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Abstract

The nilpotent version of the Dirac equation can be constructed on the basis of the
algebra of a double vector space or complexified double quaternions. This algebra is
isomorphic to the standard gamma matrix algebra, with 64 units which can be pro-
duced by just 5 generators. The H4 algebra used in the Berwald-Moor metric is a
distinct subalgebra of this 64-part algebra. The creation of the 5 generators requires
the rotation symmetry of one of the two component vector spaces to be preserved while
the other is broken. It is convenient to identify the respective spaces as an observable
real space and an unobservable ‘vacuum’ space, with corresponding physical prop-
erties. In combination the 5 generators produce a nilpotent structure which can be
identified as a fermionic wavefunction or solution of the Dirac equation. The spinors
required to generate the 4 components of the wavefunction can be derived from first
principles and have exactly the same form as the four components of the Berwald-
Moor metric. They also incorporate the units of the H4 algebra in an identical way.
The spinors produce a zero product which can be interpreted in terms of a fermionic
singularity arising from the distortion introduced into the vacuum (or spinor) space
by the application of a nilpotent condition.
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1 A dual vector space

We need to begin by describing a number of significant algebras. The four quaternion
units, i , j , k , 1, follow the well-known multiplication rules:

i2 = kj 2 = k2 = i j k = −1 (1)
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i i = −j i = k (2)

j k = −kj = i (3)

ki = −ik = j . (4)

The multivariate vector units, i, j, k, 1, are effectively complexified quaternions (ii)
= i, (ij ) = j, (ik) = k, (i1) = i, and follow the multiplication rules:

i2 = j2 = k2 = 1 (5)

ij = −ji = ik (6)

jk = −kk = ii (7)

ki = −ik = ij. (8)

They are isomorphic to Pauli matrices. If we complexify this algebra, we revert to
quaternions, so (ii) = i , (ij) = j , (ik) = k , etc. Multivariate vectors differ from ordinary
vectors in having a full (algebraic) product:

ab = a · b + ia× b (9)

from which all the rules concerning unit vector multiplication may be derived. Terms like
ii, ij, ik are pseudovectors (e.g. area, angular momentum) and i is a pseudoscalar (e.g.
volume). The units i, j, k define a complete Clifford algebra of 3D space:

i j k vector
ii ij ik bivector pseudovector quaternion
i trivector pseudoscalar
1 scalar

Pseudovectors and pseudoscalars give us areas and volumes, etc. The intrinsic complexifi-
cation produces a kind of doubling of the elements. Let us suppose we have another such
algebra, isomorphic with the first:

I J K vector
iI iJ iK bivector pseudovector quaternion
i trivector pseudoscalar
1 scalar

If we combine these two algebras commutatively in a tensor product, or alternatively take
the algebraic product of the eight base units, 1, i, j, k, i, I, J, K, we obtain 64 terms,
which are + and − versions of:

i j k ii ij ik i 1
I J K iI iJ iK
iI jI kI iiI ijI ikI
iJ jJ kJ iiJ ijJ ikJ
iK jK kK iiK ijK ikK
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We can describe this as a double vector algebra or a double Clifford algebra of 3D space.
Alternatively, we can take the algebraic product of the four quaternion units, 1, i , j , k ,and
the four vector units i, i, j, k, to obtain + and − versions of:

i j k ii ij ik i 1
i j k ii ij ik
ii ji ki iii iji iki
ij jj kj iij ijj ikj
ik jk kk iik ijk ikk

This is exactly isomorphic to the previous algebra and can be described as a vector quater-
nion algebra. A third version of the same algebra could be obtained by complexifiying
the algebraic product of two commutative sets of quaternion units i , j , k , I , J , K . This
algebra has + and − versions of:

i j k ii ij ik i 1
I J K iI iJ iK
iI j I kI iiI ij I ikI
iJ j J kJ iiJ ij J ikJ
iK jK kK iiK ijK ikK

This can be described as a complexified double quaternion algebra.

2 The gamma matrices and the H4 algebra

The three 64-part algebras are completely isomorphic. The units can be represented
as a group of order 64, with a minimum of 5 generators. Their physical significance is
that they are also isomorphic to the gamma algebra of the Dirac equation, based on 4 ×
4 matrices. In fact all possible gamma matrices can be derived from the products of two
commuting sets of Pauli matrices, say σ1, σ2, σ3 and Σ1, Σ2, Σ3. Relativistic quantum
mechanics, it seems, requires a dual vector space. This is in addition to the ‘doubling’
produced by the complex nature of each vector space. 1, 2.

The 5 generators of the group can be matched to the 5 gamma matrices in a number
of ways, for example:

γ0 = ik ; γ1 = i i; γ2 = i j; γ3 = ik; γ5 = ij .

There are many ways of doing this but the overall structure is always the same.
A particular subalgebra of the 64-part algebra is the H4 algebra. This can be obtained
using coupled quaternions, with units 1, iI , jJ , kK . The result is a cyclic but commutative
algebra with multiplication rules

iI iI = jJ jJ = kKkK = 1 (10)

iI jJ = jJ iI = kK (11)
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jJkK = kKjJ = iI (12)

kKiI = iI kK = jJ (13)

The same algebra can be achieved with the negative values of the paired vector units 1,
−iI, −jJ, −kK. (1 is equivalent here to −ii.) This time we have:

(−iI)(−iI) = (−jJ)(−jJ) = (−kK)(−kK) = 1 (14)

(−iI)(−jJ) = (−jJ)(−iI) = (−kK) (15)

(−jJ)(−kK) = (−kK)(−jJ) = (−iI) (16)

(−kK)(−iI) = (−iI)(−kK) = (−jJ) (17)

If we use the symbols I = iI = −iI, J = jJ = −jJ, K = kK = −kK, 1, to represent
this algebra, we can structure the relationships in a group table:

* 1 I J K

1 1 I J K
I I 1 K J
J J K 1 I
K K I J 1

The group is a Klein-4 group, a noncyclic group of order 4.

3 Nilpotent quantum mechanics

One of the most significant aspects of the algebraic versions of the gamma algebra
is that they allow us to create a very powerful and streamlined version of relativistic
quantum mechanics. 1, 2 The simplest way to derive this is to begin with Einsteins energy-
momentum conservation equation (with the usual convention that c = 1):

E2 − p2 −m2 = 0 (18)

We can now use our algebra to factorize this equation, Here we will use the combination
of four quaternion units (1, i , j , k) and four multivariate vector units (i, i, j, k) though
we could equally use the double vector or complex double quaternion algebras. The eight
base units (1, i , j , k , i, j, k, i) have a similar structure to Penrose’s twistors, 3 with
four real or norm −1 components and four imaginary or norm 1 components. There is a
significant difference, however, in that the connection between the units of space and time
is a quantum rather than a classically relativistic one. Even in conventional relativistic
quantum mechanics, the connection between space and time is not that of a true 4-vector,
but rather one mediated by the gamma matrices, with different gammas applied to the
space and time components. The algebra now allows us to factorize (18) in the form

(ikE + i ipx + i jpy + ikpz + jm)(ikE + i ipx + i jpy + ikpz + jm) = 0 (19)
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or
(ikE + ip + jm)(ikE + ip + jm) = 0. (20)

If we now apply a canonical quantization procedure to the first bracket in these squared
expressions, to replace the terms i and p by the operators E → i∂/∂t, p→ −i∇ (this time
equating ~ to 1), and assume that the operators act on the phase factor for a free fermion,
e−i(Et−p.r), we obtain the nilpotent Dirac equation for a free fermion:(

∓k
∂

∂t
∓ ii∇+ jm

)
(±ikE ± ip + jm)e−i(Et−p.r) = 0 (21)

If we use a multivariate vector for the p or ∇ term it automatically includes spin (through
the extra × term in the full product). 4 So, here, p is interchangeable with σ.p and ∇
with σ.∇. However, if we should revert to using ordinary vectors at any time, we would
have to include an explicit spin or angular momentum term.

As usual, 4 simultaneous solutions are required for the wavefunction: 2 for fermion /
antifermion × 2 for spin up / spin down. Rather than a 4 × 4 matrix differential operator
and a column vector wavefunction, we use a row vector operator and a column vector
wavefunction, each of which may be represented in abbreviated form by (±ikE±ip+jm).
In the nilpotent formalism, the four solutions can be represented as, say:

(ikE + ip + jm) fermion spin up
(ikE− ip + jm) fermion spin down
(−ikE + ip + jm) antifermion spin down
(−ikE− ip + jm) antifermion spin up

The observed particle state is the first in the column, while the others are the accompanying
vacuum states, or states into which the observed particle could transform by respective P,
T and C transformations:

P i(ikE + ip + jm)i = (ikE− ip + jm)
T k(ikE + ip + jm)k = (− ikE + ip + jm)
C −j (ikE + ip + jm)j = (− ikE− ip + jm)

Replacing the observed fermion state spin up with any of the others would simultaneously
transform all four states by P, T or C. It is often convenient to specify just the first
term, with the others assumed to be automatic consequences. The relation between the
P, T, C transformations and vacuum can be shown in a relatively simple way. If we take
(±ikE±ip+jm) and post-multiply it by the idempotent k(±ikE±ip+jm) any number
of times, the only effect is to introduce a scalar multiple, which can be normalized away.

(±ikE± ip + jm)k(±ikE± ip + jm)k(±ikE± ip + jm) ... → (±ikE± ip + jm) (22)

Similarly with (jE ± ip + jm or (iE ± ip + jm. All these idempotent quantities can be
regarded as vacuum operators, and k , i and j , or, equivalently, K, I and J, as coefficients
of a ‘vacuum space’. Nilpotent quantum mechanics (NQM) produces all the standard
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results of conventional relativistic quantum mechanics, which can easily be obtained by
replacing (21) with

−iγ5

(
γ0
∂

∂t
+ γ1

∂

∂x
+ γ2

∂

∂y
+ γ3

∂

∂z
+ im

)
= 0 (23)

Standard classic results obtainable through NQM include spin ½, one-handed helicity for
weakly interacting states, and the zitterbewegung which emerges as an automatic switching
process between the four states in the wavefunction, and which is interpreted as a mass-
generating switching between the fermion and its antifermion vacuum partner, and the two
helicity states, which are already mixed in real fermions. NQM also produces many new
results. 1 Among the most important are the descriptions of three different boson-type
states, which are combinations of the fermion state which any of the P, T or C transformed
ones, the result being a scalar wavefunction.

(±ikE ± ip + jm)(∓ikE± ip + jm) spin 1 boson
(±ikE ± ip + jm)(∓ikE∓ ip + jm) spin 0 boson
(±ikE ± ip + jm)(±ikE∓ ip + jm) fermion-fermion combination

One of the most significant aspects of this formalization is that a spin 1 boson can be
massless, but a spin 0 boson cannot, as then (±ikE± ip)(∓ikE∓ ip) would immediately
zero: hence Goldstone bosons must become Higgs bosons in the Higgs mechanism.

The key aspect of NQM, is the fact that an operator of the form (ikE+ ip+ jm) auto-
matically generates a phase term on which it operates to produce a nilpotent amplitude of
the form (ikE+ ip+ jm), that is, one that squares to zero. We don’t really need an equa-
tion. The fermion needn’t be free. We can incorporate field terms or covariant derivatives
into the operator, with, for example, E → i∂/∂t + eφ + ..., and p → −i∇ + eA + ... .
We can still represent the operator as (ikE+ ip+ jm), but the phase term will no longer
be e−i(Et−p.r). It will be whatever is needed to create an amplitude of the general form
(ikE + ip + jm), which squares to zero, with the eigenvalues E and p representing the
more complicated expressions that will result from the presence of the field terms. In
principle, this means that we can do relativistic quantum mechanics for a fermion in any
state, subject to any number of interactions, simply by defining an operator of the form
(±ikE ± ip + jm). This will then uniquely determine the phase factor which makes the
amplitude nilpotent. There is no need to define any equation at all:

operator acting on phase factor2 = amplitude2 = 0. (24)

In NQM the total structure of the universe is exactly zero. Pauli exclusion, a fundamen-
tally nonlocal phenomenon, is an immediate consequence. Imagine creating a fermion
wavefunction of the form ψf = (ikE + ip + jm) from absolutely nothing; then we must
simultaneously create the dual term, ‘vacuum’, ψf = −(ikE + ip + jm), which negates it
both in superposition and combination:

ψf + ψv = (ikE + ip + jm)− (ikE + ip + jm) = 0 (25)
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ψfψv = −(ikE + ip + jm)(ikE + ip + jm) = 0 (26)

Pauli exclusion then says that no two fermions share the same vacuum.
As an example of the power of NQM, we may show a calculation involving the Coulomb
interaction. The U(1) symmetry group for the Coulomb interaction comes from the char-
acterization of a fermion as a point source with spherical symmetry. It is a purely scalar
symmetry defined only by the magnitude of the charge, or source of the interaction. This
is effectively equivalent to defining a coupling constant for the interaction, which maintains
its value independent of the distance from the source. Here, we use a version of Dirac’s
standard prescription for converting the differential operator to polar coordinates,5 with
the explicit inclusion of a fermionic spin / angular momentum term:(

±ikE ± i

(
∂

∂r
+

1
r
± i

(
j + 1

2

r

))
+ jm

)
. (27)

The fundamental condition necessary to assign this operator to a fermion state is that
it maintains Pauli exclusion and leads to a nilpotent solution when applied to a phase
factor. This leads to the local manifestation of the U(1) symmetry. It can be seen, simply
by inspection, that it will be impossible to obtain a nilpotent solution (i.e. a nilpotent
amplitude) and Pauli exclusion with any phase factor unless the operator ikE includes
a potential energy term varying with 1 / r to cancel out the effect of that in the i part
of the operator. So, simply requiring spherical symmetry for a point particle, requires a
term of the form A / r to be added to E.(

±ik
(

E +
A

r

)
± i

(
∂

∂r
+

1
r
± i

(
j + 1

2

r

))
+ jm

)
. (28)

Deriving the solution for this case provides a model for all other cases. If all point particles
are spherically symmetric sources, then the minimum nilpotent operator will be of the form
(28). To establish that this is a nilpotent, we must now find the phase to which this must
apply to create a nilpotent amplitude. This is a convenient example for showing how an
operator fixes the phase factor and quite quickly produces the characteristic solution for the
Coulomb force (hydrogen atom, etc.). The solution for (28) is relatively straightforward.
The ease of calculation is due to the fact that the structure provides dual information
about both fermion and vacuum. We apply the specified operator to the phase factor

e−arrγ
∑
ν=0

aνr
ν (29)

to find the amplitude (derived, as in the conventional solution, by inspired guesswork or
trial and error), and equate the squared amplitude to zero.

4
(
E +

A

r

)2

= −2

(
−a+

γ

r
+
ν

r
+ ...+ i

(
j + 1

2

r

))

−2

(
−a+

γ

r
+
ν

r
+ ...− i

(
j + 1

2

r

))
+ 4m2 (30)
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Equating constant terms, we find:

a =
√
m2 − E2 (31)

Equating terms in 1/r2, with ν = 0:

γ = −1 +

√(
j +

1
2

)2

−A2 (32)

Assuming the power series terminates at n′, and equating coefficients of 1/r for ν = n′:

2EA = −2
√
m2 − E2(γ + 1 + n′) (33)

and
E

m
=

1√
1 + A2

(γ+1+n′)2

=
1√

1 + A2(√
(j+ 1

2
)2−A2+n′

)2

. (34)

When A = Ze2 we have the ‘hydrogen atom’ solution in just 6 lines!

4 The fermion as a singularity

One way of looking at fermion structure is to say that it requires two ‘spaces’ to
define a particle singularity. We can describe one of these as real space and the other
as the ‘vacuum space’ which we have previously defined. This space is closely connected
with charge and the weak, strong and electric interactions, as well as with T, P and C
transformations. The generators of the combined 64-part algebra, significantly, require
the symmetry of one space to be broken while the other is preserved:

K iIi iIj iIk iJ
energy momentum mass
time space proper time

The space with the unbroken symmetry (lower case symbols) is real space, the space
of observation. The space with the broken symmetry (upper case symbols) is ‘vacuum
space’, the space of all unobservable quantities (time, mass, charge, etc). The creation
of a singularity using these two spaces determines that they are precisely dual and that
each contains the same information as the other, though in a different form as regards
observation. The fermionic singularity produces an asymmetry or chirality in the space
of observation because of its combination in the asymmetric nilpotent structure with the
unobserved dual vacuum space.

The combination of fermion singularity and spatial duality has many manifestations:
spin ½ and nonzero rest mass occur because the fermion ‘rotation’ has to negotiate 2
spaces but with an observed asymmetry; zitterbewegung comes from the switching de-
termined by the duality between the spaces; spin chirality of fermions emerges through
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exactly the same process as the chirality producing mass via zitterbewegung, because the
spinor process produces an observed asymmetry between the spaces that are dual in their
original formulation. And it becomes apparent that the zitterbewegung mass is exactly
that produced by the chirality of vacuum space in the Higgs mechanism. Berry phase is
an expression of the singularity of the fermion state and is equivalent to spin ½ (topology
with a singularity produces an extra twist, equivalent to ½). The pole in the fermion prop-
agator occurs at the boundary between observed space (+E) and vacuum space (−E), the
combination which produces the singularity.

A possible analogy between the two spaces is, if we create a knot out of two pieces
of string, say red and blue, but imagine that each doesn’t know that the other exists
(which is effectively the meaning of commutativity). We then imagine seeing the universe
from the point of view of one of them, say, the blue string. From the blue perspective
(‘blue space’ / lower case symbols), the blue string is straight, so we must devise some
special contortion to create the state of the red string from the blue’s perspective. The
spatial ‘double twist’ becomes equivalent to a singularity, an additional structure within
the space. (The paired quaternion / vector units, I = iI = −iI, J = jJ = −jJ, K =
kK = −kK, in fact, define a minimal degree of mathematical knottedness in that each
operated on by one of the others produces the third, with no anticommutativity.)

Penrose has examined something similar from the point of view of twistor theory, which
has a family resemblance to the algebra of the dual space in that it is constructed of four
real units and four imaginary. Visually, the effect can be represented in the Robinson con-
gruence. 3, 6 Penrose’s theory, however, assumes a classical 4-dimensional relation between
space and time or momentum and energy, while NQM requires a quantum connection to
be made via ‘vacuum space’ (k , i , j ), or through the ‘gamma matrices’:

ik i i i j ik j
K iIi iIj iIk iJ
energy momentum mass
time space proper time

In effect, Penrose has to eliminate the mass and take the scalar product of the space-
time to preserve the 4-vector structure which he has privileged.

The twistors derive their dual 4-D vector space from the intrinsic duality of a 3-D
vector space, in requiring vectors and pseudovectors. However, NQM really requires an
additional duality – a dual dual space, which does not require an arbitrary extension to
4-D. The apparent ‘4-dimensionality’ comes from a combination of 2 × 3-D. Mass emerges
from this extra duality even if we assume that the intrinsic motion of the particles is at
the speed of light. Defining a physical singularity in terms of two vector spaces produces
mass, as well as spin ½and chirality.
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5 Defining a dual space spinor

In standard relativistic quantum mechanics, the wavefunction, say ψ, is multiplied by
a 4-spinor, a summation of 4 terms which adds to 1. ψ is a solution of the Dirac equation,
and so is ψ multiplied by any of the 4 terms in the spinor. Individual terms in the spinor
are used as projection operators to project out individual states fermion / antifermion,
spin up / down. The nilpotent formalism doesn’t need spinors because the terms are
already projected, but it is possible to set it up in such a way as spinors can be used. The
most convenient way is to use both pre- and post-multiplication of ψ, as with the C, P, T
operators. This dual multiplication emerges from the fact that the nilpotent wavefunction
is already pre-multiplied by an algebraic operator, by comparison with the conventional
one.

All the standard aspects of spin and helicity are easily recovered with NQM. This
means that it is possible to find a spinor structure which will generate the NQM state
vector. A set of primitive idempotents constructing a spinor can be defined in terms of
the H4 algebra, constructed from the dual vector spaces:

(1−iI−jJ−kK)/4
(1−iI+jJ+kK)/4
(1+iI−jJ+kK)/4
(1+iI+jJ−kK)/4

As required the 4 terms add up to 1, and are orthogonal as well as idempotent, all products
between them being 0. The same terms can be generated using coupled quaternions rather
than vectors:

(1+iI+jJ+iI )/4
(1+iI−jJ−iI )/4
(1−iI+jJ−iI )/4
(1−iI−jJ+iI )/4

Complexified vector quaternions produce the same structures as the dual vectors:

(1−ii i−ij j−ikk)/4
(1−ii i+ij j+ikk)/4
(1+ii i−ij j+ikk)/4
(1+ii i+ij j−ikk)/4

These spinor structures were produced following discussions with J. B. Almeida, who has
been working on an extensive theory of spinor structure.

The ‘spaces’ in the spinor structure are notably completely dual. The system, however,
introduces chirality, for the signs cannot be completely reversed. We can only reverse two
of them, e.g.
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(1+iI−jJ+kK)/4
(1+iI+jJ−kK)/4
(1−iI−jJ−kK)/4
(1−iI+jJ+kK)/4

Pre- and post-multiplying a ‘pre-spinor’ form of the nilpotent by either the original set of
double vector spinors, or the set with signs reversed, typically gives results such as

1 0 0 0
0 −ikk 0 0
0 0 −ii i 0
0 0 0 −ij j




ikE + ip + jm
ikE + ip + jm
ikE + ip + jm
ikE + ip + jm




1 0 0 0
0 ikk 0 0
0 0 ii i 0
0 0 0 −ij j


=
(

(ikE + ip + jm) (ikE− ip + jm) (−ikE + ip + jm) (−ikE− ip + jm)
)

(35)
which is the full ‘spinor’ form of the nilpotent wavefunction, with the chirality assigned
to the mass term. (An alternative approach would be to assume that the columns in the
first 4 × 4 matrix bear the coefficients 1, k, i, j, and the rows 1, ik , ii , ij , the position
being reversed in the second 4 × 4 matrix; a version of this technique has been used pre-
viously to relate the nilpotent version of the Dirac equation to the conventional one based
on matrices. 1 Clearly, any two nonidentical spinor matrices will produce a physically
meaningful version of the 4-component wavefunction.

One of the remarkable things about the spinor structures generated is that they have
the exact form of the components of the two forms of the Berwald-Moor metric:

(t− x− y − z)(t− x+ y + z)(t+ x− y + z)(t+ x− y + z) (36)

(t+ x+ y + z)(t+ x− y − z)(t− x+ y − z)(t− x− y + z) (37)

If we multiply the 4 components in any order, we will always get zero. In a sense this is
like defining a singularity in ‘spinor space’. The zero product can thus be interpreted as
a fermionic singularity arising from the distortion introduced into the vacuum (or spinor)
space by the application of a nilpotent condition. The space becomes quartic because
it is created out of two quadratic spaces. We can see this from the fact that the spinor
structure ultimately emerges from 4 × 4 matrices which are created from two sets of 2 ×
2 matrices, which are isomorphic to the units of the usual quadratic vector spaces.

As the two vector spaces are dual, it is possible to restructure physical equations so
that their positions are reversed, and so the singularity in spinor (= vacuum) space implies
that there must also be a singularity in the observed ‘real’ space. The quartic Berwald-
Moor metric becomes an expression of the fundamentally rotationally quartic nature of
the underlying algebra. While multiplication of the units of the algebra produces rotations
in the spaces and identity after a complete cycle, multiplication of the spin metric shows
that it describes a singularity.
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In fact, the H4 algebra has many manifestations at a fundamental level in physics.
A long-standing theory of my own is that the fundamental parameters mass(-energy),
time, charge (electric, strong and weak) and space have a Klein-4 symmetry relating their
properties to each other. 1, 7 − 9 Klein-4, as we have shown, is essentially the group
structure of H4. The same applies to identity and the T, C and P transformations,
which are related to the respective properties of mass, time, charge and space. Also,
their fundamental algebraic natures are respectively scalar, pseudoscalar, quaternion and
vector, which, when expressed as the Clifford algebra equivalents scalar, trivector, bivector
and vector (where these are taken in 1-D), also have a Klein-4 symmetry. If we take mass,
time, charge and space as successive descriptions of the universe generated by a ‘universal
rewrite system’ (as work done over the last decade suggests we should 1, 10− 11, then we
have four commutative algebras existing as a simultaneous description. In effect, because
the first two are scalar and complex, this reduces to a combination of scalar, complex
coefficient and quaternion acting as though it were a vector space, and another vector
space. The combination is not physical, and so is unobservable. This is what we have
called ‘vacuum space’. The breaking of the symmetry of this ‘space’ in creating the 5
generators of the algebra is the ultimate source of the breaking of symmetry between the
physical interactions. 1

6 Using discrete differentiation

A discrete or anticommutative differentiation process, developed by Kauffman, 12 offers
us a possible link between quantum and classical conditions. In this mathematics, the
differentials are replaced by commutators. Defining

dF

dt
= [F ,H] = [F ,E] (38)

and
∂F
∂Xi

= [F ,Pi] (39)

we can remove the phase factor from the amplitude and the mass term from the operator
(and ∂F

∂t can replace dF
dt where there is no explicit use of a velocity operator). In our

physical application, we can define a nilpotent amplitude

ψ = ikE + i iP1 + i jP2 + ikP3 + jm) (40)

and an operator

D = ik
∂

∂t
− i i

∂

∂X1
− i j

∂

∂X2
− ik

∂

∂X3
(41)

with
∂ψ

∂t
= [ψ,H] = [ψ,E] (42)

and
∂ψ

∂Xi
= [ψ,Pi]. (43)
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With some straightforward algebraic manipulation, we find that

D = iψ(ikE + i iP1 + i jP2 + ikP3 + jm) + i(ikE + i iP1 + i jP2 + ikP3 + jm)ψ
−2i(E− P2

1 − P2
2 − P2

3 −m2). (44)

When is ψ nilpotent, then

Dψ =
(
k
∂

∂t
+ ii∇

)
ψ = 0. (45)

This is a Dirac equation using discrete differentials. Generalising this to four states, with
D and ψ represented as 4-spinors, then

Dψ =
(
k
∂

∂t
± ii∇

)
(±ikE± i iP1 ± i jP2 ± ikP3 + jm) = 0 (46)

becomes the equivalent to the Dirac equation in this calculus. Significantly we did not use
i or i~ in defining the differentials, though this is usually required in canonical quantiza-
tion. The equation is thus valid, where nilpotency is a fundamental condition, in discrete
classical as well as in quantum contexts.

In a further development, we can also extend the definition of D, following Kauffman,
to include covariant terms, such as Ai, so that D becomes D−Ai. The covariant terms Ai

can be seen as representing either a field source or an expression of the distortion of the
Euclidean space-time structure, for example, that produced by the presence of mass in
general relativity. This means that, if we choose to use structures of this kind to replace
the direct use of mass, then a massless covariant D operator provides us with a convenient
route to achieving this.

In this context, we observe that Bogoslovsky 13 sees the field of a fermion-antifermion
condensate as a source of space-time anisotropy, with a phase transition in which the
particles acquire masses from the space-time, the mass shell taking the form of two hy-
perboloid inscribed cones. By introducing exponents into the expression for the metric
function, Bogoslovsky finds a geometric phase transition, which could be interpreted as
a mass-creating spontaneous-symmetry breaking in the fermion-antifermion consendate.
According to Bogoslovsky, the generalised Lorentz transformations responsible for the
process lead directly to the Berwald-Moor metric. In the discrete version of the double
nilpotent representation of the bosonic state (or ‘fermion-antifermion condensate’), no
mass term appears in the operator, but the differentials may be replaced by covariant
derivatives, and so the opportunity arises to represent the appearance of mass directly in
terms of an anisotropic space-time structure. Of course, the dual space structure we have
used is directly responsible for the creation of mass, as this emerges with spin ½, chirality
and zitterbewegung from the creation of the fermionic singularity.

7 Conclusion

An analysis of the true nature of the gamma algebra and its origins suggests that
the most significant aspects of relativistic quantum mechanics and the fermionic state –
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singularity, nilpotency, spin ½, chirality, zitterbewegung, the origin of mass, and symmetry
breaking – can be described through a spinor structure which is a manifestation of the
ultimate spatial distortion – a singularity. The singularity is created through a combina-
tion of two quadratic spaces, made dual through a nilpotent connection. In fact, if we
reverse the topological argument for explaining spin ½ and Berry phase, this is probably
the only true way of creating a physical singularity in nature. The Berwald-Moor metric,
by appearing in the spinor space which defines this singularity, has a truly fundamental
role to play in quantum physics.The nilpotent condition, however, can be applied beyond
quantum physics, and a version of the nilpotent Dirac equation can be applied to systems
that are classical but discrete, if we use a calculus based on commutators rather than
differentials. It is possible that the Berwald-Moor metric may be significant also under
these, as well as under quantum, conditions.
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