Bulletin of the *Transilvania* University of Braşov • Series III: Mathematics, Informatics, Physics, Vol 5(54) 2012, Special Issue: *Proceedings of the Seventh Congress of Romanian Mathematicians*, 1-10, published by Transilvania University Press, Braşov and Publishing House of the Romanian Academy

ON PROJECTIVE COMPLEX RANDERS CHANGES

Nicoleta ALDEA¹ and Gheorghe MUNTEANU²

Abstract

In this paper we study the relation between complex Randers changes and projective changes of complex Finsler metrics. We consider complex Randers changes of a generalized Berwald complex Finsler metric and we determine the necessary and sufficient conditions for the generalized Berwald property to be preserved by these changes. Using this theory, a recursive sequence of projectively related complex Berwald metrics is pointed out.

2000 Mathematics Subject Classification: 53B40, 53C60.

Key words: projectively related complex Finsler metrics, generalized Berwald metric, complex Berwald metric, complex Randers change.

1 Introduction

The problem of projective changes between two real Finsler metrics is quite old in geometry and it has been studied by many geometers, [8, 16, 21, 13, 19, 9, 15]. Its origin is formulated in Hilbert's Fourth Problem: determine the metrics on an open subset in \mathbf{R}^n , whose geodesics are straight lines. Two Finsler metrics, on a common underlying manifold, are called projectively related if they have the same geodesics as point sets.

The notion of Randers change has been proposed by M. Matsumoto in [16]. Further substantial contributions on this topic are due to C. Shibata [22], M. Hashiguchi, Y. Ichijyō [13], H. S. Park, I. Y. Lee [19], Bácsó, Z. Kovacs [9], etc.

The main themes from projective real Finsler geometry have recently been developed in complex Finsler geometry, [5, 6, 7]. Two complex Finsler metrics F and \tilde{F} , on a common underlying manifold M, are called projectively related if any complex geodesic curve, in [1]' s sense, of the first metric is also a complex geodesic curve for the second one and conversely. As we proved in [5], this means that between the spray coefficients G^i and \tilde{G}^i there is a so-called projective change $\tilde{G}^i = G^i + B^i + P\eta^i$, where P is a smooth function on T'M with complex values and $B^i := \frac{1}{2}(\tilde{\theta}^{*i} - \theta^{*i})$.

¹Transilvania University of Braşov, Faculty of Mathematics and Informatics Iuliu Maniu 50, Braşov 500091, Romania, e-mail: nicoleta.aldea@lycos.com

²Transilvania University of Braşov, Faculty of Mathematics and Informatics Iuliu Maniu 50, Braşov 500091, Romania, e-mail: gh.munteanu@unitbv.ro

Complex Randers metrics $\alpha + |\beta|$, where α is a purely Hermitian metric and β is a (1,0) - form, both on the base manifold, are remarkable in complex Finsler geometry, and they represent a situation in which Hermitian geometry properly interferes with complex Finsler geometry, [3]. A generalization of a complex Randers metric is given by $\tilde{F} = F + |\beta|$, where (M, F) is a complex Finsler space, which compared to projective changes lead us to *complex Randers changes*, which constitute the subject of the present paper.

We consider a complex Randers change of a generalized Berwald complex Finsler metric. The complex Finsler metric obtained by a complex Randers change is also a generalized Berwald one if and only if the (1,0) - form β satisfies a special regularity condition, (see Lemma 4.1 and Corollary 4.1). The necessary and sufficient conditions for a complex Randers change to be a projective change are given in Lemma 4.2. By requiring the complex Finsler metric F to be a complex Berwald one, [6], the complex Randers change $\tilde{F} = F + |\beta|$ is a projective change if and only if \tilde{F} is a complex Berwald metric, (see Theorem 4.1). Moreover, by means of the obtained results we construct a recursive sequence of complex Berwald metrics which are projectively related, (Corollary 4.2).

The paper is organized as follows. In Section 2, we recall some preliminary properties of n-dimensional complex Finsler spaces, needed for our aforementioned study. In Section 3 we make a survey of projectively related complex Finsler metrics. Section 3 contains the proofs of the above mentioned theorems and some interesting examples.

2 Preliminaries

Let M be an n-dimensional complex manifold and $z = (z^k)_{k=\overline{1,n}}$ be the complex coordinates in a local chart. The complexified $T_C M$ of the real tangent bundle $T_R M$, splits into the sum of the holomorphic tangent bundle T'M and its conjugate T''M. The bundle T'M is itself a complex manifold and the local coordinates in a local chart will be denoted by $u = (z^k, \eta^k)_{k=\overline{1,n}}$. These are transformed into $(z'^k, \eta'^k)_{k=\overline{1,n}}$ by the rules $z'^k = z'^k(z)$ and $\eta'^k = \frac{\partial z'^k}{\partial z^l} \eta^l$.

A complex Finsler space is a pair (M, F), where $F : T'M \to \mathbb{R}^+$ is a continuous function satisfying the following conditions:

- i) $L := F^2$ is smooth on $\widetilde{T'M} := T'M \setminus \{0\};$
- ii) $F(z,\eta) \ge 0$, the equality holds if and only if $\eta = 0$;
- *iii)* $F(z, \lambda \eta) = |\lambda| F(z, \eta)$ for $\forall \lambda \in \mathbb{C}$;

iv) the Hermitian matrix $(g_{i\bar{j}}(z,\eta))$ is positive definite, where $g_{i\bar{j}} := \frac{\partial^2 L}{\partial \eta^i \partial \bar{\eta}^j}$ is the fundamental metric tensor. Equivalently, this means that the indicatrix of the space is strongly pseudo-convex.

Consequently, from *iii*) we have $\frac{\partial L}{\partial \eta^k} \eta^k = \frac{\partial L}{\partial \bar{\eta}^k} \bar{\eta}^k = L$, $\frac{\partial g_{i\bar{j}}}{\partial \eta^k} \eta^k = \frac{\partial g_{i\bar{j}}}{\partial \bar{\eta}^k} \bar{\eta}^k = 0$ and $L = g_{i\bar{j}} \eta^i \bar{\eta}^j$.

Consider the sections of the complexified tangent bundle of T'M. Then by $VT'M \subset T'(T'M)$ we denote the vertical bundle, locally spanned by $\{\frac{\partial}{\partial \eta^k}\}$, and by VT''M, its conjugate. The idea of complex nonlinear connection, briefly (c.n.c.), is an instrument in the 'linearization' of the geometry of the manifold T'M. A (c.n.c.) is a supplementary

On projective complex Randers changes

complex subbundle to VT'M in T'(T'M), i.e. $T'(T'M) = HT'M \oplus VT'M$. The horizontal distribution $H_uT'M$ is locally spanned by $\{\frac{\delta}{\delta z^k} = \frac{\partial}{\partial z^k} - N_k^j \frac{\partial}{\partial \eta^j}\}$, where $N_k^j(z,\eta)$ are the coefficients of the (c.n.c.). The pair $\{\delta_k := \frac{\delta}{\delta z^k}, \dot{\partial}_k := \frac{\partial}{\partial \eta^k}\}$ will be called the adapted frame of the (c.n.c.), which obey the change rules $\delta_k = \frac{\partial z'^j}{\partial z^k} \delta'_j$ and $\dot{\partial}_k = \frac{\partial z'^j}{\partial z^k} \dot{\partial}'_j$. By conjugation everywhere we obtain an adapted frame $\{\delta_{\bar{k}}, \dot{\partial}_{\bar{k}}\}$ on $T''_u(T'M)$. The dual adapted frames are $\{dz^k, \delta\eta^k := d\eta^k + N_j^k dz^j\}$ and $\{d\bar{z}^k, \delta\bar{\eta}^k\}$.

Let $S \in T'(T'M)$ be a complex spray. Locally, it can be expressed as follows

$$S = \eta^k \frac{\partial}{\partial z^k} - 2G^k(z,\eta) \frac{\partial}{\partial \eta^k}$$
(2.1)

where G^k are the spray coefficients, [17], which are (2,0) - homogeneous with respect to η , i.e. $(\dot{\partial}_k G^i)\eta^k = 2G^i$ and $(\dot{\partial}_{\bar{k}} G^i)\bar{\eta}^k = 0$.

Between the notions of complex spray and (c.n.c.) there exists an interdependence, each one of them determining the other, (for more details see [17]).

A (c.n.c.) related only to the fundamental function of the complex Finsler space (M, F)is the so-called Chern-Finsler (c.n.c.), (see [1]), with the local coefficients $N_j^i := g^{\overline{m}i} \frac{\partial g_{l\overline{m}}}{\partial z^j} \eta^l$. Subsequently, δ_k is the adapted frame with respect to the Chern-Finsler (c.n.c.). A Hermitian connection D, of (1,0)- type, which satisfies in addition $D_{JX}Y = JD_XY$, for all horizontal vectors X, where J is the natural complex structure of the manifold, is the Chern-Finsler connection, [1]. It is locally given by the following coefficients (see [17]):

$$L_{jk}^{i} := g^{\bar{l}i} \delta_{k} g_{j\bar{l}} = \dot{\partial}_{j} N_{k}^{i} \; ; \; C_{jk}^{i} := g^{\bar{l}i} \dot{\partial}_{k} g_{j\bar{l}}.$$
(2.2)

In [1]'s terminology, the complex Finsler space (M, F) is Kähler iff $T_{jk}^i \eta^j = 0$ and weakly Kähler iff $g_{i\bar{l}}T_{jk}^i \eta^j \bar{\eta}^l = 0$, where $T_{jk}^i := L_{jk}^i - L_{kj}^i$. We notice that in the particular case of complex Finsler metrics which come from Hermitian metrics on M, called *purely* Hermitian metrics in [17], (i.e. $g_{i\bar{j}} = g_{i\bar{j}}(z)$), these two notions of Kähler are the same. On the other hand, as in Aikou's work [2], a complex Finsler space which is Kähler and $L_{jk}^i = L_{jk}^i(z)$ is called a *complex Berwald* space.

In [17] is proved that the Chern-Finsler (c.n.c.) does not generally come from a complex spray. But, its local coefficients N_j^i always determine a complex spray with coefficients $G^i = \frac{1}{2}N_j^i\eta^j$. Further, G^i induce a (c.n.c.) denoted by $N_j^i := \dot{\partial}_j G^i$ which is called *canonical* in [17], and is proved that it coincides with Chern-Finsler (c.n.c.) if and only if the complex Finsler metric is Kähler. With respect to the canonical (c.n.c.), we consider the frame $\{\delta_k^c, \dot{\partial}_k\}$, where $\delta_k^c := \frac{\partial}{\partial z^k} - N_k^j \dot{\partial}_j$, and its dual coframe $\{dz^k, \overset{c}{\delta} \eta^k\}$, where $\overset{c}{\delta} \eta^k := d\eta^k + N_j^k$ dz^j . Moreover, we associate to the canonical (c.n.c.) a complex linear connection of Berwald type $B\Gamma$ with its connection form

$$\omega_j^i(z,\eta) = G_{jk}^i dz^k + G_{j\bar{k}}^i d\bar{z}^k, \qquad (2.3)$$

where $G_{jk}^i := \dot{\partial}_k N_j^c = G_{kj}^i$ and $G_{j\bar{k}}^i := \dot{\partial}_{\bar{k}} N_j^c$.

Note that the spray coefficients obey the relations $2G^i = N^i_j \eta^j = N^i_j \eta^j = G^i_{jk} \eta^j \eta^k = L^i_{jk} \eta^j \eta^k$. We denote by $G^i_{jkh} := \dot{\partial}_h G^i_{jk}$, $G^i_{j\bar{k}\bar{h}} = \dot{\partial}_{\bar{h}} G^i_{j\bar{k}}$ and $G^i_{j\bar{k}h} := \dot{\partial}_h G^i_{j\bar{k}}$ the *hv*-, $\bar{h}\bar{v}$ - and $h\bar{v}$ - curvature tensors respectively; their properties are pointed out in [4].

An extension of complex Berwald spaces, directly related to the $B\Gamma$ connection, are generalized Berwald spaces, studied by us in [4]. They have the coefficients G^i_{jk} depending only on the position z, equivalently with $\dot{\partial}_{\bar{h}}G^i = 0$, i.e. $B\Gamma$ is of (1,0) - type. Since in the Kähler case $G^i_{jk} = L^i_{jk}$, any complex Berwald space is generalized Berwald. Conversely, in [6] we proved that any generalized Berwald space, which is weakly Kähler, is a complex Berwald space.

3 Projectively related complex Finsler metrics

In Abate-Patrizio's sense, (see [1] p. 101), the equations of a complex geodesic curve z = z(s) of (M, F), with s a real parameter, can be expressed as follows

$$\frac{d^2 z^i}{ds^2} + 2G^i(z(s), \frac{dz}{ds}) = \theta^{*i}(z(s), \frac{dz}{ds}) \; ; \; i = \overline{1, n}, \tag{3.1}$$

where by $z^i(s)$, $i = \overline{1, n}$, we denote the coordinates along of curve z = z(s) and $\theta^{*k} := 2g^{\overline{j}k} \delta_{\overline{j}}^c L$. Note that θ^{*i} vanishes identically if and only if the space is weakly Kähler.

Let \tilde{F} be another complex Finsler metric on the underlying manifold M. Corresponding to the metric \tilde{F} , we have the spray coefficients \tilde{G}^i and the functions $\tilde{\theta}^{*i}$. The complex Finsler metrics F and \tilde{F} on the manifold M, are called *projectively related* if they have the same complex geodesics as point sets. This means that for any complex geodesic curve z = z(s) of (M, F) there is a transformation of its parameter s, $\tilde{s} = \tilde{s}(s)$, with $\frac{d\tilde{s}}{ds} > 0$, such that $z = z(\tilde{s}(s))$ is a geodesic of (M, \tilde{F}) , and conversely.

Theorem 3.1. ([5]). Let F and \tilde{F} be two complex Finsler metrics on the manifold M. Then F and \tilde{F} are projectively related if and only if there exists a smooth function P on T'M with complex values, such that

$$\tilde{G}^i = G^i + B^i + P\eta^i; \ i = \overline{1, n}, \tag{3.2}$$

where $B^i := \frac{1}{2}(\tilde{\theta}^{*i} - \theta^{*i}).$

The relations (3.2) between the spray coefficients \tilde{G}^i and G^i of the projectively related complex Finsler metrics F and \tilde{F} is called a *projective change*. The projective change (3.2) gives rise to various projective invariants, for more details see [6].

Theorem 3.2. ([5]). Let F and \tilde{F} be complex Finsler metrics on the manifold M. Then, F and \tilde{F} are projectively related if and only if

$$\dot{\partial}_{\bar{r}}(\delta_k \tilde{F})\eta^k + 2(\dot{\partial}_{\bar{r}}G^l)(\dot{\partial}_l \tilde{F}) = \frac{1}{\tilde{F}}(\delta_k \tilde{F})\eta^k(\dot{\partial}_{\bar{r}}\tilde{F}) ;$$

On projective complex Randers changes

$$B^{r} = -\frac{1}{\tilde{F}}\theta^{*l}(\dot{\partial}_{l}\tilde{F})\eta^{r} ; P = \frac{1}{\tilde{F}}[(\delta_{k}\tilde{F})\eta^{k} + \theta^{*i}(\dot{\partial}_{i}\tilde{F})].$$
(3.3)

Moreover, the projective change is $\tilde{G}^i = G^i + \frac{1}{\tilde{F}} (\delta_k \tilde{F}) \eta^k \eta^i$.

Note that, the weakly Kähler property is preserved by projective changes. Moreover, if the metric F is generalized Berwald, then \tilde{F} is also generalized Berwald.

4 Complex Randers changes

We consider a complex Finsler metric $F(z,\eta) = \sqrt{g_{i\bar{j}}(z,\eta)\eta^i\bar{\eta}^j}$ and a differential (1,0)-form $\beta(z,\eta) := b_i(z)\eta^i$, both on the manifold M.

Definition 4.1. A change of complex Finsler metrics $F(z, \eta) \rightarrow \tilde{F}(z, \eta)$ is called a complex Randers change of F if

$$\tilde{F}(z,\eta) = F(z,\eta) + |\beta|.$$
(4.1)

In particular, if F is a purely Heimitian metric, i.e. $F(z,\eta) = \sqrt{g_{i\bar{j}}(z)\eta^i\bar{\eta}^j}$, then $\tilde{F}(z,\eta)$, becomes a complex Randers metric, (see Theorem 2.1, [3]). Taking into account that in the paper [5] we have an exhaustive study of the projectiveness of the complex Randers metric, our next investigation is focused on the complex Randers change with F a non purely Hermitian metric.

It is a technical computation to give the expressions of the geometric objects of the space (M, \tilde{F}) , obtained by the complex Randers change (4.1). Certainly, they involve some trivial calculus which leads to

$$\begin{split} \tilde{g}_{i\bar{j}} &= \frac{\tilde{F}}{F} g_{i\bar{j}} - \frac{\tilde{F}}{2F^3} \eta_i \eta_{\bar{j}} + \frac{\tilde{F}}{2|\beta|} b_i b_{\bar{j}} + \frac{1}{2\tilde{L}} \tilde{\eta}_i \tilde{\eta}_{\bar{j}}; \\ \tilde{g}^{\bar{j}i} &= \frac{F}{\tilde{F}} g^{\bar{j}i} + \frac{|\beta|(F||b||^2 + |\beta|)}{\tilde{L}\gamma} \eta^i \bar{\eta}^j - \frac{F^3}{\tilde{F}\gamma} b^i \bar{b}^j - \frac{F}{\tilde{F}\gamma} (\bar{\beta}\eta^i \bar{b}^j + \beta b^i \bar{\eta}^j); \\ \tilde{N}_j^i &= N_j^i + \frac{1}{\gamma} (\eta_{\bar{r}} \frac{\partial \bar{b}^r}{\partial z^j} - \frac{\beta^2}{|\beta|^2} \frac{\partial b_{\bar{r}}}{\partial z^j} \bar{\eta}^r) \xi^i + \frac{\beta}{2|\beta|} k^{\bar{r}i} \frac{\partial b_{\bar{r}}}{\partial z^j}, \end{split}$$
(4.2)

where $k^{\bar{r}i} := 2Fg^{\bar{r}i} + \frac{2(F||b||^2 + 2|\beta|)}{\gamma} \eta^i \bar{\eta}^r - \frac{2F^3}{\gamma} b^i \bar{b}^r - \frac{2F}{\gamma} (\bar{\beta} \eta^i \bar{b}^r + \beta b^i \bar{\eta}^r), \gamma := \tilde{F}^2 + F^2(||b||^2 - 1),$ $\xi^i := \bar{\beta} \eta^i + F^2 b^i, N^k_j := g^{\bar{m}k} \frac{\partial g_{l\bar{m}}}{\partial z^j} \eta^l$, with the settings

$$\eta_{i} := 2F(\dot{\partial}_{i}F) ; \ \tilde{\eta}_{i} := 2\tilde{F}(\dot{\partial}_{i}\tilde{F}) = \frac{\tilde{F}}{F}\eta_{i} + \frac{\tilde{F}\bar{\beta}}{|\beta|}b_{i};$$

$$\dot{\partial}_{i}|\beta| = \frac{\bar{\beta}}{2|\beta|}b_{i} ; \ b^{i} := g^{\bar{j}i}b_{\bar{j}} ; \ ||b||^{2} := g^{\bar{j}i}b_{i}b_{\bar{j}} ; \ b^{\bar{i}} := \bar{b}^{i}.$$

$$(4.3)$$

Therefore, the spray coefficients are

$$\tilde{G}^{i} = G^{i} + \frac{1}{2\gamma} (\eta_{\bar{r}} \frac{\partial \bar{b}^{\bar{r}}}{\partial z^{j}} - \frac{\beta^{2}}{|\beta|^{2}} \frac{\partial b_{\bar{r}}}{\partial z^{j}} \bar{\eta}^{r}) \xi^{i} \eta^{j} + \frac{\beta}{4|\beta|} k^{\bar{r}i} \frac{\partial b_{\bar{r}}}{\partial z^{j}} \eta^{j}.$$

$$(4.4)$$

0.1

Next, for complex Randers changes of a generalized Berwald metric we can prove the following.

Lemma 4.1. Let (M, F) be a connected generalized Berwald space and let $\tilde{F}(z, \eta) =$ $F(z,\eta) + |\beta|$ be a complex Randers change. Then, (M,\tilde{F}) is a generalized Berwald space if and only if $(\bar{\beta}\eta_{\bar{r}}\frac{\partial \bar{b}^r}{\partial z^j} + \beta \frac{\partial \bar{b}_{\bar{r}}}{\partial z^j}\eta^r)\eta^j = 0$. Moreover, given any of them, $\tilde{G}^i = G^i$.

Proof. First, we prove the direct implication. If (M, \tilde{F}) is generalized Berwald space, then $2\tilde{G}^i = \tilde{G}^i_{jk}(z) \eta^j \eta^k$, which means that \tilde{G}^i is quadratic in η . Also, G^i is quadratic in η . Thus, using (4.4) we have

$$\begin{split} F|\beta|\{-\beta[(F^2||b||^2+|\beta|^2)g^{\bar{r}i}+||b||^2\bar{\eta}^r\eta^i-F^2\bar{b}^rb^i-\bar{\beta}\eta^i\bar{b}^r-\beta b^i\bar{\eta}^r]\frac{\partial b_{\bar{r}}}{\partial z^j}\eta^j\\ +4|\beta|^2(\tilde{G}^i-G^i)\}+|\beta|^2[2(F^2||b||^2+|\beta|^2)(\tilde{G}^i-G^i)-2F^2\beta g^{\bar{r}i}\frac{\partial b_{\bar{r}}}{\partial z^j}\eta^j\\ -(\bar{\beta}\eta_{\bar{r}}\frac{\partial \bar{b}r}{\partial z^j}+\beta\frac{\partial b_{\bar{r}}}{\partial z^j}\bar{\eta}^r)\eta^j\eta^i-\frac{F^2\beta}{|\beta|^2}(\bar{\beta}\eta_{\bar{r}}\frac{\partial \bar{b}r}{\partial z^j}-\beta\frac{\partial b_{\bar{r}}}{\partial z^j}\bar{\eta}^r)\eta^jb^i]=0, \end{split}$$

which contains an irrational part and a rational part. Thus, we deduce

$$\begin{split} \beta[(F^2||b||^2 + |\beta|^2)g^{\bar{r}i} + ||b||^2\bar{\eta}^r\eta^i - F^2\bar{b}^rb^i - \bar{\beta}\eta^i\bar{b}^r - \beta b^i\bar{\eta}^r]\frac{\partial b_{\bar{r}}}{\partial z^j}\eta^j \\ &= 4|\beta|^2(\tilde{G}^i - G^i) \text{ and} \\ (\bar{\beta}\eta_{\bar{r}}\frac{\partial\bar{b}^r}{\partial z^j} + \beta\frac{\partial b_{\bar{r}}}{\partial z^j}\bar{\eta}^r)\eta^j\eta^i + \frac{F^2\beta}{|\beta|^2}(\bar{\beta}\eta_{\bar{r}}\frac{\partial\bar{b}^r}{\partial z^j} - \beta\frac{\partial b_{\bar{r}}}{\partial z^j}\bar{\eta}^r)\eta^jb^i + 2F^2\beta g^{\bar{r}i}\frac{\partial b_{\bar{r}}}{\partial z^j}\eta^j \\ &= 2(\alpha^2||b||^2 + |\beta|^2)(\tilde{G}^i - G^i). \end{split}$$

Contractions with b_i and η_i yield

$$(\tilde{G}^i - G^i)b_i = 0; (4.5)$$

$$4|\beta|^{2}(G^{i}-\tilde{G}^{i})\eta_{i}+2\beta F^{2}(||b||^{2}\bar{\eta}^{r}-\bar{\beta}\bar{b}^{r})\frac{\partial b_{\bar{r}}}{\partial z^{j}}\eta^{j} = 0;$$

$$\bar{\beta}(F^{2}||b||^{2}+|\beta|^{2})\eta_{\bar{r}}\frac{\partial\bar{b}^{r}}{\partial z^{j}}\eta^{j}-\beta(\alpha^{2}||b||^{2}-|\beta|^{2})\frac{\partial b_{\bar{r}}}{\partial z^{j}}\bar{\eta}^{r}\eta^{j}+2\alpha^{2}|\beta|^{2}\bar{b}^{r}\frac{\partial b_{\bar{r}}}{\partial z^{j}}\eta^{j} = 0;$$

$$(\alpha^{2}||b||^{2}+|\beta|^{2})(G^{i}-\tilde{G}^{i})\eta_{i}+\alpha^{2}(\bar{\beta}\eta_{\bar{r}}\frac{\partial\bar{b}^{r}}{\partial z^{j}}+\beta\frac{\partial b_{\bar{r}}}{\partial z^{j}}\bar{\eta}^{r})\eta^{j} = 0.$$

Adding the second and the third relations from (4.5), we obtain Adding the second and the three relations from (4.5), we have $(\bar{G}^i)_{\eta_i} + (F^2)|b||^2 + |\beta|^2)(\bar{\beta}\eta_{\bar{r}}\frac{\partial \bar{b}^r}{\partial z^j} + \beta\frac{\partial \bar{b}_{\bar{r}}}{\partial z^j}\bar{\eta}^r)\eta^j = 0.$ This together with the fourth equation from (4.5) implies $(G^i - \tilde{G}^i)\eta_i = 0$ and $(\bar{\beta}\eta_{\bar{r}}\frac{\partial \bar{b}^r}{\partial z^j} + \beta\frac{\partial \bar{b}_{\bar{r}}}{\partial z^j})$

 $\beta \frac{\partial b_{\bar{r}}}{\partial z^j} \bar{\eta}^r) \eta^j = 0.$

Conversely, if $(\bar{\beta}\eta_{\bar{r}}\frac{\partial\bar{b}^r}{\partial z^j} + \beta\frac{\partial b_{\bar{r}}}{\partial z^j}\bar{\eta}^r)\eta^j = 0$, its differentiation with respect to $\bar{\eta}^m$ and the fact that G^i are holomorphic in η , gives $(l_{\bar{r}}\frac{\partial\bar{b}^r}{\partial z^j}b_{\bar{m}} + \beta\frac{\partial b_{\bar{m}}}{\partial z^j})\eta^j = 0$. The last two relations imply

$$g^{\bar{m}i}\frac{\partial b_{\bar{m}}}{\partial z^j}\eta^j = \frac{\beta}{|\beta|^2}\frac{\partial b_{\bar{r}}}{\partial z^j}\bar{\eta}^r b^i\eta^j \text{ and } \bar{b}^m\frac{\partial b_{\bar{m}}}{\partial z^j}\eta^j = ||b||^2\frac{\beta}{|\beta|^2}\frac{\partial b_{\bar{r}}}{\partial z^j}\bar{\eta}^r\eta^j,$$

which substituted into (4.4) imply $\tilde{G}^i = G^i$ and so, \tilde{G}^i are holomorphic in η , i.e., \tilde{F} is generalized Berwald.

Subsequently, our aim is to determine the necessary and sufficient conditions in which the complex Randers change (4.1) is a projective change, that is, to establish when the complex Finsler metrics F and \tilde{F} from (4.1) are projectively related. A simple computation shows that

$$(\delta_k \tilde{F})\eta^k = (\delta_k |\beta|)\eta^k = \frac{1}{2|\beta|} (\bar{\beta}\eta_{\bar{r}} \frac{\partial b^r}{\partial z^k} + \beta \frac{\partial b_{\bar{r}}}{\partial z^k} \bar{\eta}^r)\eta^k,$$
(4.6)

because $(\delta_k F)\eta^k = 0$ and

$$\theta^{*i}(\dot{\partial}_i \tilde{F}) = \frac{\bar{\beta}}{|\beta|} (\overset{c}{\delta}_{\bar{m}} F) b^{\bar{m}}.$$
(4.7)

Thanks to Lemma 4.1 we have proven,

Corollary 4.1. Let (M, F) be a connected generalized Berwald space and let $\tilde{F}(z, \eta) = F(z, \eta) + |\beta|$ be a complex Randers change. Then, (M, \tilde{F}) is a generalized Berwald space if and only if $(\delta_k |\beta|)\eta^k = 0$.

Lemma 4.2. Let (M, F) be a connected generalized Berwald space. Then, the complex Randers change (4.1) is a projective change if and only if

$$(\delta_k|\beta|)\eta^k = 0 \text{ and } B^i = -P\eta^i,$$

for any $i = \overline{1, n}$, where $P = \frac{\overline{\beta}}{|\beta|} (\overset{c}{\delta}_{\overline{m}} F) b^{\overline{m}}$. Moreover, given any of them, the projective change is $\tilde{G}^i = G^i$.

Proof. Since F is generalized Berwald and the metrics F and \tilde{F} are projectively related, then \tilde{F} is also generalized Berwald. So that, by (4.6), (4.7) and Corollary 4.1, the conditions (3.3) are reduced to $B^i = -P\eta^i$, for any $i = \overline{1, n}$, where $P = \frac{\bar{\beta}}{|\beta|} (\overset{c}{\delta}_{\bar{m}} F) b^{\bar{m}}$.

Conversely, since $(\delta_k |\beta|)\eta^k = 0$, then the first condition from (3.3) is identically satisfied and by (4.7), $B^i = -\frac{1}{\tilde{F}}\theta^{*l}(\dot{\partial}_l\tilde{F})\eta^i$ and $P = \frac{1}{\tilde{F}}\theta^{*i}(\dot{\partial}_i\tilde{F})$. All these conditions imply that the metrics F and \tilde{F} are projectively related.

Theorem 4.1. Let (M, F) be a connected complex Berwald space. Then, the complex Randers change (4.1) is a projective change if and only if \tilde{F} is a complex Berwald metric.

Proof. Suppose that the complex Randers change (4.1) is a projective change. Hence, it preserves the weakly Kähler and generalized Berwald properties of the metric F. Thus, \tilde{F} is a complex Berwald metric.

Conversely, since F and \tilde{F} , related by (4.1), are complex Berwald metrics, the conditions (3.3) are identically satisfied. Thus, the metrics F and \tilde{F} are projectively related. \Box

An example. Let $\Delta = \{(z, w) \in \mathbb{C}^2, |w| < |z| < 1\}$ be the Hartogs triangle with the Kähler-purely Hermitian metric

$$a_{i\overline{j}} = \frac{\partial^2}{\partial z^i \partial \overline{z}^j} \left(\log \frac{1}{(1-|z|^2) \left(|z|^2 - |w|^2 \right)} \right); \ \alpha^2(z,w;\eta,\theta) = a_{i\overline{j}} \eta^i \overline{\eta}^j, \tag{4.8}$$

where z, w, η , θ are the local coordinates z^1 , z^2 , η^1 , η^2 , respectively, and $|z^i|^2 := z^i \bar{z}^i$, $z^i \in \{z, w\}, \eta^i \in \{\eta, \theta\}$. We choose

$$b_z = \frac{w}{|z|^2 - |w|^2}; \ b_w = -\frac{z}{|z|^2 - |w|^2}.$$
(4.9)

With these tools we construct $\alpha(z, w, \eta, \theta) := \sqrt{a_{i\bar{j}}(z, w)\eta^i \bar{\eta}^j}$ and $\beta(z, \eta) = b_i(z, w)\eta^i$ and from here, we obtain the complex Randers metric $F = \alpha + |\beta|$. After some calculations it follows that the spray coefficients of the metric F are

$$G^{z} = \overset{a}{G^{z}} = \frac{\overline{z}\eta^{2}}{1 - |z|^{2}}; \qquad (4.10)$$

$$G^{w} = \overset{a}{G^{w}} = \frac{\overline{z}w\eta^{2}}{z} \left(\frac{1}{1 - |z|^{2}} + \frac{1}{|z|^{2} - |w|^{2}}\right) - \frac{(|z|^{2} + |w|^{2})\eta\theta}{z(|z|^{2} - |w|^{2})} + \frac{\overline{w}\theta^{2}}{|z|^{2} - |w|^{2}},$$

where $\overset{a}{G^{z}}$ and $\overset{a}{G^{w}}$ are the spray coefficients corresponding to the metric α . From (4.10) and (4.9) we deduce that F is a complex Berwald metric, and so, by Theorem 4.1, α and F are projectively related.

Given the complex Berwald metric $F = \alpha + |\beta|$, (with (4.8) and (4.9)), we consider the Randers change $\tilde{F} = F + |\beta|$, where β is same as in (4.9). Since F is a complex Berwald metric and $(\delta_k|\beta|)\eta^k = 0$, we obtain $\tilde{G}^z = G^z$ and $\tilde{G}^w = G^w$, which alows us to conclude that \tilde{F} is also a complex Berwald metric. Applying Theorem 4.1, the considered Randers change is projective.

We complete our considerations with the following statement.

Corollary 4.2. Let (M, F_0) be a connected complex Berwald space. Then,

$$F_m = F_{m-1} + |\beta|, \ m \in \mathbf{N},$$
 (4.11)

is a recursive sequence of complex Berwald metrics, on the complex manifold M, if and only if (4.11) is a projective Randers change for any $m \in \mathbf{N}$.

The proof is obtained inductively, by using Theorem 4.1.

The recursive sequence can be rewritten as $F_m = F_0 + m|\beta|$, $m \in \mathbf{N}$, and by this, we can generate some examples of complex Berwald metrics. Indeed, choosing the tools $F_0 = \alpha$ and β from (4.8) and (4.9), we produce a lot of concrete examples of complex Berwald metrics on Hartogs triangle.

Acknowledgment: The first author is supported by the Sectorial Operational Program Human Resources Development (SOP HRD), financed from the European Social Fund and by Romanian Government under the Project number POSDRU/89/1.5/S/59323.

References

 Abate, M. and Patrizio, G., *Finsler Metrics - A Global Approach*, Lecture Notes in Math., 1591, Springer-Verlag, 1994.

- [2] Aikou, T., Projective flatness of complex Finsler metrics, Publ. Math. Debrecen 63 (2003), no. 3, 343–362.
- [3] Aldea, N. and Munteanu, G., On complex Finsler spaces with Randers metrics, Journal Korean Math. Soc. 46 (2009), no. 5, 949-966.
- [4] Aldea, N. and Munteanu, G., On complex Landsberg and Berwald spaces, Journal of Geometry and Physics 62 (2012), no. 2, 368-380.
- [5] N. Aldea, G. Munteanu, Projectively related complex Finsler metrics, Nonlinear Anal.: Real World Appl., 13 (2012), no. 5, 2178-2187.
- [6] Aldea, N. and Munteanu, G., On projective invariants of the complex Finsler spaces, to appear in Diff. Geom. Appl. 30 (2012).
- [7] Aldea, N. and Munteanu, G., On complex Douglas spaces, manuscript 2011.
- [8] Bácsó S. and Matsumoto, N., Projective changes between Finsler spaces with (α, β) metrics, Tensor N.S. 55 (1994), 252-257.
- [9] Bácsó, S. and Kovacs, Z., Randers changes of special Finsler spaces, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 26 (2010), no. 2, 165–170.
- [10] Bao, D., Chern, S.S. and Shen, Z., An Introduction to Riemannian Finsler Geom., Graduate Texts in Math., 200, Springer-Verlag, 2000.
- [11] Berwald, L., Uber Finslersche und Cartansche Geometrie. IV., Ann. of Math. 48 (1947), 755-781.
- [12] Chen, B. and Shen, Y., On complex Randers metrics, Int. J. of Mathematics 21 (2010), no. 8, 971-986.
- [13] Hashiguchi, M. and Ichijyō, Y., Randers spaces with rectilinear geodesics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chen.) 13 (1980), 33-40.
- [14] Kobayashi, S., Complex Finsler vector bundles, Contemporary Math. (1996), 145-153.
- [15] Li, B., On some special projectively flat (α, β) -metrics, Publ. Math. Debrecen **71** (2007), no. 3-4, 295-304.
- [16] Matsumoto, M., On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14 (1974), 477-498.
- [17] Munteanu, G., Complex Spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Acad. Publ., 141, FTPH, 2004.
- [18] Munteanu, G., Totally geodesics holomorphic subspaces, Nonlinear Anal. Real World Appl. 8 (2007), no. 4, 1132-1143.

- [19] Park, H.S. and Lee, I.Y., The Randers changes of Finsler spaces with (α, β) -metrics of Douglas type, J. Korean Math. Soc. **38** (2001), no. 3, 503–521.
- [20] Royden, H.L., Complex Finsler metrics, Contemporary Math. 49 (1984), 119-124.
- [21] Shen, Z., Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
- [22] Shibata, C., On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto Univ. 24 (1984), no. 1, 163–188.
- [23] Wong, P.M., Theory of Complex Finsler Geometry and Geometry of Intrinsic Metrics, Imperial College Press 2011.