the strongly Kähler and the Kähler notions actually coincide.

3 Integrabilty of $\left(J_{1}, J_{2}, J_{3}\right)$ structure

Consider a generalized Sasaki metric G on $T^{\prime} M$ given by

$$
\begin{equation*}
G(z, \eta)=g_{i \bar{j}}(z, \eta) \mathrm{d} z^{i} \otimes \mathrm{~d} \bar{z}^{j}+a(L) g_{i \bar{j}}(z, \eta) \delta \eta^{i} \otimes \delta \bar{\eta}^{j} \tag{3.11}
\end{equation*}
$$

where $a: \operatorname{Im}(L) \subset \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.
Let J_{1} the natural complex structure on $T^{\prime} M$), and J_{2} an other almost complex structure on $T^{\prime} M$ defined by:

$$
\begin{array}{ccc}
J_{1}\left(\delta_{k}\right)=i \delta_{k} & ; & J_{2}\left(\delta_{k}\right)=\frac{1}{\sqrt{a}} \dot{\partial}_{k} \tag{3.12}\\
J_{1}\left(\delta_{\bar{k}}\right)=-i \delta_{\bar{k}} & ; & J_{2}\left(\delta_{\bar{k}}\right)=\frac{1}{\sqrt{a}} \dot{\partial}_{\bar{k}} \\
J_{1}\left(\dot{\partial}_{k}\right)=i \dot{\partial}_{k} & ; & J_{2}\left(\dot{\partial}_{k}\right)=-\sqrt{a} \delta_{k} \\
J_{1}\left(\dot{\partial}_{\bar{k}}\right)=-i \dot{\partial}_{\bar{k}} & ; & J_{2}\left(\dot{\partial}_{\bar{k}}\right)=-\sqrt{a} \delta_{\bar{k}}
\end{array}
$$

We will denote whith $J_{3}:=J_{1} \circ J_{2}$. The following relations are true:

$$
\begin{align*}
J_{1}^{2} & =J_{2}^{2}=-I, \quad J_{3}^{2}=I \tag{3.13}\\
J_{1} J_{2} & =J_{2} J_{1}=J_{3} \\
J_{1} J_{3} & =J_{3} J_{1}=-J_{2} \\
J_{2} J_{3} & =J_{3} J_{2}=-J_{1}
\end{align*}
$$

Using (3.12) and (3.13), according to [6], we obtain the next theorem:
Theorem 3.1. $\left(T^{\prime} M, J_{1}, J_{2}, J_{3}\right)$ is a commutative quaternion structure.
Now we shall study the integrability problem for the obtained almost commutative quaternion structure. The integrability conditions for such a structure are expressed with the help of various Nijenhuis tensor fields obtained from the tensor fields $J_{1}, J_{2}, J_{3}=J_{1} J_{2}$. For a tensor field K of type $(1,1)$ on a given manifold, we can consider its Nijenhuis tensor field N_{K} defined by

$$
N_{K}(X, Y)=[K X, K Y]-K[X, K Y]-K[K X, Y]+K^{2}[X, Y]
$$

where X, Y are vector fields on the given manifold. For two tensor fields K, L of type $(1,1)$ on the given manifold, we can consider the corresponding Nijenhuis tensor field $N_{K, L}$ defined by

$$
\begin{aligned}
N_{K, L}(X, Y)= & {[K X, L Y]+[L X, K Y]-K([X, L Y]+[L X, Y])-} \\
& -L([K X, Y]+[X, K Y])+(K L+L K)[X, Y]
\end{aligned}
$$

The almost commutative quaternion structure defined by $\left(J_{1}, J_{2}, J_{3}\right)$ is integrable if $N_{1}=$ $0, N_{2}=0$, where N_{1}, N_{2} are the Nijenhuis tensor fields of J_{1}, J_{2}. Equaivalently, the structure is integrable if $N_{1}+N_{2}+N_{3}=0$, or if $N_{12}=0$, where N_{3} is the Hijenhuis tensor field of $J_{3}=J_{1} J_{2}$ and N_{12} is the NIjenhuis tensor field of J_{1}, J_{2}.

Since J_{1} is the natural complex structure, then it is integrable, i.e.

$$
N_{1}=0
$$

Remains the study of N_{2}. With the help of the Lie brackets (2.8) we have obtained:

$$
\begin{aligned}
& N_{2}\left[\delta_{j}, \delta_{k}\right]=\frac{a^{\prime}}{2 a^{2}}\left(\frac{\partial L}{\partial \eta^{j}} \delta_{k}^{l}-\frac{\partial L}{\partial \eta^{k}} \delta_{j}^{l}\right) \dot{\partial}_{l}+\left(L_{k j}^{i}-L_{j k}^{i}\right) \delta_{l} \\
& N_{2}\left(\delta_{j}, \delta_{\bar{k}}\right)=\frac{a^{\prime}}{2 a^{2}}\left(\frac{\partial L}{\partial \bar{\eta}^{k}} \dot{\partial}_{j}-\frac{\partial L}{\partial \eta^{j}} \dot{\partial}_{\bar{k}}\right)-\left(\delta_{\bar{k}} N_{j}^{l}\right) \dot{\partial}_{l}+\left(\delta_{j} N_{\bar{k}}^{\bar{l}}\right) \dot{\partial}_{\bar{l}}-\left(\dot{\partial}_{j} N_{\bar{k}}^{\bar{l}}\right) \delta_{\bar{l}}+\left(\dot{\partial}_{\bar{k}} N_{j}^{l}\right) \delta_{l} \\
& N_{2}\left(\delta_{j}, \dot{\partial}_{k}\right)=\frac{a^{\prime}}{2 a}\left(\frac{\partial L}{\partial \eta^{k}} \delta_{j}-\frac{\partial L}{\partial \eta^{j}} \delta_{k}\right)+\left(\dot{\partial}_{j} N_{k}^{l}\right) \dot{\partial}_{l}-\left(\dot{\partial}_{k} N_{j}^{l}\right) \dot{\partial}_{l} \\
& N_{2}\left(\delta_{j}, \dot{\partial}_{\bar{k}}\right)=\frac{a^{\prime}}{2 a}\left(\frac{\partial L}{\partial \bar{\eta}^{k}} \delta_{j}-\frac{\partial L}{\partial \eta^{j}} \delta_{\bar{k}}\right)+a\left(\left(\delta_{j} N N_{\bar{k}}^{\bar{l}}\right) \delta_{\bar{l}}-\left(\delta_{\bar{k}} N_{j}^{l}\right) \delta_{l}\right)+\left(\dot{\partial}_{j} N N_{\bar{k}}^{\bar{l}}\right) \dot{\partial}_{j}-\left(\dot{\partial}_{\bar{k}} N_{j}^{l}\right) \dot{\partial}_{l} \\
& N_{2}\left(\dot{\partial}_{j}, \dot{\partial}_{k}\right)=\frac{a^{\prime}}{2 a}\left(\frac{\partial L}{\partial \eta^{j}} \dot{\partial}_{k}-\frac{\partial L}{\partial \eta^{k}} \dot{\partial}_{j}\right)+a\left(\left(\dot{\partial}_{j} N_{k}^{l}\right) \delta_{l}-\left(\dot{\partial}_{k} N_{j}^{l}\right) \delta_{l}\right) \\
& N_{2}\left(\dot{\partial}_{j}, \dot{\partial}_{\bar{k}}\right)=\frac{a^{\prime}}{2 a}\left(\frac{\partial L}{\partial \eta^{j}} \dot{\partial}_{k}-\frac{\partial L}{\partial \bar{\eta}^{k}} \dot{\partial}_{j}\right)+a\left(\left(\delta_{\bar{k}} N_{j}^{l}\right) \dot{\partial}_{l}-\left(\delta_{j} N_{\bar{k}}^{\bar{l}}\right) \dot{\partial}_{\bar{l}}+\left(\dot{\partial}_{j} N N_{\bar{k}}^{\bar{l}}\right) \delta_{\bar{l}}-\left(\dot{\partial}_{\bar{k}} N_{j}^{l}\right) \delta_{l}\right)
\end{aligned}
$$

We have replaced the expressions for the torsions (2.10) in the above relations, and is obtain:

$$
\begin{aligned}
N_{2}\left(\delta_{j}, \delta_{k}\right) & =\frac{a^{\prime}}{2 a^{2}}\left(\frac{\partial L}{\partial \eta^{j}} \delta_{k}^{l}-\frac{\partial L}{\partial \eta^{k}} \delta_{j}^{l}\right) \dot{\partial}_{l}-T_{j k}^{l} \delta_{l} \\
N_{2}\left(\delta_{j}, \delta_{\bar{k}}\right) & =\frac{a^{\prime}}{2 a^{2}}\left(\frac{\partial L}{\partial \bar{\eta}^{k}} \dot{\partial}_{j}-\frac{\partial L}{\partial \eta^{j}} \dot{\partial}_{\bar{k}}\right)-\rho_{\bar{j} k}^{\bar{l}} \delta_{\bar{l}}+\rho_{j \bar{k}}^{l} \delta_{l}-\Theta_{j \bar{k}}^{l} \dot{\partial}_{l}+\Theta_{\bar{k} j}^{\bar{l}} \dot{\partial}_{\bar{l}} \\
N_{2}\left(\delta_{j}, \dot{\partial}_{k}\right) & =\frac{a^{\prime}}{2 a}\left(\frac{\partial L}{\partial \eta^{k}} \delta_{j}^{l}-\frac{\partial L}{\partial \eta^{j}} \delta_{k}^{l}\right) \delta_{l}+T_{j k}^{l} \dot{\partial}_{l} \\
N_{2}\left(\delta_{j}, \dot{\partial}_{\bar{k}}\right) & =\frac{a^{\prime}}{2 a}\left(\frac{\partial L}{\partial \bar{\eta}^{k}} \delta_{j}-\frac{\partial L}{\partial \eta^{j}} \delta_{\bar{k}}\right)+a\left(\Theta_{\bar{k} j}^{\bar{l}} \delta_{\bar{l}}-\Theta_{j \bar{k}}^{l} \delta_{l}\right)+\rho_{\bar{k} j}^{\bar{l}} \dot{\partial}_{\bar{l}}-\rho_{j \bar{k}}^{l} \dot{\partial}_{l} \\
N_{2}\left(\dot{\partial}_{j}, \dot{\partial}_{k}\right) & =\frac{a^{\prime}}{2 a}\left(\frac{\partial L}{\partial \eta^{j}} \delta_{k}^{l}-\frac{\partial L}{\partial \eta^{k}} \delta_{k}^{l}\right) \dot{\partial}_{l}+a T_{j k}^{l} \delta_{l} \\
N_{2}\left(\dot{\partial}_{j}, \dot{\partial}_{\bar{k}}\right) & =\frac{a^{\prime}}{2 a}\left(\frac{\partial L}{\partial \eta^{j}} \dot{\partial}_{\bar{k}}-\frac{\partial L}{\partial \bar{\eta}^{k}} \dot{\partial}_{j}\right)+a\left(\Theta_{j \bar{k}}^{l} \dot{\partial}_{l}-\Theta_{\bar{k} j}^{\bar{l}} \dot{\partial}_{\bar{l}}+\rho_{\bar{k} j}^{\bar{l}} \delta_{\bar{l}}-\rho_{j \bar{k}}^{l} \delta_{l}\right)
\end{aligned}
$$

From the linear independence of the base fields it results that $\left(T^{\prime} M, G, J_{2}\right)$ is complex if and only if:

$$
\begin{align*}
a^{\prime}\left(\frac{\partial L}{\partial \eta^{j}} \delta_{k}^{l}-\frac{\partial L}{\partial \eta^{k}} \delta_{j}^{l}\right) & =0 \text { and } T_{j k}^{l}=0 \\
\Theta_{j \bar{k}}^{l} & =0 \text { and } \rho_{j \bar{k}}^{l}=0 \tag{3.14}
\end{align*}
$$

and their conjugates.

Theorem 3.2. The manifold $\left(T^{\prime} M, G, J_{2}\right)$ is complex if and only if (M, F) is Kähler, the torsions $\Theta_{j \bar{k}}^{l}$ and $\rho_{j \bar{k}}^{l}$ are zero and

$$
\begin{equation*}
a^{\prime}\left(\frac{\partial L}{\partial \eta^{j}} \delta_{k}^{l}-\frac{\partial L}{\partial \eta^{k}} \delta_{j}^{l}\right)=0 \tag{3.15}
\end{equation*}
$$

Corollary 3.1. $\left(T^{\prime} M, G, J_{2}\right)$ is a complex manifold if and only if (M, F) is a generalized complex Berwald space and $\Theta_{j \bar{k}}^{i}=0$.

Observation 3.1. The notion of generalized complex Berwald space is described in $[A M]$.

We have seen, that J_{1} is integrable, J_{2} is integrable when the conditions in the Theorem 3.2 . are fullfield, then the integrability condition for the $\left(J_{1}, J_{2}, J_{3}\right)$ quaternion structure are in the next theorem:

Theorem 3.3. The commutative quaternion structure $\left(J_{1}, J_{2}, J_{3}\right)$ is intergable if and only if (M, F) is a generalized complex Berwald space and $\Theta_{j \bar{k}}^{i}=0$.

4 Hyper-Kähler Structures on $T^{\prime} M$

The structure defined in (3.13) is one hypercomplex four dimensional. Moreover, ($T^{\prime} M, G, J_{1}, J_{2}$) has an almost hyper-Kählerian structure if the following conditions are satisfied:
(a) ($T^{\prime} M, G, J_{1}, J_{2}$) is an almost hyper-Hermitian manifold;
(b) The fundamental 4 -form Ω is closed.

For the point (a) we shall be interested in the conditions under wich the metric G is almost Hermitian with respect to the almost complex structures J_{1}, J_{2}, considered in (3.12), i.e.

$$
G\left(J_{1} X, J_{1} Y\right)=G(X, Y) \quad G\left(J_{2} X, J_{2} Y\right)=G(X, Y), \forall X, Y \in T_{C}\left(T^{\prime} M\right)
$$

We have
Proposition 4.1. $\left(T^{\prime} M, G, J_{1}\right)\left(T^{\prime} M, G, J_{2}\right)$ and $\left(T^{\prime} M, G, J_{3}\right)$ are almost Hermitian manifolds, i.e. $G(J X, J Y)=G(X, Y) \forall X, Y$.

Proof. For J_{1} the condition $G\left(J_{1} X, J_{1} Y\right)=G(X, Y)$ is verified imediatly, and for J_{2} it's enough to verify for the elements of the adapted frame $\left\{\delta_{k}, \dot{\partial}_{k}, \delta_{\bar{k}}, \dot{\partial}_{\bar{k}}\right\}$ the above relations. The nonzero values of $G\left(J_{2} X, J_{2} Y\right)$ are

$$
\begin{aligned}
G\left(J_{2} \delta_{j}, J_{2} \delta_{\bar{k}}\right) & =G\left(\frac{1}{\sqrt{a}} \dot{\partial}_{j}, \frac{1}{\sqrt{a}} \dot{\partial}_{\bar{k}}\right)=\frac{1}{a} G\left(\dot{\partial}_{j}, \dot{\partial}_{\bar{k}}\right)= \\
& =\frac{1}{a} \cdot a g_{j \bar{k}}=g_{j \bar{k}}=G\left(\delta_{j}, \delta_{\bar{k}}\right) \\
G\left(J_{2} \dot{\partial}_{j}, J_{2} \dot{\partial}_{\bar{k}}\right) & =G\left(-\sqrt{a} \delta_{j},-\sqrt{a} \delta_{\bar{k}}\right)=a G\left(\delta_{j}, \delta_{\bar{k}}\right)= \\
& =a \cdot g_{j \bar{k}}=G\left(\dot{\partial}_{j}, \dot{\partial}_{\bar{k}}\right),
\end{aligned}
$$

For the almost hyper-Hermitian manifold $\left(T^{\prime} M, G, J_{1}, J_{2}\right)$ the fundamental 2-forms ϕ_{1}, ϕ_{2} are defined by

$$
\phi_{1}(X, Y)=G\left(X, J_{1} Y\right), \quad \phi_{2}(X, Y)=G\left(X, J_{2} Y\right),
$$

where X, Y are vector fields on sections of $T_{C}\left(T^{\prime} M\right)$.
Since we have a third almost complex structure $J_{3}=J_{1} J_{2}$ which is almost Hermitian with respect to G, we can consider a third 2 -form ϕ_{3} defined by $\phi_{3}(X, Y)=G\left(X, J_{3} Y\right)$, next we have the fundamental 4 -form Ω, defined by

$$
\Omega=\phi_{1} \wedge \phi_{1}+\phi_{2} \wedge \phi_{2}+\phi_{3} \wedge \phi_{3} .
$$

The almost hyper-Hermitian manifold ($T^{\prime} M, G, J_{1}, J_{2}$) is almost hyper-Kählerian if the fundamental 4 -form Ω is closed, i.e. $\mathrm{d} \Omega=0$. The condition for Ω to be closed is equivalent
to the conditions for ϕ_{1}, ϕ_{2} (and hence for ϕ_{3} too) to be closed, i.e. $\mathrm{d} \phi_{1}=0, \mathrm{~d} \phi_{2}=0$. In our case, it is more convenient to study the conditions under which the 2 -forms ϕ_{1}, ϕ_{2} are closed.

The expressions of ϕ_{1}, ϕ_{2} in adapted local frames are

$$
\begin{array}{r}
\phi_{1}(z, \eta)=-i g_{j \bar{k}} d z^{i} \wedge d \bar{z}^{j}-i a(L) g_{j \bar{k}} \delta \eta^{j} \wedge \delta \bar{\eta}^{k} \\
\phi_{2}(z, \eta)=-\sqrt{a(L)} g_{j \bar{k}} \mathrm{~d} z^{j} \wedge \delta \bar{\eta}^{k}+\sqrt{a(L)} g_{j \bar{k}} \delta \eta^{j} \wedge \mathrm{~d} \bar{z}^{k} \tag{4.17}
\end{array}
$$

With a straightforward computation using properties of the Chern-Finsler (c.n.c.) results

$$
\begin{aligned}
\mathrm{d} \phi_{1}= & -i\left\{\delta_{i} g_{j \bar{k}} \mathrm{~d} z^{i} \wedge \mathrm{~d} z^{j} \wedge \mathrm{~d} \bar{z}^{k}+\delta_{\bar{\imath}} g_{j \bar{k}} \mathrm{~d} \bar{z}^{i} \wedge \mathrm{~d} z^{j} \wedge \mathrm{~d} \bar{z}^{k}+\right. \\
+ & \dot{\partial}_{i}\left(a g_{j \bar{k}}\right) \delta \eta^{j} \wedge \delta \bar{\eta}^{k} \wedge \delta \eta^{i}+\dot{\partial}_{\bar{\imath}}\left(a g_{j \bar{k}}\right) \delta \eta^{j} \wedge \delta \bar{\eta}^{k} \wedge \delta \bar{\eta}^{i}+ \\
+ & {\left[\dot{\partial}_{i} g_{j \bar{k}} \delta \eta^{i} \wedge \mathrm{~d} z^{j} \wedge \mathrm{~d} \bar{z}^{k}+a g_{j \bar{k}} \delta_{h} \overline{\left(N_{l}^{k}\right)} \delta \eta^{j} \wedge \mathrm{~d} \bar{z}^{l} \wedge \mathrm{~d} z^{h}\right]+} \\
+ & {\left[\dot{\partial}_{\bar{\imath}} g_{j \bar{k}} \delta \bar{\eta}^{i} \wedge \mathrm{~d} z^{j} \wedge \mathrm{~d} \bar{z}^{k}-a g_{j \bar{k}} \delta_{\bar{h}}\left(N_{l}^{j}\right) \delta \bar{\eta}^{k} \wedge \mathrm{~d} z^{l} \wedge \mathrm{~d} \bar{z}^{h}\right]+} \\
+ & {\left[\delta_{i}\left(a g_{j \bar{k}}\right) \mathrm{d} z^{i} \wedge \delta \eta^{j} \wedge \delta \bar{\eta}^{k}-a g_{j \bar{k}} \dot{\partial}_{h}\left(N_{l}^{j}\right) \mathrm{d} z^{l} \wedge \delta \eta^{h} \wedge \delta \bar{\eta}^{k}\right]+} \\
+ & {\left[\delta_{\bar{\imath}}\left(a g_{j \bar{k}}\right) \mathrm{d} \bar{z}^{i} \wedge \delta \eta^{j} \wedge \delta \bar{\eta}^{k}+a g_{j \bar{k}} \dot{\partial}_{\bar{h}} \overline{\left(N_{l}^{k}\right)} \delta \eta^{j} \wedge \mathrm{~d} \bar{z}^{l} \wedge \delta \bar{\eta}^{h}\right]-} \\
- & \left.a g_{j \bar{k}} \dot{\partial}_{\bar{h}}\left(N_{l}^{j}\right) \mathrm{d} z^{l} \wedge \delta \bar{\eta}^{h} \wedge \delta \bar{\eta}^{k}+a g_{j \bar{k}} \dot{\partial}_{h} \overline{\left(N_{l}^{k}\right)} \delta \eta^{j} \wedge \mathrm{~d} \bar{z}^{l} \wedge \delta \eta^{h}\right\}= \\
= & -i\left\{\frac{1}{2}\left(\delta_{i} g_{j \bar{k}}-\delta_{j} g_{i \bar{k}}\right) \mathrm{d} z^{i} \wedge \mathrm{~d} z^{j} \wedge \mathrm{~d} \bar{z}^{k}+\frac{1}{2}\left(\delta_{\bar{\imath}} g_{j \bar{k}}-\delta_{\bar{j}} g_{i \bar{k}}\right) \mathrm{d} \bar{z}^{i} \wedge \mathrm{~d} z^{j} \wedge \mathrm{~d} \bar{z}^{k}+\right. \\
& a^{\prime} \frac{L}{\partial \eta^{i}} g_{j \bar{k}} \delta \eta^{j} \wedge \delta \bar{\eta}^{k} \wedge \delta \eta^{i}+a^{\prime} \frac{L}{\partial \bar{\eta}^{i}} g_{j \bar{k}} \delta \eta^{j} \wedge \delta \bar{\eta}^{k} \wedge \delta \bar{\eta}^{i}+ \\
& {\left.\left[\dot{\partial}_{i} g_{j \bar{k}}-a g_{i \bar{l}} \delta_{j} \overline{\left(N_{k}^{l}\right)}\right] \mathrm{d} z^{j} \wedge \mathrm{~d} \bar{z}^{k} \wedge \delta \eta^{i}+\left[\dot{\partial}_{\bar{\imath}} g_{j \bar{k}}-a g_{l \bar{h}} \delta_{\bar{k}}\left(N_{h}^{l}\right)\right] \mathrm{d} z^{j} \wedge \mathrm{~d} \bar{z}^{k} \wedge \delta \bar{\eta}^{i}\right\} }
\end{aligned}
$$

So we have deduced

Theorem 4.1. The manifold $\left(T^{\prime} M, G, J_{1}\right)$ is Kähler if and only if:

$$
\begin{array}{r}
\delta_{i} g_{j \bar{k}}=\delta_{j} g_{i \bar{k}} \tag{4.18}\\
a^{\prime}(L)=0 \Leftrightarrow a(L)=c \in \mathbb{R} \\
g^{\bar{l}} \dot{\partial}_{i} g_{j \bar{k}}=a \delta_{j} \overline{\left(N_{k}^{l}\right)}
\end{array}
$$

and their conjugates.

Analogous for $\mathrm{d} \phi_{2}$ we have:

$$
\begin{align*}
\mathrm{d} \phi_{2}= & -\left(\frac{a^{\prime}}{2 \sqrt{a}}\left(\delta_{i} L\right) g_{j \bar{k}}+\sqrt{a} \delta_{i} g_{j \bar{k}}\right) \mathrm{d} z^{j} \wedge \delta \bar{\eta}^{k} \wedge \mathrm{~d} z^{i}+ \tag{4.19}\\
& +\left(\frac{a^{\prime}}{2 \sqrt{a}}\left(\delta_{i} L\right) g_{j \bar{k}}+\sqrt{a} \delta_{i} g_{j \bar{k}}\right) \delta \eta^{j} \wedge \mathrm{~d} \bar{z}^{k} \wedge \mathrm{~d} z^{i}- \\
& -\left(\frac{a^{\prime}}{2 \sqrt{a}}\left(\delta_{\bar{\imath}} L\right) g_{j \bar{k}}+\sqrt{a} \delta_{\bar{\imath}} g_{j \bar{k}}\right) \mathrm{d} z^{j} \wedge \delta \bar{\eta}^{k} \wedge \mathrm{~d} \bar{z}^{i}+ \\
& +\left(\frac{a^{\prime}}{2 \sqrt{a}}\left(\delta_{\bar{\imath}} L\right) g_{j \bar{k}}+\sqrt{a} \delta_{\bar{\imath}} g_{j \bar{k}}\right) \delta \eta^{j} \wedge \mathrm{~d} \bar{z}^{k} \wedge \mathrm{~d} \bar{z}^{i}- \\
& -\left(\frac{a^{\prime}}{2 \sqrt{a}}\left(\dot{\partial}_{i} L\right) g_{j \bar{k}}+\sqrt{a} \dot{\partial}_{i} g_{j \bar{k}}\right) \mathrm{d} z^{j} \wedge \delta \bar{\eta}^{k} \wedge \delta \eta^{i}+ \\
& +\left(\frac{a^{\prime}}{2 \sqrt{a}}\left(\dot{\partial}_{i} L\right) g_{j \bar{k}}+\sqrt{a} \dot{\partial}_{i} g_{j \bar{k}}\right) \delta \eta^{j} \wedge \mathrm{~d} \bar{z}^{k} \wedge \delta \eta^{i}- \\
& -\left(\frac{a^{\prime}}{2 \sqrt{a}}\left(\dot{\partial}_{\bar{\imath}} L\right) g_{j \bar{k}}+\sqrt{a} \dot{\partial}_{\imath} g_{j \bar{k}}\right) \mathrm{d} z^{j} \wedge \delta \bar{\eta}^{k} \wedge \delta \bar{\eta}^{i}+ \\
& +\left(\frac{a^{\prime}}{2 \sqrt{a}}\left(\dot{\partial}_{\bar{z}} L\right) g_{j \bar{k}}+\sqrt{a} \dot{\partial}_{\bar{\imath}} g_{j \bar{k}}\right) \delta \eta^{j} \wedge \mathrm{~d} \bar{z}^{k} \wedge \delta \bar{\eta}^{i}+ \\
& +\sqrt{a} g_{j \bar{k}} \delta_{h} \overline{\left(N_{l}^{k}\right)} \mathrm{d} z^{j} \wedge \mathrm{~d} \bar{z}^{l} \wedge \mathrm{~d} z^{h}+\sqrt{a} g_{j \bar{k}} \dot{\bar{z}}_{\bar{h}} \overline{\left(N_{l}^{k}\right)} \mathrm{d} z^{j} \wedge \mathrm{~d} \bar{z}^{l} \wedge \delta \bar{\eta}^{h} \\
& +\sqrt{a} g_{j \bar{k}} \dot{\partial}_{h} \overline{\left(N_{l}^{k}\right)} \mathrm{d} z^{j} \wedge \mathrm{~d} \bar{z}^{l} \wedge \delta \eta^{h} \\
& -\sqrt{a} g_{j \bar{k}} \delta_{\bar{h}}\left(N_{l}^{j}\right) \mathrm{d} z^{l} \wedge \mathrm{~d} \bar{z}^{h} \wedge \mathrm{~d} \bar{z}^{k}-\sqrt{a} g_{j \bar{k}} \dot{\bar{b}}_{h}\left(N_{l}^{j}\right) \mathrm{d} z^{l} \wedge \delta \eta^{h} \wedge \mathrm{~d} \bar{z}^{k} \\
& -\sqrt{a} g_{j \bar{k}} \dot{\partial}_{\bar{h}}\left(N_{l}^{j}\right) \mathrm{d} z^{l} \wedge \delta \bar{\eta}^{h} \wedge \mathrm{~d} \bar{z}^{k} .
\end{align*}
$$

Theorem 4.2. The almost complex manifold $\left(T^{\prime} M, G, J_{2}\right)$ is almost Kähler if and only if one of the next condition sets are fullfield:

$$
\begin{equation*}
a=0 \quad \text { and } \dot{\partial}_{i} g_{j \bar{k}}=0 \tag{4.20}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta_{i} g_{j \bar{k}}=\delta_{j} g_{i \bar{k}}, \quad \Theta_{\bar{l} h}^{\bar{k}}=0, \quad L_{k i}^{l} g_{l \bar{j}}=-\dot{\partial}_{k}\left(N_{\bar{j}}^{\bar{l}}\right) g_{i \bar{l}}, \frac{a^{\prime}}{2 a}\left(\dot{\partial}_{i} L\right) g_{j \bar{k}}=-\dot{\partial}_{i} g_{j \bar{k}} \tag{4.21}
\end{equation*}
$$

and their conjugates.
Using the integrability conditions for J_{2} in Theorem 3.2., we obtain:
Theorem 4.3. The manifold $\left(T^{\prime} M, G, J_{2}\right)$ is Kähler if and only if, one of the next condition sets are fullfield:

$$
\begin{align*}
& a=0 \text { and } G \text { is purely Hermitian; } \tag{4.22}\\
& \text { or } \\
& L_{k i}^{l} g_{l \bar{j}}=0, \frac{a^{\prime}}{2 a}\left(\dot{\partial}_{i} L\right) g_{j \bar{k}}=-\dot{\partial}_{i} g_{j \bar{k}} \tag{4.23}
\end{align*}
$$

and their conjugates.

Corollary 4.1. The structure ($T^{\prime} M, G, J_{1}, J_{2}, J_{3}$) is Hyper-Kählerian if and only if (M, F) is a complex Berwald manifold with $\Theta_{j \bar{k}}^{i}=0, a^{\prime}=0, G$ is purely Hermitian, and or $a=0$ or $L_{k i}^{l} g_{l \bar{j}}=0$.

5 Metric compatible linear connection with the commutative quaternion structure

Further we will deal with linear connections compatible with a commutative quaternion metric structure.

Definition 5.1. A linear connection D on $T^{\prime} M$ is called metric connection commutative quaterion if:

$$
\begin{equation*}
D J_{i}=0, i=1,2,3 ; \quad \text { and } \quad D G=0 . \tag{5.24}
\end{equation*}
$$

The general family of the linear connections D compatible with the metric G, according to [6], is

$$
\begin{equation*}
D_{X} Y=\check{D}_{X} Y+\frac{1}{2} g^{-1}\left(\check{D}_{X} g\right)_{Y}, \tag{5.25}
\end{equation*}
$$

where \check{D} is an arbitrary linear connection.
Let us consider the connection transformations:

$$
\begin{align*}
& \check{D}_{X} Y \xrightarrow{\tau_{1}} D_{X}^{1} Y=\check{D}_{X} Y+\frac{1}{2} J_{1} \check{D}_{X}\left(J_{1} Y\right) \tag{5.26}\\
& \check{D}_{X} Y \xrightarrow{\tau_{2}} D_{X}^{2} Y=\check{D}_{X} Y+\frac{1}{2} J_{2} \check{D}_{X}\left(J_{2} Y\right) \tag{5.27}\\
& \check{D}_{X} Y \xrightarrow{\tau_{3}} D_{X}^{3} Y=\check{D}_{X} Y-\frac{1}{2} J_{3} \check{D}_{X}\left(J_{3} Y\right) \tag{5.28}\\
& \check{D}_{X} Y \xrightarrow{\tau_{4}} D_{X}^{4} Y=\check{D}_{X} Y+\frac{1}{2}\left(\check{D}_{X} g\right)_{Y} \tag{5.29}
\end{align*}
$$

where $\left(\check{D}_{X} g\right)_{Y}$ is a 1-form defined as follows $\left(\check{D}_{X} g\right)_{Y} Z=\left(\check{D}_{X} g\right)(Y, Z)$. Obviously $D_{X}^{i} J_{i}=$ $0, i=1,2,3, \quad X \in T_{C}\left(T^{\prime} M\right)$.

Then, according to [6], we consider the commutative quaternion connection:

$$
\begin{equation*}
\tilde{D}_{X} Y=\frac{1}{4}\left\{\check{D}_{X} Y-J_{1}\left(\check{D}_{X} J_{1} Y\right)-J_{2}\left(\check{D}_{X} J_{2} Y\right)+J_{3}\left(\check{D}_{X} J_{3} Y\right)\right\} \tag{5.30}
\end{equation*}
$$

where \check{D} is an arbitrary linear connection.
Proposition 5.1. The following relation is true:

$$
\tilde{D} D^{4}=D^{4} \tilde{D}
$$

where $\tilde{D} D^{4}$ (respectively $D^{4} \tilde{D}$) is a connection obtained from \tilde{D} (respectively D^{4}) by replacing \check{D} with D^{4} (respectively \tilde{D}).

Proof.

$$
\begin{align*}
\left(\tilde{D} D^{4}\right)_{X} Y & =\frac{1}{4}\left\{D_{X}^{4} Y-J_{1}\left(D_{X}^{4} J_{1} Y\right)-J_{2}\left(D_{X}^{4} J_{2} Y\right)+J_{3}\left(D_{X}^{4} J_{3} Y\right)\right\}= \tag{5.31}\\
& =\frac{1}{4}\left\{\check{D}_{X} Y+\frac{1}{2} G^{-1}\left(\check{D}_{X} G\right)_{Y}-J_{1}\left(\check{D}_{X}\left(J_{1} Y\right)+\frac{1}{2} G^{-1}\left(\check{D}_{X} G\right)_{\left(J_{1} Y\right)}\right)-\right. \\
& \left.-J_{2}\left(\check{D}_{X}\left(J_{2} Y\right)+\frac{1}{2} G^{-1}\left(\check{D}_{X} G\right)_{\left(J_{2} Y\right)}\right)+J_{3}\left(\check{D}_{X}\left(J_{3} Y\right)+\frac{1}{2} G^{-1}\left(\check{D}_{X} G\right)_{\left(J_{3} Y\right)}\right)\right\}= \\
& =\frac{1}{4}\left\{\check{D}_{X} Y-J_{1}\left(\check{D}_{X}\left(J_{1} Y\right)-J_{2}\left(\check{D}_{X}\left(J_{2} Y\right)+J_{3}\left(\check{D}_{X}\left(J_{3} Y\right)\right\}+\right.\right.\right. \\
& +\frac{1}{8}\left\{G^{-1}\left(\check{D}_{X} G\right)_{Y}-J_{1} G^{-1}\left(\check{D}_{X} G\right)_{\left(J_{1} Y\right)}-J_{2} G^{-1}\left(\check{D}_{X} G\right)_{\left(J_{2} Y\right)}+J_{3} G^{-1}\left(\check{D}_{X} G\right)_{\left(J_{3} Y\right)}\right\}
\end{align*}
$$

On the other hand:

$$
\begin{align*}
\left(D^{4} \tilde{D}\right)_{X} Y & =\tilde{D}_{X} Y+\frac{1}{2} G^{-1}\left(\tilde{D}_{X} G\right)_{Y}= \tag{5.32}\\
& =\frac{1}{4}\left\{\check{D}_{X} Y-J_{1}\left(\check{D}_{X} J_{1} Y\right)-J_{2}\left(\check{D}_{X} J_{2} Y\right)+J_{3}\left(\check{D}_{X} J_{3} Y\right)\right\}+ \\
& +\frac{1}{8} G^{-1}\left\{\left(\check{D}_{X} G\right)_{Y}-J_{1}\left(\check{D}_{X} G\right)_{J_{1} Y}-J_{2}\left(\check{D}_{X} G\right)_{J_{2} Y}+J_{3}\left(\check{D}_{X} G\right)_{J_{3} Y}\right\}= \\
& =\frac{1}{4}\left\{\check{D}_{X} Y-J_{1}\left(\check{D}_{X} J_{1} Y\right)-J_{2}\left(\check{D}_{X} J_{2} Y\right)+J_{3}\left(\check{D}_{X} J_{3} Y\right)\right\}+ \\
& +\frac{1}{8}\left\{G^{-1}\left(\check{D}_{X} G\right)_{Y}-G^{-1} J_{1}\left(\check{D}_{X} G\right)_{J_{1} Y}-G^{-1} J_{2}\left(\check{D}_{X} G\right)_{J_{2} Y}+G^{-1} J_{3}\left(\check{D}_{X} G\right)_{J_{3} Y}\right\}
\end{align*}
$$

where $\tilde{D}_{X} G_{Y} Z=\tilde{D}_{X} G(Y, Z)$. Therefore $\tilde{D} D^{4}=D^{4} \tilde{D}$.
Theorem 5.1. The following linear connection:

$$
D_{X} Y=\left(\tilde{D} D^{4}\right)_{X} Y, \quad \mathcal{X}, Y \in T_{C}\left(T^{\prime} M\right)
$$

or equivalently

$$
\begin{align*}
D_{X} Y & =\frac{1}{4}\left\{\check{D}_{X} Y-J_{1}\left(\check{D}_{X} J_{1} Y\right)-J_{2}\left(\check{D}_{X} J_{2} Y\right)+J_{3}\left(\check{D}_{X} J_{3} Y\right)\right\}+ \tag{5.33}\\
& +\frac{1}{8}\left\{G^{-1}\left(\check{D}_{X} G\right)_{Y}-G^{-1} J_{1}\left(\check{D}_{X} G\right)_{J_{1} Y}-G^{-1} J_{2}\left(\check{D}_{X} G\right) J_{J_{2} Y}+G^{-1} J_{3}\left(\check{D}_{X} G\right)_{J_{3} Y}\right\}
\end{align*}
$$

is a metric commutative quaternion connection, where \check{D} an arbitrary linear connection on $T^{\prime} M$.

Proof. $D_{X} J_{i}=0, i=1,2,3$, because D is obtained from \tilde{D} (that is commutative quaternion) by replacing the arbitrary connection with D^{4}.

Similary, $D_{X} G=0$ because, based on Proposition 5.1., $D=D^{4} \tilde{D}$, i.e. D is obtained from the metric connection D^{4} by replacing the arbitrary connection with \tilde{D}.

Theorem 5.2. If ∇ is the Levi-Civita connection defined by the metric G, then the connection

$$
\begin{equation*}
\hat{D}_{X} Y=\frac{1}{4}\left\{\nabla_{X} Y-J_{1}\left(\nabla_{X} J_{1} Y\right)-J_{2}\left(\nabla_{X} J_{2} Y\right)+J_{3}\left(\nabla_{X} J_{3} Y\right)\right\} \tag{5.34}
\end{equation*}
$$

has properties
(a) $\hat{D}_{X} G=0, \hat{D}_{X} J_{i}=0, i=1,2,3, X \in T_{C}\left(T^{\prime} M\right)$;
(b) \hat{D} is uniquily determined by the metric commutative quaternion structure.

Proof. Both results from (5.33) considering $\nabla_{X} G=0$.
The local expression of the Levi-Civita connection defined by the metric G will be studied in a forthcoming paper.

References

[1] Aldea, N., The Holomorphic Flag Curvature of the Kählr Model of a Complex Lagrange Space, Bull. of the Transilvanian Univ. Braşov 9(44), (2002), 39-46.
[2] Aldea, N., Munteanu G., On complex Landsberg and Berwald spaces, Journal of Geometry and Physics 62 (2012), 368-380.
[3] Abate, M., Patrizio, G., Finsler Metrics - A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag, 1994.
[4] Chen, B., Shen, Y., Kähler Finsler metrics are actually strong Kähler, Chin. Ann. Math. Ser. B 30(2) (2009), 173-178.
[5] Munteanu, Gh., Complex Spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Acad. Publ., 2004.
[6] Munteanu, Gh., Metric Almost Semiquaternion Structures, Bull. Math. Soc. Sci. Roumanie, 32(80) (1988), no.4, 153-160.
[7] Oproiu, V., Hyper-Kähler structures on the tangent bundle of a Kähler manifold, Balkan J. of Geom. and its Appl., 15, no.1, (2010), 104-119.
[8] Peyghana, E., Tayebi, A., Finslerian complex and Kählerian structures, Nonlinear Analysis: Real World Applications 11 (2010), 3021-3030.

[^0]: ${ }^{1}$ Transilvania University of Braşov, Faculty of Mathematics and Informatics Iuliu Maniu 50, Braşov 500091, Romania, e-mail: am.szasz@yahoo.com

