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Abstract

First, we give some results about certain properties of domains and balls in a
geodesic metric space. We shall prove that a domain in a geodesic metric space is
arc connected and any ball in a geodesic metric space is arc connected. Moreover, if
the metric space is GC-geodesic then we shall prove that any ball in a geodesic metric
space is locally arc connected on the boundary.Next, our framework are the Ahlfors Q
-regular metric measure spaces, with 1 ≤ Q < ∞. The Ahlfors Q -regular spaces are
a natural setting for the theory of quasiconformal mappings since in these spaces the
three definitions of quasiconformality in Euclidean spaces of dimension at least two,
can be formulated, but they are not equivalent. We consider in this note the notion of
geometric quasiconformality. In the Euclidean space, Gehring [3] has introduced the
definition of global quasiconformal collared domain on the boundary. We give an anal-
ogous definition for this domain in a Q -regular metric measure space.We shall prove
that if a domain D in a Q -regular GC-geodesic metric space is globally quasicon-
formally on the boundary, then D is locally arc connected on the boundary.We shall
prove that any bounded Q - Loewner domain in a Q -regular geodesic metric space is
arc strictly quasiconformally accessible (Definition 10[1]) on the boundary. In the end
of this note we give several boundary extension theorems for quasiconformal mappings.
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1 Introduction

Throughout the paper we shall consider only metric spaces.
We first recall some definitions and make some remarks of a general character which

will be use in this paper.
Let X be a metric space. The space X is said to be path connected ( or arc

connected ) if for any two points x and y in X there exists a continuous function γ
from the unit interval [0, 1] to X with γ(0) = x and γ(1) = y. This function is called
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a path from x to y. We say that x and y are the endpoints of γ and that γ joins (or
connects) the points x and y. An arc domain D in X is an open arc connected set in X.
By a continuum we mean a compact connected set which contains at least two points.

A path is rectifiable if its length is a finite number. A metric space is said to be
rectifiably connected if any two points can be joined by a rectifiable path. By a curve
in a metric space X we mean either an path γ or its image. We usually abuse notation
and call γ both the path and its image.

Note that every path connected metric spaces is connected and the image of a path is
always a path connected compact space.

2 Path connectedness and locally path connectedness prop-
erties in metric spaces

Let (X, d) be a metric space. We denote by B(x, r) = {y ∈ X, d(x, y) < r} the open
ball of center x in X and radius r < diamX and its closure B(x, r). The closed ball in
X centered at the point x and with radius r is the set B[x, r] = {y ∈ X, d (x, y) ≤ r}. It
is known that B(x, r) ⊂ B[x, r] and B (x, r) ⊂ IntB[x, r]. Also, we know that open balls
of a metric space are open sets and closed balls are closed sets. In this context, we recall
the next theorem.

Remark 2.1. Suppose that (X, d) is a metric space, x ∈ X and r > 0. Then:
(i) ∂B (x, r) ⊂ {y, d (x, y) = r} ;
(ii) ∂B[x, r] ⊂ {y, d (x, y) = r} . (Theorem 5.1.7[6])

At the beginning, we give the following result.

Theorem 2.1. If X is a rectifiably connected and locally path connected space and D is
a domain in X, then D is an arc domain.

Proof. For each point x in D let Cx denote the path component of D to which x belongs.
Fix x = a and we prove that Ca = D. Suppose that there exists at least y ∈ D\Ca. Since
D is open and X is locally path connected (by Theorem 5.18[2]), it follows that Ca is
open.Let C =

⋃
y∈D\Ca

Cy , where Cy is path component of y. Then, the sets C and Ca

are disjoint, non-empty open subsets of D, with C ∪ Ca = D.Thus, we conclude that D
is disconnected, which contradicts the fact that D is connected. Consequently, D = Ca

and hence D must be arc connected.ently, D = Ca and hence D must be arc connected.

Definition 2.1. A geodesic path (or, simply, a geodesic) in a metric space X is a
path γ which connects two points in X and the length of γ is equal to the distance between
the points. A metric space is called geodesic space if every pair of distinct points can be
connected by a geodesic. (Definitions 2.2.1,2.4.1[7])
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We remember the following Lemma:

Lemma 2.1. Let E be a connected subset of a topological space X. If A ⊂ X and neither
E ∩A nor E ∩ (X \A) is empty, then E ∩ ∂A 6= ∅. ([9],11.26).

Next, we shall give some results about domains and balls in geodesic metric spaces.

Theorem 2.2. If X is a geodesic metric space then B(x, r) = B[x, r], where x ∈ X and
r < diamX.

Proof. Let y be a point in X such that d(x, y) = r. For any neighbourhood V of y,
there exists 0 < ε < r

2 such that B[y, ε] ⊂ V. Since X is a geodesic space, there exists
a curve γ which connects x and y and l (γ) = d (x, y) = r. On the other hand, γ is
connected, y lies in the ball B(y, ε) and x is not in the ball B(y, ε).Therefore, it follows
that there exists z ∈ γ ∩ ∂B (y, ε) and hence z ∈ V. Using Theorem 12.9.5 [6], we have
d (x, z) ≤ l (γ|[x, z]) ≤ r − d(z, y) < r , where γ|[x, z] is the restriction of γ which has
endpoints x and z. Therefore, we obtain that z ∈ B (x, r) . Consequently, z ∈ V ∩B (x, r)
and hence y ∈ B(x, r). Such, we proved that B(x, r) = B[x, r].

Definition 2.2. We say that a metric space X has property (P ) if the closure of any
open ball B(x, r) in X is the closed ball B[x, r].

Remark 2.2. A ball in a connected metric space does not need to be connected, but it is
known that in a compact metric space X with property (P ), any open or closed ball is
connected. Therefore, if (X, d) is a compact geodesic metric space, by Theorem 2, X has
property (P ) and hence any ball is connected.

Proposition 2.1. If (X, d) is a geodesic space then any ball B (a, r) with center a in
X and radius r < diamX is arc connected. Moreover, any geodesic which connects two
points in B (a, r) has length < 2r and it lies in B(a, 2r)

Proof. Let x and y be two points in the ball B (a, r) . Since X is geodesic, then there
exist a geodesic γ1 which connects a and x, and a geodesic γ2 which connects a and y,
with l (γ1) = d (a, x) and l (γ2) = d (a, y) . We prove that γ1 lies in B (a, r) . Suppose
that there exists z ∈ γ1 such that z /∈ B (a, r) . Since γ1 is arc connected, by Lemma
1, it follows that there is w ∈ ∂B (a, r) and hence w /∈ B (a, r) .On the other hand,
d (a,w) ≤ l (γ1|[a,w]) < l (γ1|[a, x]) = d (a, x) < r , and hence w ∈ B (a, r) , which is a
contradiction. Consequently, γ1 and γ2 lie in B (a, r) . The curve γ = γ1∪γ2 lies in B (a, r)
and connects x and y. Therefore, B (a, r) is arc connected. Let γ′ be a geodesic which
connects x and y and let z′ be a point of γ′.

l(γ′) = d (x, y) ≤ d (x, a) + d (y, a) < 2r. (∗)

We reason by contradiction. Suppose that there exists a point z′ ∈ γ′ such that z′ is not
contained in B (a, 2r) and hence d (a, z′) ≥ 2r.Then we would have

d
(
x, z′

)
≥ d

(
a, z′

)
− d (a, x) ≥ 2r − d (a, x) > r
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d
(
y, z′

)
≥ d

(
a, z′

)
− d (a, y) ≥ 2r − d (a, y) > r.

Summing the last relations, we obtainl (γ′) = d (x, y) > 2r which contradicts the relation
(*).Thus, we proved that γ′ lies in B (a, 2r) .

Corollary 2.1. If (X, d) is a geodesic metric space then it is locally path connected, and
consequently, locally connected.

Proof. According to Proposition 1, for any x ∈ X, the ball B (x, r) with 0 < r < diamX,
is arc connected. Therefore, X is locally path connected.

Corollary 2.2. Let (X, d) be a geodesic metric space. If D is a domain in X then D is
arc connected.

Proof. Since X is geodesic, it follows that X is rectifiable connected and by Corollary 1,
X is locally path connected. We obtain that D is connected, locally path connected open
set. Therefore, D is arc connected.

Remark 2.3. If (X, d) is a geodesic space then any ball B[a, r] with center a in X and
radius r < diamX is arc connected.

Proof. Let x and y be two points in the ball B[a, r]. We shall study three cases.
Case 1. Suppose that x and y are two points in B (a, r) . By Proposition 1, there exists

a path which connects x and y in B (a, r) .
Case 2. Suppose that x ∈ B (a, r) and y ∈ ∂B (a, r) .By the proof of Proposition 1,

there exists a geodesic γ1 in B (a, r) which connects a and x. Since X is a geodesic space,
there exists a geodesic γ2 in X which connects a and y. Let z be a point of γ2 such that
z 6= y. We have:

d (a, z) ≤ l (γ2|[a, z]) ≤ l (γ2)− d (z, y) < r

and hence, z ∈ B (a, r) . Therefore, γ2 lies in B[a, r]. The curve γ = γ1 ∪ γ2 lies in B[a, r]
and connects x and y.

Case 3. Suppose that x and y are two boundary points of B (a, r) . According with
case 2, there exist a geodesic γ1 which connects a and x in B[a, r] and a geodesic γ2 which
connects a and y in B[a, r]. The curve γ = γ1 ∪ γ2 connects x and y in B[a, r].By these
three cases, it follows that B[a, r] is arc connected.

Remark 2.4. By Proposition 1 and Remark 3 it follows that, if (X, d) is a geodesic
space then any ball in X is connected.

We shall introduce the following definitions:

Definition 2.3. We say that a ball B (a, r) in a geodesic metric space X is a GC-ball
if for every points x and y in the ball B[a, r], then any geodesic which connects x and y
lies in B[a, r].

Definition 2.4. We say that a metric space X is GC-geodesic space if the following
condition are satisfied:
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(i) X is a geodesic metric space;
(ii) any ball B (a, r) with center a in X and radius r < diamX is a GC-ball.

Proposition 2.2. Let (X, d) be a metric space which is GC-geodesic and let B(a, r1),
B(b, r2) be two balls in X with a, b ∈ X, a 6= b, and r1, r2 < diamX .If B(a, r1)∩
B(b, r2) 6= ∅ then B(a, r1)∩ B(b, r2) is arc connected.

Proof. We denote B(a, r1)∩ B(b, r2) = E and let x, y be two distinct points in E. Note that
there exist two distinct points in E because B(a, r1)∩ B(b, r2) is an open set. Since B(b, r2)
is arc connected it follows that there exists a rectifiable curve γ in B(b, r2), γ (0) = x and
γ (1) = y. If γ ⊂ E the proof is complete. Now, we assume the contrary, that is not in E.
Using the fact that γ is connected and compact we have γ ∩∂B (a, r1) 6= ∅. Let us denote
γ ∩ ∂B (a, r1) = {z1, z2, ...zn, ...} such that γ (ti) = zi , 0 ≤ t1 < t2 < .... < tn < .... ≤ 1.
If γzizi+1 ⊂ B(b, r2)\E then replace γzizi+1with an geodesic path γ′zizi+1

that connects zi

with zi+1. Since B (a, r1) and B(b, r2) are GC- balls, it follows that γ′zizi+1
lies in E.Thus,

we obtain a rectifiable curve in E which connects x and y. Note that we denoted by γzizi+1

the curve with endpoints zi and zi+1.

Proposition 2.3. Let (X, d) be a metric space which is GC-geodesic and let B(a, r1),
B(b, r2) be two balls in X with a, b ∈ X, a 6= b, and r1, r2 < diamX .If B(a, r1)∩
B(b, r2) 6= ∅ then B(a, r1)∩ B(b, r2) is arc connected.

Proof. We denote B(a, r1)∩ B(b, r2) = E and let x, y be two distinct points in E. For
x there exist the balls B (x, ε1) ⊂ B (b, r2) , B (x, δ1) ⊂ B (a, r1) and for y there exist
the balls B (y, ε2) ⊂ B (b, r2) , B (y, δ2) ⊂ B (a, r1). Let us denote ε = min{ε1, ε2} and
δ = min{δ1, δ2} . Therefore B (b, r2 − ε) ⊂ B(b, r2), x, y ∈ B(b, r2−ε) and B (a, r1 − δ) ⊂
B(a, r1) , x, y ∈ B (a, r1 − δ) . By Proposition 2, it follows that B(a, r1−δ)∩B(b, r2−ε) = F
is arc connected and F ⊂ E. Since x, y ∈ F and F is arc connected there exists a rectifiable
curve γ joining x and y in F . Consequently γ connects x and y in E. Therefore, E is arc
connected.

Next, we recall the definition of a domain locally connected at a boundary point and
we shall prove that any ball in a GC-geodesic metric space is locally arc connected on the
boundary.

Definition 2.5. Let (X, d) be a metric space and D a domain in X . D is called locally
(arc) connected at a boundary point b if for every neighbourhood V of b, there exists a
neighbourhood U of b, U ⊂ V , such that U ∩D is (arc) connected. If D is locally (arc)
connected at every boundary point then we say that D has property on the boundary.

Proposition 2.4. Let (X, d) be a GC-geodesic metric space. Then every ball B (x,R) in
X with center x ∈ X and radius R < diamX is locally arc connected on the boundary.

Proof. We consider b a boundary point of B (x,R) and U a neighbourhood of b. Then there
exists a ball B (b, r) ⊂ U with r < R. Using Proposition 3, it follows that B (b, r)∩B (x,R)
is arc connected. Consequently, B (x, R) is locally arc connected at b and since b was
arbitrarily chosen we obtain then B (x,R) is locally arc connected on the boundary.
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3 Boundary accessibility properties of some domains in met-
ric spaces

The most important tool of the quasiconformal theory is the conformal modulus. To
define the modulus of a family of curves in a metric space we require an additional struc-
ture.

Let (X, d, µ) be a rectifiably connected metric space equipped with a locally finite
Borel regular measure µ. Next, we assume that all metric spaces are rectifiably connected
and all measures are locally finite and Borel regular with dense support.

We recall some definitions which will be use in this section.

Definition 3.1. Let Γ be a family of curves in a metric measure space (X, d, µ). The
(conformal ) p -modulus of Γ, 1 ≤ p < ∞, is the value

Mp(Γ) = inf
∫
X

ρpdµ ,

where the infimum is taken over all Borel functions ρ : X → [0,∞] which satisfy the
inequality

∫
γ
ρds ≥ 1, for each locally rectifiable curve γ ∈ Γ. Here,

∫
γ
ρds denotes the line

integral of ρ along γ, which is defined using the arc length parametrization of γ in the
usual manner. By definition, the modulus of the family of all curves in X that are not
locally rectifiable is zero.

Definition 3.2. A metric measure space (X, d, µ) is said to be Q−Ahlfors regular,
Q > 0, if there is a constant c ≥ 1 so that

rQ

c
≤ µ(Br) ≤ crQ

for all balls Br in X of radius r < diamX. ( [5] , p.15 )

Note that if above relation holds then X has Hausdorff dimension Q ( [5] , p.15 ). It
is known that one can replace µ in the above definition by the Q -dimensional Hausdorff
measure ( see, for instance, [8] , Lemma C. 3 ).

If E,F, D are subsets of X with E ⊂ D, F ⊂ D, we denote by ∆(E,F ;D) the family
of all curves which join E and F in D.

Next, we consider two Q− (Ahlfors) regular metric measure spaces (X, d, µ) and
(Y, d′, µ′) with 1 ≤ Q < ∞, and two domains D ⊂ X , D′ ⊂ Y . Similar to the geo-
metric definition in Rn, n ≥ 2, by Väisälä ([10],13.1) we have:

Definition 3.3. A homeomorphism f : D → D′ is called K− ( geometrically) quasi-
conformal, K ∈ [1,∞) if

MQ(Γ)
K

≤ MQ(f(Γ)) ≤ KMQ(Γ)
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for every family Γ of curves in D. We also say that a homeomorphism f : D → D′

is (geometrically) quasiconformal if f is K− ( geometrically) quasiconformal for some
K ∈ [1,∞), i.e., if the distortion of moduli of curve families under the mapping f is
bounded.

To simplify notation, we write quasiconformal mapping instead of geometrically
quasiconformal mapping.

In the Euclidean n - space, Gehring [3] has introduced the definition of global quasi-
conformal collared domain on the boundary in the following way:

“A domain D is globally quasiconformally collared on the boundary if there exist a
neighbourhood U of ∂D and a homeomorphism g : U ∩D → {x ∈ Rn, a < |x| ≤ 1}, a ≥ 0,
such that g|U∩D is quasiconformal.”

In our framework, we give an analogous definition:

Definition 3.4. A domain D in a metric measure space X is called globally quasi-
conformally collared on the boundary if there exist two positive constants ε, δ such
that 0 ≤ ε < δ < diamX, an arbitrarily small neighbourhood U of boundary of D and a
homeomorphism g : U ∩D → {x ∈ X, ε < d (a, x) ≤ δ}, a ∈ X, such that the restriction
g|U ∩D is geometrically quasiconformal.

In the sequel, we shall prove the following result.

Theorem 3.1. Let (X, d, µ) be a Q -Ahlfors regular and GC-geodesic metric space and
D a domain in X. If D is globally quasiconformally collared on the boundary then D is
locally arc connected on the boundary.

Proof. Proof. Since D is globally quasiconformally collared on the boundary then there
exist 0 ≤ ε < δ < diamX, an arbitrarily small neighbourhood U of boundary of D
and a homeomorphism g : U ∩ D → {x ∈ X, ε < d (a, x) ≤ δ}, a ∈ X, such that
the restriction g|U ∩ D is geometrically quasiconformal.We denote Cε,δ (a) = {x ∈ X,
ε < d (a, x) < δ} and Sδ(a) = {x ∈ X, d (a, x) = δ}. Let b be a boundary point
of D and a neighbourhood V of b. The set U1 = V ∩ U is a neighbourhood of b.
Since g−1 : Cε,δ (a)∪ Sδ(a) → U ∩ D is continuous at g (b) , it follows that there exists
0 < r < δ − ε such that g−1 (B (g (b) , r) ∩ (Cε,δ (a) ∪ Sδ(a))) ⊂ U1 ∩D. We consider the
set W = g−1 (B (g (b) , r) ∩ (Cε,δ (a) ∪ Sδ(a)))∪

(
U1\D

)
. Obviously, W is a neighbourhood

of b and W ⊂
(
U1 ∩D

)
∪

(
U1\D

)
⊂ U1 ⊂ V. On the other hand,

W ∩D = g−1 (B (g (b) , r) ∩ Cε,δ (a)) = g−1 (B (g (b) , r) ∩B (a, δ)) ,

since Cε,δ (a) ∩ B (a, r) = ∅ and Cε,δ (a) ∪ B (a, r) = B (a, δ) .By Proposition 3, the set
B (g (b) , r) ∩B (a, δ) is arc connected and hence W ∩D is arc connected.

Let D be a domain in a Q -Ahlfors regular metric space X. Next, we recall the
following definitions.
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Definition 3.5. D is called Q -Loewner domain, Q ≥ 1, if there exists a decreasing
function ϕ : (0,∞) → (0,∞) such that

MQ(∆(E,F ;D)) ≥ ϕ(t)

whenever E and F are disjoint nondegenerate continua in D satisfying

dist(E,F ) ≤ t ·min{diamE, diamF}.

The (arc) quasiconformal accessibility in the Euclidean space can be formulated in the
same way in our framework.

Definition 3.6. We say that D is (arc) quasiconformally accessible at b ∈ ∂D if for
every neighbourhood U of b there exist a continuum F ⊂ D and a positive number δ > 0
such that

MQ(∆(E,F ;D)) ≥ δ

for all (arc) connected sets E ⊂ D with b ∈ E and E ∩ ∂U 6= ∅.

Definition 3.7. We say that D is (arc) strictly quasiconformally accessible at
b ∈ ∂D if for every neighbourhood U of b there exist a neighbourhood V of b, V ⊂ U ,
a continuum F in D and a real number δ > 0 such that MQ(∆(E,F ;D)) ≥ δ for every
E ⊂ D (arc) connected with E ∩ ∂V 6= ∅ and E ∩ ∂U 6= ∅. (Definition 10.[1])

In the sequel, we shall prove the following result.

Theorem 3.2. Let (X, d, µ) be a Q -Ahlfors regular, rectifiably connected and locally path
connected metric space, Q ≥ 1. Then any bounded Q -Loewner domain D in X is arc
strictly quasiconformally accessible on the boundary.

Proof. Since D is Q -Loewner domain, it follows that if there exists a decreasing function
ϕ : (0,∞) → (0,∞) such that

(*)
MQ(∆(E,F ;D)) ≥ ϕ(t)

whenever E and F are disjoint non-degenerate continua in D satisfying

dist(E,F ) ≤ t ·min{diamE,diamF}.

Let x be a boundary point of D and let U be a neighbourhood of x. Hence, there
exists a ball B (x, r) of center x and radius r < diamD such that B (x, r) ⊂ U. We
denote S (x, r) = {y ∈ X, d (x, y) = r}.We can take two points a ∈ S(x, 2r

3 ) ∩ D and
b ∈ S(x, 5r

6 ) ∩ D. By Theorem 1, we have that D is an arc domain and hence there
exists a curve γ in D which connected a and b. We can pick a subcurve γ′ of γ which
connects S(x, 2r

3 ) and S(x, 5r
6 ) in B[x, 5r

6 ]\B(x, 2r
3 ). Thus, l (γ′) ≥ r

6 . We set F = γ′

which is a continuum in D, and V = B(x, r
3) ⊂ U. Every arc connected set E in D

which intersects ∂U and ∂V will also intersect S(x, 2r
3 ) and S(x, 5r

6 ). Since E is arc
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connected set, we can choose a curve γ1 in E which connects S(x, r
2) and S(x, r

3) and lies
in B[x, r

2 ]\B(x, r
3). Set E′ = γ1. Note that E′ is a continuum and E′∩F = ∅. On the other

hand, min{diamE′, diamF} ≥ r
6 that implies dist(E′,F )

min{diamE′,diamF} ≤
6dist(E′,F )

r ≤ 6diamD
r .

Using (*), we obtain

MQ(∆ (E,F ;D)) ≥ MQ(∆
(
E′, F ;D

)
) ≥ ϕ

(
6diamD

r

)
> 0.

We denote δ = ϕ
(

6diamD
r

)
and hence

MQ(∆ (E,F ;D)) ≥ δ,

whenever E ⊂ D is arc connected set with E ∩ ∂U 6= ∅ and E ∩ ∂V 6= ∅.Thus, we get
the desired conclusion.

Remark 3.1. Note that (arc) strictly quasiconformal accessibility implies (arc) quasicon-
formal accsessibility, it follows that in above theorem, D is arc quasiconformally accessible
on the boundary.

Corollary 3.1. If (X, d, µ) is a Q - Ahlfors regular and geodesic metric space, Q ≥ 1,
then any bounded Q -Loewner domain D in X is arc strictly quasiconformally accessible
on the boundary.

Proof. The proof follows from Theorem 4, since every geodesic metric space is rectifiably
connected and locally path connected.

4 Continuous boundary extension of quasiconformal map-
ping between domains in metric spaces

In this section we give several boundary extension theorems for quasiconformal map-
pings.

Let us consider two Q - Ahlfors regular and geodesic metric measure spaces (X, d, µ)
and (Y, d′, µ′) , with 1 ≤ Q < ∞, and two domains D ⊂ X , D′ ⊂ Y .

We recall the following two results which will be use for to prove our theorems of
boundary extension.

Lemma 4.1. If D is locally (arc) connected on the boundary, D′ is compact and D′

is (arc) strictly quasiconformally accessible on the boundary, then every quasiconformal
mapping f : D → D′ has a continuous extension f∗ : D → D′. (Corollary 5[1])

Lemma 4.2. Suppose that f : D → D′ is quasiconformal mapping and D,D′ are com-
pact sets. If D.D′ are locally (arc) connected on the boundary and (arc) strictly qua-
siconformally accessible on the boundary, then f can be extended to a homeomorphism
f∗ : D → D′. (Corollary 7[1])
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Theorem 4.1. Suppose that D is locally arc connected on the boundary, D′ is a Q -
Loewner domain and D′ is compact. Then every quasiconformal mapping f : D → D′ has
a continuous extension f∗ : D → D′.

Proof. Since D′ is a bounded Q - Loewner domain, by Corollary 3 it follows that D′ is arc
strictly quasiconformally accessible on the boundary. Using Lemma 2, we get the desired
conclusion.

Corollary 4.1. Suppose that X is a GC-geodesic spaces, D′ is a Q - Loewner domain
and D′ is compact. Then every quasiconformal mapping f : B → D′ has a continuous
extension f∗ : B → D′, where B is a ball in X.

Proof. By Proposition 4, we have that B is locally arc connected on the boundary and
using theorem 5 we obtain the desired conclusion.

Theorem 4.2. Suppose that X is a GC-geodesic space, D is globally quasiconformally
collared on the boundary, D′ is compact and D′ is arc strictly quasiconformally accessible
on the boundary. Then every quasiconformal mapping f : D → D′ has a continuous
extension f∗ : D → D′.

Proof. The proof follows by Theorem 3 and Lemma 2.

Theorem 4.3. Suppose that X is a GC-geodesic space, D is globally quasiconformally
collared on the boundary, D′ is a Q - Loewner domain and D′ is compact. Then every
quasiconformal mapping f : D → D′ has a continuous extension f∗ : D → D′.

Proof. Since D is globally quasiconformally collared on the boundary, by Theorem 3 we
get D is locally arc connected on the boundary. On the other hand, D′ is a Q - Loewner
domain and using Corollary 3, it follows that D′ is arc strictly quasiconformally accessible
on the boundary. By Lemma 2, we obtain the desired conclusion.

Theorem 4.4. Suppose that X and Y are two GC-geodesic spaces, f : D → D′ is a
quasiconformal mapping and D,D′ are compact sets. If D,D′ are globally quasiconfor-
mally collared on the boundary and Q - Loewner domains, then f can be extended to a
homeomorphism f∗ : D → D′.

Proof. The proof follows by Theorem 3, Theorem 4 and Lemma 2.
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