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Abstract

In this note our goal is to introduce a generalized quaternionic structures, on the
total space of a complex Finsler space. Some important properties of this structures
are emphasized. A special approach is devoted to the commutative almost quater-
nionic connections.
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1 Introduction

Let (M,F ) be a complex Finsler manifold, i.e., M is a smooth manifold and F is
a Finsler metric on M. In this paper, we introduce the following metric G on T ′M (cf.
Section 3):

G(z, η) = gij̄(z, η)dzi ⊗ dz̄j + a(L)gij̄(z, η)δηi ⊗ δη̄j , (1.1)

where a : Im(L) ⊂ R+ → R+, and L := F 2.
We define an almost hyper-complex structure (G, J1, J2), on the complexified holo-

morphic tangent bundle T ′M of a complex manifold M, where J1 is the natural complex
structure and J2 is an almost complex structure defined by the help of a = a(L). We
demonstrate that (T ′M,J1, J2, J3) is a commutative quaternion structure, [Mu2], where
J3 = J1 ◦ J2.

In the rest of the § 4 we are concerned with the integrability conditions of the structures.
How J1 is the natural complex structure, his Nijenhuis tensor field is vanishing, but the
case of J2 is more complicated. Theorem 3.3. is the main result of this section, and tells
when the (J1, J2) structure is integrable.
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In Section 4 we evaluate under what conditions (T ′M,G, J1, J2) an almost hyper-
Hermitian is almost hyper-Kählerian or at least hyper-Kählerian structure. This condi-
tions are in the Proposition 4.1., Theorem 4.2. and Theorem 4.3.

The last part ot this paper is about the construction of a metric compatible linear
connection with the commutative quaternion structure (J1, J2).

2 Preliminaries

Let M be a complex manifold, dimCM = n and (zk) local complex coordinates in a
chart (U,ϕ). The holomorphic tangent bundle T ′M has a natural structure of complex
manifold, dimCT ′M = 2n, and the induced coordinates in a local chart in u ∈ T ′M are
u = (zk, ηk). The changes of local coordinates in u are given by:

∂

∂zk
=

∂z′h

∂zk

∂

∂z′h
+

∂2z′h

∂zj∂zk

∂

∂η′h
; (2.2)

∂

∂ηk
=

∂z′h

∂zk

∂

∂η′h
.

Consider the sections of the complexified tangent bundle of T ′M. Let V T ′M ⊂ T ′(T ′M)
be the vertical bundle, locally spanned by { ∂

∂ηk }, and V T ′′M its conjugate. The idea of
complex nonlinear connection, briefly (c.n.c.), is an instrument in ’linearization’ of the
geometry of T ′M manifold. A (c.n.c.) is a supplementary complex subbundle to V T ′M in
T ′(T ′M), i.e. T ′(T ′M) = HT ′M ⊕ V T ′M. The horizontal distribution HuT ′M is locally
spanned by

δ

δzk
=

∂

∂zk
−N j

k

∂

∂ηj
, (2.3)

where N j
k(z, η) are the coefficients of the (c.n.c.). The pair {δk := δ

δzk , ∂̇k := ∂
∂ηk } will be

called the adapted frame of the (c.n.c.) which obey to the change rules δk = ∂z′j

∂zk δ′j and

∂̇k = ∂z′j

∂zk ∂̇′j . By conjugation everywhere we obtain an adapted frame {δk̄, ∂̇k̄} on T ′′
u (T ′M).

The dual adapted bases are {dzk, δηk} and {dz̄k, δη̄k}.
The action of natural complex structure on TC(T ′M) is

J(∂k) = i∂k; J(∂̇k) = i∂̇k; J(∂k̄) = −i∂k̄; J(∂̇k̄) = i∂̇k̄ (2.4)

wich in view of (2.3) yields

J(δk) = iδk; J(∂̇k) = i∂̇k; J(δk̄) = −iδk̄; J(∂̇k̄) = i∂̇k̄ (2.5)

and hence H(T ′M) and H(T ′M) are J invariant.
The base manifold of a complex Finsler space is T ′M and the main objects of this

geometry operate on the section of the complexified tangent bundle TC(T ′M), which itself
is decomposed into horizontal, vertical and their conjugates subbundles by a complex
nonlinear connection N, uniquely determined by the complex Finsler function, [3], [5].
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Definition 2.1. A complex Finsler metric on M is a continuous function F : T ′M → R+

satisfying:

(a) L := F 2 is smooth on T̃ ′M := TM \ {0}.

(b) F (z, η) ≥ 0, the equality holds if and only if η = 0;

(c) F (z, λη) = |λ|F (z, η) for ∀λ ∈ C;

(d) the Hermitian matrix

gij̄(z, η) =
∂2L

∂ηi∂η̄j

is positive-definite on T̃ ′M.

Definition 2.2. The pair (M,F ) is called a complex Finsler space.

The assertion (c) says that L is positively homogeneous with respect to the complex
norm, i.e. L(z, λη) = λλ̄L(z, η) for any λ ∈ C. The assertion (d) allows us to define
a Hermitian metric structure on T ′M, because gij̄ is a d-tensor complex nondegenerate,
called in [5] as the fundamental metric tensor of the complex Finsler space (M,F ), with
the inverse gj̄i, and gj̄igik̄ = δj̄

k̄
.

The homogenity condition of the complex Finsler metric allows us to enumerate some
important results. Applying the Euler’s Theorem for L = F 2, we have:

Proposition 2.1. The complex Finsler metric satisfies the conditions

(a) ∂L
∂ηk ηk = L; ∂L

∂η̄k η̄k = L;

(b) gij̄η
i = ∂L

∂η̄j ; gij̄ η̄
j = ∂L

∂ηi ; L = gij̄η
iη̄j ;

(c) ∂gij̄

∂ηk ηk = 0; ∂gij̄

∂η̄k η̄k = 0; ∂gij̄

∂ηk ηi = 0;

(d) gijη
i = 0; ∂gij̄

∂ηk η̄j = gik, where gij = ∂2L
∂ηi∂ηj .

A fundamental problem in a complex Finsler space remains that of determinating the
(c.n.c) function only on complex Finsler metric F. A well-known solution is provided by
the complex Chern-Finsler connection, [3]. Determined from the technique of good vertical
connection, it is proved that the Chern-Finsler connection is a unique N − (c.l.c) of (1, 0)-

type. With the notations in [5], the Chern-Finsler connection is:
CF
DΓ = (

CF

N i
j ,

CF

Li
jk,

CF

Ci
jk),

where
CF

N i
j = gm̄i ∂glm̄

∂zj
ηl = gm̄i ∂2L

∂zj∂η̄m
;

CF

Li
jk = gm̄i δgjm̄

δzk
;

CF

Ci
jk = gm̄i ∂gjm̄

∂ηk
, (2.6)

and
CF

Lī
j̄k

=
CF

C ī
j̄k

= 0.

With a straightforward computation we obtained that
CF

Li
jk = ∂̇j

CF

N i
k.
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Observation 2.1. As a direct consequance of (2.6) it results

δkL = δk̄L = δk̄

(
∂L

∂ηj

)
= 0 (2.7)

Observation 2.2. We will use the notation for the Chern-Finsler connection whithout
the indexes CF .

Locally, in adapted frame fields of the (c.n.c) Chern-Finsler N, the components of the
Lie brackets are:

[δj , δk] = (δkN
i
j − δjN

i
k)∂̇i = 0; (2.8)

[δj , δk̄] = (δk̄N
i
j)∂̇i − (δjN

ı̄
k̄)∂̇ı̄;[

δj , ∂̇k

]
= (∂̇kN

i
j)∂̇i;[

δj , ∂̇k̄

]
= (∂̇k̄N

i
j)∂̇i;[

∂̇j , ∂̇k

]
= 0;

[
∂̇j , ∂̇k̄

]
= 0;

A simple computation get:
(∂̇k̄N

i
j)gim̄ = (∂̇m̄N i

j)gik̄. (2.9)

Now we can add that the nonzero torsion of the complex Chern-Finsler connection are
only:

T l
jk = Ll

jk − Ll
kj = ∂̇jN

l
k − ∂̇kN

l
j ; Ql

jk = C l
jk; Θl

jk̄ = δk̄N
l
j ; ρl

jk̄ = ∂̇k̄N
l
j (2.10)

In the terminology of Abate and Patrizio, [3], the complex Finsler space (M,F ) is
strongly Kähler iff T i

jk = 0, Kähler iff T i
jkη

k = 0, and weakly Kähler iff gil̄T
i
jkη

kη̄l = 0. In
[4] is proved that the strongly Kähler and the Kähler notions actually coincide.

3 Integrabilty of (J1, J2, J3) structure

Consider a generalized Sasaki metric G on T ′M given by

G(z, η) = gij̄(z, η)dzi ⊗ dz̄j + a(L)gij̄(z, η)δηi ⊗ δη̄j , (3.11)

where a : Im(L) ⊂ R+ → R+.
Let J1 the natural complex structure on T ′M), and J2 an other almost complex struc-

ture on T ′M defined by:

J1(δk) = iδk ; J2(δk) =
1√
a
∂̇k (3.12)

J1(δk̄) = −iδk̄ ; J2(δk̄) =
1√
a
∂̇k̄

J1(∂̇k) = i∂̇k ; J2(∂̇k) = −
√

aδk

J1(∂̇k̄) = −i∂̇k̄ ; J2(∂̇k̄) = −
√

aδk̄.
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We will denote whith J3 := J1 ◦ J2. The following relations are true:

J2
1 = J2

2 = −I, J2
3 = I (3.13)

J1J2 = J2J1 = J3

J1J3 = J3J1 = −J2

J2J3 = J3J2 = −J1

Using (3.12) and (3.13), according to [6], we obtain the next theorem:

Theorem 3.1. (T ′M,J1, J2, J3) is a commutative quaternion structure.

Now we shall study the integrability problem for the obtained almost commutative
quaternion structure. The integrability conditions for such a structure are expressed with
the help of various Nijenhuis tensor fields obtained from the tensor fields J1, J2,J3 = J1J2.
For a tensor field K of type (1,1) on a given manifold, we can consider its Nijenhuis tensor
field NK defined by

NK(X, Y ) = [KX, KY ]−K [X, KY ]−K [KX, Y ] + K2 [X, Y ] ,

where X, Y are vector fields on the given manifold. For two tensor fields K, L of type (1,1)
on the given manifold, we can consider the corresponding Nijenhuis tensor field NK,L

defined by

NK,L(X, Y ) = [KX, LY ] + [LX,KY ]−K([X, LY ] + [LX, Y ])−
−L([KX, Y ] + [X, KY ]) + (KL + LK) [X, Y ] .

The almost commutative quaternion structure defined by (J1, J2, J3) is integrable if N1 =
0, N2 = 0, where N1, N2 are the Nijenhuis tensor fields of J1, J2. Equaivalently, the struc-
ture is integrable if N1 + N2 + N3 = 0, or if N12 = 0, where N3 is the Hijenhuis tensor
field of J3 = J1J2 and N12 is the NIjenhuis tensor field of J1, J2.

Since J1 is the natural complex structure, then it is integrable, i.e.

N1 = 0.

Remains the study of N2. With the help of the Lie brackets (2.8) we have obtained:

N2[δj , δk] =
a′

2a2

(
∂L

∂ηj
δl
k −

∂L

∂ηk
δl
j

)
∂̇l + (Li

kj − Li
jk)δl

N2(δj , δk̄) =
a′

2a2

(
∂L

∂η̄k
∂̇j −

∂L

∂ηj
∂̇k̄

)
− (δk̄N

l
j)∂̇l + (δjN

l̄
k̄)∂̇l̄ − (∂̇jN

l̄
k̄)δl̄ + (∂̇k̄N

l
j)δl

N2(δj , ∂̇k) =
a′

2a

(
∂L

∂ηk
δj −

∂L

∂ηj
δk

)
+ (∂̇jN

l
k)∂̇l − (∂̇kN

l
j)∂̇l

N2(δj , ∂̇k̄) =
a′

2a

(
∂L

∂η̄k
δj −

∂L

∂ηj
δk̄

)
+ a

(
(δjN

l̄
k̄)δl̄ − (δk̄N

l
j)δl

)
+ (∂̇jN

l̄
k̄)∂̇j̄ − (∂̇k̄N

l
j)∂̇l

N2(∂̇j , ∂̇k) =
a′

2a

(
∂L

∂ηj
∂̇k −

∂L

∂ηk
∂̇j

)
+ a

(
(∂̇jN

l
k)δl − (∂̇kN

l
j)δl

)
N2(∂̇j , ∂̇k̄) =

a′

2a

(
∂L

∂ηj
∂̇k −

∂L

∂η̄k
∂̇j

)
+ a

(
(δk̄N

l
j)∂̇l − (δjN

l̄
k̄)∂̇l̄ + (∂̇jN

l̄
k̄)δl̄ − (∂̇k̄N

l
j)δl

)
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We have replaced the expressions for the torsions (2.10) in the above relations, and is
obtain:

N2(δj , δk) =
a′

2a2

(
∂L

∂ηj
δl
k −

∂L

∂ηk
δl
j

)
∂̇l − T l

jkδl

N2(δj , δk̄) =
a′

2a2

(
∂L

∂η̄k
∂̇j −

∂L

∂ηj
∂̇k̄

)
− ρl̄

j̄kδl̄ + ρl
jk̄δl −Θl

jk̄∂̇l + Θl̄
k̄j ∂̇l̄

N2(δj , ∂̇k) =
a′

2a

(
∂L

∂ηk
δl
j −

∂L

∂ηj
δl
k

)
δl + T l

jk∂̇l

N2(δj , ∂̇k̄) =
a′

2a

(
∂L

∂η̄k
δj −

∂L

∂ηj
δk̄

)
+ a

(
Θl̄

k̄jδl̄ −Θl
jk̄δl

)
+ ρl̄

k̄j ∂̇l̄ − ρl
jk̄∂̇l

N2(∂̇j , ∂̇k) =
a′

2a

(
∂L

∂ηj
δl
k −

∂L

∂ηk
δl
k

)
∂̇l + aT l

jkδl

N2(∂̇j , ∂̇k̄) =
a′

2a

(
∂L

∂ηj
∂̇k̄ −

∂L

∂η̄k
∂̇j

)
+ a

(
Θl

jk̄∂̇l −Θl̄
k̄j ∂̇l̄ + ρl̄

k̄jδl̄ − ρl
jk̄δl

)
From the linear independence of the base fields it results that (T ′M,G, J2) is complex if
and only if:

a′
(

∂L

∂ηj
δl
k −

∂L

∂ηk
δl
j

)
= 0 and T l

jk = 0

Θl
jk̄ = 0 and ρl

jk̄ = 0, (3.14)

and their conjugates.

Theorem 3.2. The manifold (T ′M,G, J2) is complex if and only if (M,F ) is Kähler, the
torsions Θl

jk̄
and ρl

jk̄
are zero and

a′
(

∂L

∂ηj
δl
k −

∂L

∂ηk
δl
j

)
= 0. (3.15)

Corollary 3.1. (T ′M,G, J2) is a complex manifold if and only if (M,F ) is a generalized
complex Berwald space and Θi

jk̄
= 0.

Observation 3.1. The notion of generalized complex Berwald space is described in [AM].

We have seen, that J1 is integrable, J2 is integrable when the conditions in the Theorem
3.2. are fullfield, then the integrability condition for the (J1, J2, J3) quaternion structure
are in the next theorem:

Theorem 3.3. The commutative quaternion structure (J1, J2, J3) is intergable if and only
if (M,F ) is a generalized complex Berwald space and Θi

jk̄
= 0.
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4 Hyper-Kähler Structures on T ′M

The structure defined in (3.13) is one hypercomplex four dimensional. Moreover,
(T ′M,G, J1, J2) has an almost hyper-Kählerian structure if the following conditions are
satisfied:

(a) (T ′M,G, J1, J2) is an almost hyper-Hermitian manifold;

(b) The fundamental 4-form Ω is closed.

For the point (a) we shall be interested in the conditions under wich the metric G
is almost Hermitian with respect to the almost complex structures J1, J2, considered in
(3.12), i.e.

G(J1X, J1Y ) = G(X, Y ) G(J2X, J2Y ) = G(X, Y ), ∀X, Y ∈ TC(T ′M).

We have

Proposition 4.1. (T ′M,G, J1) (T ′M,G, J2) and (T ′M,G, J3) are almost Hermitian man-
ifolds, i.e. G(JX, JY ) = G(X, Y ) ∀X, Y.

Proof. For J1 the condition G(J1X, J1Y ) = G(X, Y ) is verified imediatly, and for J2 it’s
enough to verify for the elements of the adapted frame

{
δk, ∂̇k, δk̄, ∂̇k̄

}
the above relations.

The nonzero values of G(J2X, J2Y ) are

G(J2δj , J2δk̄) = G(
1√
a
∂̇j ,

1√
a
∂̇k̄) =

1
a
G(∂̇j , ∂̇k̄) =

=
1
a
· agjk̄ = gjk̄ = G(δj , δk̄)

G(J2∂̇j , J2∂̇k̄) = G(−
√

aδj ,−
√

aδk̄) = aG(δj , δk̄) =
= a · gjk̄ = G(∂̇j , ∂̇k̄),

For the almost hyper-Hermitian manifold (T ′M,G, J1, J2) the fundamental 2−forms
φ1, φ2 are defined by

φ1(X, Y ) = G(X, J1Y ), φ2(X, Y ) = G(X, J2Y ),

where X, Y are vector fields on sections of TC(T ′M).
Since we have a third almost complex structure J3 = J1J2 which is almost Hermitian

with respect to G, we can consider a third 2−form φ3 defined by φ3(X, Y ) = G(X, J3Y ),
next we have the fundamental 4-form Ω, defined by

Ω = φ1 ∧ φ1 + φ2 ∧ φ2 + φ3 ∧ φ3.

The almost hyper-Hermitian manifold (T ′M,G, J1, J2) is almost hyper-Kählerian if the
fundamental 4-form Ω is closed, i.e. dΩ = 0. The condition for Ω to be closed is equivalent
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to the conditions for φ1, φ2 (and hence for φ3 too) to be closed, i.e. dφ1 = 0,dφ2 = 0. In
our case, it is more convenient to study the conditions under which the 2-forms φ1, φ2 are
closed.

The expressions of φ1, φ2 in adapted local frames are

φ1(z, η) = −igjk̄dzi ∧ dz̄j − ia(L)gjk̄δη
j ∧ δη̄k. (4.16)

φ2(z, η) = −
√

a(L)gjk̄dzj ∧ δη̄k +
√

a(L)gjk̄δη
j ∧ dz̄k. (4.17)

With a straightforward computation using properties of the Chern-Finsler (c.n.c.) results

dφ1 = −i
{

δigjk̄dzi ∧ dzj ∧ dz̄k + δı̄gjk̄dz̄i ∧ dzj ∧ dz̄k+

+ ∂̇i(agjk̄)δη
j ∧ δη̄k ∧ δηi + ∂̇ı̄(agjk̄)δη

j ∧ δη̄k ∧ δη̄i +

+
[
∂̇igjk̄δη

i ∧ dzj ∧ dz̄k + agjk̄δh(Nk
l )δηj ∧ dz̄l ∧ dzh

]
+

+
[
∂̇ı̄gjk̄δη̄

i ∧ dzj ∧ dz̄k − agjk̄δh̄(N j
l )δη̄k ∧ dzl ∧ dz̄h

]
+

+
[
δi(agjk̄)dzi ∧ δηj ∧ δη̄k − agjk̄∂̇h(N j

l )dzl ∧ δηh ∧ δη̄k
]

+

+
[
δı̄(agjk̄)dz̄i ∧ δηj ∧ δη̄k + agjk̄∂̇h̄(Nk

l )δηj ∧ dz̄l ∧ δη̄h
]
−

− agjk̄∂̇h̄(N j
l )dzl ∧ δη̄h ∧ δη̄k + agjk̄∂̇h(Nk

l )δηj ∧ dz̄l ∧ δηh
}

=

= −i

{
1
2
(δigjk̄ − δjgik̄)dzi ∧ dzj ∧ dz̄k +

1
2
(δı̄gjk̄ − δj̄gik̄)dz̄i ∧ dzj ∧ dz̄k+

a′
L

∂ηi
gjk̄δη

j ∧ δη̄k ∧ δηi + a′
L

∂η̄i
gjk̄δη

j ∧ δη̄k ∧ δη̄i +[
∂̇igjk̄ − agil̄δj(N l

k)
]
dzj ∧ dz̄k ∧ δηi +

[
∂̇ı̄gjk̄ − aglh̄δk̄(N

l
h)

]
dzj ∧ dz̄k ∧ δη̄i

}

So we have deduced

Theorem 4.1. The manifold (T ′M,G, J1) is Kähler if and only if:

δigjk̄ = δjgik̄ (4.18)
a′(L) = 0 ⇔ a(L) = c ∈ R

g l̄i∂̇igjk̄ = aδj(N l
k)

and their conjugates.
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Analogous for dφ2 we have:

dφ2 = −
(

a′

2
√

a
(δiL)gjk̄ +

√
aδigjk̄

)
dzj ∧ δη̄k ∧ dzi + (4.19)

+
(

a′

2
√

a
(δiL)gjk̄ +

√
aδigjk̄

)
δηj ∧ dz̄k ∧ dzi −

−
(

a′

2
√

a
(δı̄L)gjk̄ +

√
aδı̄gjk̄

)
dzj ∧ δη̄k ∧ dz̄i +

+
(

a′

2
√

a
(δı̄L)gjk̄ +

√
aδı̄gjk̄

)
δηj ∧ dz̄k ∧ dz̄i −

−
(

a′

2
√

a
(∂̇iL)gjk̄ +

√
a∂̇igjk̄

)
dzj ∧ δη̄k ∧ δηi +

+
(

a′

2
√

a
(∂̇iL)gjk̄ +

√
a∂̇igjk̄

)
δηj ∧ dz̄k ∧ δηi −

−
(

a′

2
√

a
(∂̇ı̄L)gjk̄ +

√
a∂̇ı̄gjk̄

)
dzj ∧ δη̄k ∧ δη̄i +

+
(

a′

2
√

a
(∂̇ı̄L)gjk̄ +

√
a∂̇ı̄gjk̄

)
δηj ∧ dz̄k ∧ δη̄i +

+
√

agjk̄δh(Nk
l )dzj ∧ dz̄l ∧ dzh +

√
agjk̄∂̇h̄(Nk

l )dzj ∧ dz̄l ∧ δη̄h

+
√

agjk̄∂̇h(Nk
l )dzj ∧ dz̄l ∧ δηh

−
√

agjk̄δh̄(N j
l )dzl ∧ dz̄h ∧ dz̄k −

√
agjk̄∂̇h(N j

l )dzl ∧ δηh ∧ dz̄k

−
√

agjk̄∂̇h̄(N j
l )dzl ∧ δη̄h ∧ dz̄k.

Theorem 4.2. The almost complex manifold (T ′M,G, J2) is almost Kähler if and only if
one of the next condition sets are fullfield:

a = 0 and ∂̇igjk̄ = 0; (4.20)
or

δigjk̄ = δjgik̄, Θk̄
l̄h = 0, Ll

kiglj̄ = −∂̇k

(
N l̄

j̄

)
gil̄,

a′

2a
(∂̇iL)gjk̄ = −∂̇igjk̄ , (4.21)

and their conjugates.

Using the integrability conditions for J2 in Theorem 3.2., we obtain:

Theorem 4.3. The manifold (T ′M,G, J2) is Kähler if and only if, one of the next con-
dition sets are fullfield:

a = 0 and G is purely Hermitian; (4.22)
or

Ll
kiglj̄ = 0,

a′

2a
(∂̇iL)gjk̄ = −∂̇igjk̄, (4.23)

and their conjugates.
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Corollary 4.1. The structure (T ′M,G, J1, J2, J3) is Hyper-Kählerian if and only if (M,F )
is a complex Berwald manifold with Θi

jk̄
= 0, a′ = 0, G is purely Hermitian, and or a = 0

or Ll
kiglj̄ = 0.

5 Metric compatible linear connection with the commuta-
tive quaternion structure

Further we will deal with linear connections compatible with a commutative quaternion
metric structure.

Definition 5.1. A linear connection D on T ′M is called metric connection commutative
quaterion if:

DJi = 0, i = 1, 2, 3; and DG = 0. (5.24)

The general family of the linear connections D compatible with the metric G, according
to [6], is

DXY = ĎXY +
1
2
g−1(ĎXg)Y , (5.25)

where Ď is an arbitrary linear connection.
Let us consider the connection transformations:

ĎXY
T1→ D1

XY = ĎXY +
1
2
J1ĎX(J1Y ) (5.26)

ĎXY
T2→ D2

XY = ĎXY +
1
2
J2ĎX(J2Y ) (5.27)

ĎXY
T3→ D3

XY = ĎXY − 1
2
J3ĎX(J3Y ) (5.28)

ĎXY
T4→ D4

XY = ĎXY +
1
2
(ĎXg)Y (5.29)

where (ĎXg)Y is a 1-form defined as follows (ĎXg)Y Z = (ĎXg)(Y, Z). Obviously Di
XJi =

0, i = 1, 2, 3, X ∈ TC(T ′M).
Then, according to [6], we consider the commutative quaternion connection:

D̃XY =
1
4

{
ĎXY − J1(ĎXJ1Y )− J2(ĎXJ2Y ) + J3(ĎXJ3Y )

}
(5.30)

where Ď is an arbitrary linear connection.

Proposition 5.1. The following relation is true:

D̃D4 = D4D̃,

where D̃D4 (respectively D4D̃) is a connection obtained from D̃ (respectively D4) by re-
placing Ď with D4 (respectively D̃).
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Proof.

(D̃D4)XY =
1
4

{
D4

XY − J1(D4
XJ1Y )− J2(D4

XJ2Y ) + J3(D4
XJ3Y )

}
= (5.31)

=
1
4

{
ĎXY +

1
2
G−1(ĎXG)Y − J1(ĎX(J1Y ) +

1
2
G−1(ĎXG)(J1Y ))−

− J2(ĎX(J2Y ) +
1
2
G−1(ĎXG)(J2Y )) + J3(ĎX(J3Y ) +

1
2
G−1(ĎXG)(J3Y ))

}
=

=
1
4

{
ĎXY − J1(ĎX(J1Y )− J2(ĎX(J2Y ) + J3(ĎX(J3Y )

}
+

+
1
8

{
G−1(ĎXG)Y − J1G

−1(ĎXG)(J1Y ) − J2G
−1(ĎXG)(J2Y ) + J3G

−1(ĎXG)(J3Y )

}
On the other hand:

(D4D̃)XY = D̃XY +
1
2
G−1(D̃XG)Y = (5.32)

=
1
4

{
ĎXY − J1(ĎXJ1Y )− J2(ĎXJ2Y ) + J3(ĎXJ3Y )

}
+

+
1
8
G−1

{
(ĎXG)Y − J1(ĎXG)J1Y − J2(ĎXG)J2Y + J3(ĎXG)J3Y

}
=

=
1
4

{
ĎXY − J1(ĎXJ1Y )− J2(ĎXJ2Y ) + J3(ĎXJ3Y )

}
+

+
1
8

{
G−1(ĎXG)Y −G−1J1(ĎXG)J1Y −G−1J2(ĎXG)J2Y + G−1J3(ĎXG)J3Y

}
,

where D̃XGY Z = D̃XG(Y, Z). Therefore D̃D4 = D4D̃.

Theorem 5.1. The following linear connection:

DXY = (D̃D4)XY, X , Y ∈ TC(T ′M)

or equivalently

DXY =
1
4

{
ĎXY − J1(ĎXJ1Y )− J2(ĎXJ2Y ) + J3(ĎXJ3Y )

}
+ (5.33)

+
1
8

{
G−1(ĎXG)Y −G−1J1(ĎXG)J1Y −G−1J2(ĎXG)J2Y + G−1J3(ĎXG)J3Y

}
is a metric commutative quaternion connection, where Ď an arbitrary linear connection
on T ′M .

Proof. DXJi = 0, i = 1, 2, 3, because D is obtained from D̃ (that is commutative quater-
nion) by replacing the arbitrary connection with D4.

Similary, DXG = 0 because, based on Proposition 5.1., D = D4D̃, i.e. D is obtained
from the metric connection D4 by replacing the arbitrary connection with D̃.
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Theorem 5.2. If ∇ is the Levi-Civita connection defined by the metric G, then the con-
nection

D̂XY =
1
4
{∇XY − J1(∇XJ1Y )− J2(∇XJ2Y ) + J3(∇XJ3Y )} (5.34)

has properties

(a) D̂XG = 0, D̂XJi = 0, i = 1, 2, 3, X ∈ TC(T ′M);

(b) D̂ is uniquily determined by the metric commutative quaternion structure.

Proof. Both results from (5.33) considering ∇XG = 0.

The local expression of the Levi-Civita connection defined by the metric G will be
studied in a forthcoming paper.
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