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APPLICATION OF DEPENDENCE WITH COMPLETE
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Abstract

We consider a hidden Markov model with mutually independent observations. To
this model we associate a random system with complete connections. Using the ran-
dom system, we study the ergodic properties of the prediction filter corresponding to
the hidden Markov model.
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1 Indroduction

Hidden Markov models (HMMs) have been extensively applied to problems in econo-
metrics, computational biology, speech recognition and fault detection.

A HMM is formed by a hidden Markov chain {Sn, n ≥ 1} and a stochastic process
{Yn, n ≥ 1}, with distributions depending on {Sn, n ≥ 1}. Usually, the hidden se-
quence {Sn, n ≥ 1} is a finite homogeneous Markov chain, and the observations {Yn, n ≥
1} are mutually independent given the sequence {Sn, n ≥ 1}. The prediction filter,
{P•(Sn|Yn−1, . . . , Y1)}, where (Ω, F,P•) is the probability space, is very important in
the inference algorithms commonly used for HMMs.

The dependence with complete connections concerns the couple formed with a Markov
chain, and a stochastic process with distributions depending on the states of the Markov
chain. Hence, it is natural to associate a random system with complete connections
(RSCC) ([6]) with a HMM. This was noticed in 1975 by Kaijser ([7]) who studied the
ergodicity of the filter under the assumption of subrectangularity. More recently, in 1990,
Arapostathis and Marcus [1] have also associated a RSCC with a HMM with binary
observations, but they did not further develop this idea.

In this paper, we illustrate how techniques and results regarding the dependence with
complete connections can be used to study the ergodic properties of the HMMs. When
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some of the parameters of the HMM are unknown, the ergodicity has statistical applica-
tions in estimation problems.

Different assumptions can be made about the state space and the distributions of
{Sn, n ≥ 1} and {Yn, n ≥ 1}. Besides Kaijser’s approach, under compactness or locally
compactness hypotheses, Kunita ([9]) and Stettner ([10]) have proved the existence of an
invariant probability distribution for the prediction filter. In this paper, we recover this
result using a different approach. We consider a HMM similar to the one presented by Le
Gland and Mevel in [4]. With this model, we associate a RSCC, and as a consequence of
the properties of the RSCC, we obtain the ergodicity of the Markov chain formed by the
prediction filter.

2 Geometric ergodicity of the prediction filter

We consider the same HMM as in [4], which is formed by the unobserved random
sequence {Sn, n ≥ 1}, and the observations sequence {Yn, n ≥ 1}, defined on the probabil-
ity space (Ω, F,P•) with values in the finite set S = {1, . . . ,M} and in Rd, respectively.
We suppose that the sequence {Sn, n ≥ 1} is a homogeneous Markov chain with the ini-
tial probability distribution p• = (p•i), and the transition probability matrix Q = (qi,j),
i, j ∈ S. Hence, for any i, j ∈ S and any integer n ≥ 1, we have

P•(S1 = i) = p•i, P•(Sn+1 = j|Sn = i) = qi,j .

We also suppose that the conditional probability distribution of the observation Yn given
that {Sn = i} is absolutely continuous with respect to a non-negative and σ- finite measure
λ, and it has a positive density

P•(Yn ∈ A|Sn = i) =
∫

A
bi(y)λ(dy),

for any integer n ≥ 1, i ∈ S and A ∈ B
(
Rd

)
, where for any integer n ≥ 1 we denote

by B(Rn) the collection of Borel sets on Rn. Moreover, the observations {Yn, n ≥ 1} are
mutually independent given the sequence {Sn, n ≥ 1}:

P•(Yn ∈ An, . . . , Y1 ∈ A1|Sn = in, . . . , S1 = i1) =
n∏

k=1

P•(Yk ∈ Ak|Sk = ik),

for any integer n ≥ 1, any i1, . . . in ∈ S and any sets An, . . . A1 ∈ B
(
Rd

)
.

Let consider the prediction filter pn = (pi
n), where p1 = p•, and for any n > 1 and all

i ∈ S,
pi

n = P•(Sn = i|Yn−1, . . . , Y1).

We now have the following forward Baum equation [4]

pn+1 =
QtB•(Yn)pn

bt
•(Yn)pn

, n ≥ 1
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where t denotes the transpose of a matrix or a vector, and for any y ∈ Rd, b•(y) = (bi(y)),
B•(y) = diag(bi(y)). To emphasize the dependency with respect to the initial condition
and the observations, we use the same notation as in [4], and we put

pn+1 = f [Yn, . . . , Y1, p1] =
Mn,1p1

etMn,1p1
= Mn,1 · p1, (2.1)

where e = (1, . . . , 1)t is a M -dimensional vector, · denotes the projective product [3], and
for any integers n ≥ l

Mn,l = QtB•(Yn) · · ·QtB•(Yl).

Example 2.1. As noted in [4], an example of a HMM which satisfies all the previous
assumptions is a model with observations {Yn, n ≥ 1} of the following form

Yn = h(Sn) + Vn,

where {Vn, n ≥ 1} is a Gaussian white noise sequence independent of {Sn, n ≥ 1}, with
symmetric and positive definite covariance matrix D, (i.e. Vn ∼ N(0, D)), and h is a
mapping from S to Rd.

Let define

W = {w ∈ RM : wi ≥ 0, i ∈ S,
M∑
i=1

wi = 1}, (2.2)

and consider on W the topology induced by the Euclidian space RM . Let W denote
the collection of the Borel sets on W and ‖ · ‖1 the L1- norm on RM . Hence, for any
u = (ui) ∈ RM and for any M ×M matrix Z = (Zi,j), we have

‖u‖1 =
∑
i∈S

|ui|, ‖Z‖1 = max
j∈S

∑
i∈S

|Zi,j |.

Notice that {pn, n ≥ 1} is a Markov chain with the transition probability

Π(pn+1 ∈ E|pn = p) =
∑
j∈S

pj

∫
Rd

bj(y)1E(f [y, p])λ(dy),

for any n ≥ 1, E ∈ W and p ∈ W . Here and throughout the paper, 1E denotes the
indicator function of the set E.

For any real-valued, bounded and (W,B(R)) measurable function g defined on W , and
any p ∈ W , we have

Ug(p) = E•[g(pn+1)|pn = p] =
∑
j∈S

pj

∫
Rd

bj(y)g(f [y, p])λ(dy), (2.3)

and, for any n ≥ 1,

Ung(p) = E•[g(pn+1)|p1 = p] =
∑

i1,...,in∈S

pi1qi1,i2 · · · qin−1,in

×
∫

Rnd

bi1(y1) · · · bin(yn)g(f [yn, . . . , y1, p])λ(n)(dy(n)),
(2.4)
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where (Rnd, B
(
Rnd

)
, λ(n)) is the product measurable space, λ(n) = λ ⊗ . . . ⊗ λ, and

y(n) = (y1, . . . , yn).
It is easy to verify that the quadruple

{
(W,W ),

(
Rd, B

(
Rd

))
, u, P

}
is a RSCC ([6],

definition 1.1.1, page 5), where u : W × Rd → W ,

u(p, y) = f [y, p] =
QtB•(y)p

bt
•(y)p

, y ∈ Rd, p ∈ W,

and for all p = (pj) ∈ W and E ∈ B
(
Rd

)
P (p, E) =

∑
j∈S

pj

∫
E

bj(y)λ(dy). (2.5)

As in [6] (page 5), for any n ≥ 1, we define recursively the maps u(n) : W × (Rd)n → W
and the transition probability functions Pn, and we get

u(n)(p, (y1, . . . , yn)) = py(n) = f [yn, . . . , y1, p], yi ∈ Rd, p ∈ W, (2.6)

and

Pn(p, E) =
∑

i1,...,in∈S

pi1qi1,i2 · · · qin−1,in

∫
E

bi1(y1) · · · bin(yn)λ(n)(dy(nd)), (2.7)

for any E ∈ B
(
Rnd

)
and p ∈ W .

Comparing (2.5) with (2.3) and (2.7) with (2.4), we notice that

Ug(p) =
∫

Rd

g(f [y, p])P (p, dy),

Ung(p) =
∫

Rnd

g(f [yn, . . . , y1, p])Pn(p, dy(n)).

Furthermore, using (2.4)-(2.5) it is easy to show that, for any probability distribution
p• ∈ W , the random sequences {pn+1, n ≥ 0} with p1 = p• and {Yn, n ≥ 1} are associated
with the previously defined RSCC, in the sense of theorem 1.1.2, page 6 of [6], on the
probability space (Ω, F,P•(·|p1 = p•).

As in [4], let denote by min+ the minimum over positive elements, and put

δ(y) =
maxi∈S bi(y)
mini∈S bi(y)

, ∆−1 = min
i∈S

∫
Rd

δ−1(y)bi(y)λ(dy),

ε = min+

i,j∈S
qi,j , ∆ = max

i∈S

∫
Rd

δ(y)bi(y)λ(dy), R = εr∆r−1
−1 .

Throughout this section, we suppose that the matrix Q is primitive with index of
primitivity r. Hence, by definition, the matrix Qr is positive, and r is the smallest integer
with this property. As a consequence, the Markov chain {Sn, n ≥ 1} is geometrically
ergodic with a unique invariant probability distribution π• = (πi) on S. Thus, (theorem
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4.3 in [5], page 126) there exist two positive constant a1 and c1 < 1 such that, Qn = (qi,j
n ),

the n-th power of the matrix Q, satisfies

|qi,j
n − πj | ≤ a1c

n
1 , (2.8)

for any n ≥ 1 and any i, j ∈ S. We now establish two important properties of the
previously defined RSCC.

Proposition 2.1. The RSCC
{
(W,W ),

(
Rd, B

(
Rd

))
, u, P

}
is uniformly ergodic ([6], page

42, definition 2.1.4).

Proof. For any integers n, k ≥ 1, every p ∈ W and E ∈ B
(
Rkd

)
, from (2.7) we get

Pn
k (p, E) = Pn+k−1(p, R(n−1)d × E) =

∑
i1,...,ik+1∈S

pi1qi1,i2
n−1qi2,i3 · · · qik,ik+1

×
∫

E
bi2(y1) · · · bik+1(yk)λ(k)(dy(k)).

Let
P∞

k (E) =
∑

i1,...,ik∈S

πi1qi1,i2 · · · qik−1,ik

∫
E

bi1(y1) · · · bik(yk)λ(k)(dy(k)).

Using (2.8), it is easy to prove that

lim
n→∞

Pn
k (p, E) = P∞

k (E),

uniformly with respect to p, E and k. Thus the RSCC is uniformly ergodic.

Proposition 2.2. If ∆ < ∞ then
{
(W,W ),

(
Rd, B

(
Rd

))
, u, P

}
is an RSCC with con-

traction ([6], page 79, definition 3.1.15).

Proof. Replacing in (2.5) and using the definition of the ‖ · ‖1, we obtain

R1 = sup
E∈B(Rd)

sup
p6=p′ ,p,p′∈W

|P (p, E)− P (p
′
, E)|

‖p− p′‖1
≤ 1 < ∞. (2.9)

From lemma 2.2 in [3], we get

‖f [y, p]− f [y, p
′
]‖1 ≤ δ(y)‖p− p

′‖1, p, p
′ ∈ W, y ∈ Rd.

Hence,

r1 = sup
p6=p′ ,p,p′∈W

∫
Rd

‖f [y, p]− f [y, p
′
]‖1

‖p− p′‖1
P (p, dy) ≤ ∆ < ∞. (2.10)

For n > 2r, from the first inequality in theorem 2.1 and the inequality 5 in [4], we get

rn = sup
p6=p′ ,p,p′∈W

∫
Rdn

‖f [yn, . . . , y1, p]− f [yn, . . . , y1, p
′
]‖1

‖p− p′‖1
Pn(p, dy(n))

≤ ε−r∆r(1−R)n/r−2.

Thus, for n sufficiently large, rn < 1, and together with (2.9) and (2.10) this implies that
we have an RSCC with contraction.
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Remark 2.1. If the observation conditional densities bi are Gaussian for any i ∈ S (as in
example 2.1), then ∆ < ∞ (Example 4.2 in [4]).

Now, we return to the Markov chain {pn} associated with the RSCC. Using the previous
proposition, theorem 3.1.16, page 80 in [6] and the fact that (W, ‖ · ‖1) is a compact space,
we obtain that {pn} is a compact Markov chain (according to the definition 3.2.1, page 93
in [6]). Furthermore, in what follow we show that it is geometrically ergodic.

Let L(W ) denote the set of real-valued, bounded and Lipschitz continuous functions
defined on W . Then L(W ) is a Banach space for the norm ‖ · ‖BL defined by

‖g‖BL = ‖g‖+ s(g),

where

‖g‖ = sup
p∈W

|g(p)|, s(g) = sup
p6=p′ ,p,p′∈W

|g(p)− g(p
′
)|

‖p− p′‖1
.

For any bounded linear operator V from L(W ) to L(W ), let denote

‖V ‖BL = sup
‖g‖BL=1

‖V g‖BL.

We then have the following results.

Lemma 2.1. There exists a positive constant K such that for any positive integer n > r+1,
all f ∈ L(W ) and any p1, p2 ∈ W

|Ung(p1)− Ung(p2)| ≤ nKcn‖g‖BL,

where c = max{c1, c2}, with c2 = (1−R)1/r and c1 as defined in (2.8).

Proof. We follow the same ideas as in the proof of theorem 3.5 in [4]. Using the second
inequality in theorem 2.1 and inequality (5) in [4], we obtain a result similar to the
proposition 3.7 in [4]:

max
il,...,in∈S

∫
Rd

. . .

∫
Rd

|g(f [yn, . . . , yl, p1])− g(f [yn, . . . , yl, p2])|

× bil(yl) . . . bin(yn)λ(dyl) . . . λ(dyn) ≤ 2s(g)cn−l+1−r
2 ,

(2.11)

for any positive integers n, l such that n ≥ l + r − 1, and any function g ∈ L(W ). Notice
that we can express

Ung(p1)− Ung(p2) =
∑

i1,...,in∈S

pi1
1 qi1,i2 · · · qin−1,in

∫
Rnd

bi1(y1) · · · bin(yn)

× (g(f [yn, . . . , y1, p1])− g(f [yn, . . . , y1, p2])λ(n)
(
dy(n)

)
+

∑
i1,...,in∈S

(pi1
1 − pi1

2 )

× qi1,i2 · · · qin−1,in

∫
Rnd

bi1(y1) . . . bin(yn)g(f [yn, . . . , y1, p2])λ(n)
(
dy(n)

)
.
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Let T1 denotes the first term. Using (2.11), we get:

|T1| ≤ 2s(g)cn−r
2 . (2.12)

For the second term T2, we decompose g(f [yn, . . . , y1, p2]) as in the proof of theorem 3.5
in [4]:

|T2| ≤
l∑

k=2

∑
ik,...,in∈S

∣∣∣∣∣∣
∑

i1,...,ik−1∈S

(pi1
1 − pi1

2 )qi1,i2 · · · qik−1,ik

∣∣∣∣∣∣ qik,ik+1 · · · qin−1,in

∫
Rd

. . .

∫
Rd

|g(f [yn, . . . , yk, zk−1, . . . , z1, p2])− g(f [yn, . . . , yk+1, zk, . . . , z1, p2])|

bik(yk) · · · bin(yn)λ(dyk) . . . λ(dyn) +
∑

i1,...,in∈S

|pi1
1 − pi1

2 |q
i1,i2 · · · qin−1,in

∫
Rnd

bi1(y1) · · · bin(yn) |g(f [yn, . . . , y1, p2])− g(f [yn, . . . , y2, z1, p2])|λ(n)
(
dy(n)

)
+

∑
il+1,...,in∈S

∣∣∣∣∣∣
∑

i1,...,il∈S

(pi1
1 − pi1

2 )qi1,i2 · · · qil,il+1

∣∣∣∣∣∣ qil+1,il+2 · · · qin−1,in

∫
Rd

. . .

∫
Rd

|g(f [yn, . . . , yl+1, zl, . . . , z1, p2])| bil+1(yl+1) · · · bin(yn)

λ(dyl+1) . . . λ(dyn),

for any positive integer l ≤ n− 1 and any sequence z1, . . . , zl ∈ Rd. The inequality (2.11)
and p1, p2 ∈ W yields

|T2| ≤ 2s(g)
l∑

k=2

cn−k−r
2

∑
ik∈S

∣∣∣∣∣∣
∑
i1∈S

(pi1
1 − pi1

2 )(qi1,ik
k−1 − πik)

∣∣∣∣∣∣
+ 2s(g)cn−1−r

2 ‖p1 − p2‖1 + ‖g‖
∑

il+1∈S

∣∣∣∣∣∣
∑
i1∈S

(pi1
1 − pi1

2 )(qi1,il+1

l − πil+1)

∣∣∣∣∣∣
Using (2.8) and l = n− r, we get

|T2| ≤ ‖p1 − p2‖1

(
2s(g)Ma1(n− r − 1)cn−r−1 + 2s(g)cn−1−r

2

+ ‖g‖Ma1c
n−r
1

)
.

(2.13)

Since ‖p1 − p2‖1 ≤ 2, adding (2.12) and (2.13), we get the conclusion.

Let us define

Un =
1
n

n∑
k=1

Un, n ≥ 1.

We can now formulate the main result concerning the Markov chain {pn, n ≥ 1}.
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Theorem 2.1. The Markov chain {pn, n ≥ 1} is geometrically ergodic. Moreover, if
∆ < ∞ and Q∞ is the unique invariant probability distribution for the chain {pn, n ≥ 1},
then we have

1. limn→∞ ‖Un − U∞‖BL = 0.

2. There exists two positive constants C and θ < 1, such that for any function g ∈ L(W )

‖Ung − U∞g‖BL ≤ Cθn‖g‖BL.

Here, U∞ is the linear operator defined by

U∞g =
∫

W
g(p)Q∞(dp),

for any bounded and measurable real-valued function g.

Proof. Using lemma 1 and proceedings as in the proof of corollary 3.6 in [4], it can be
shown that there exists a unique invariant probability distribution Q∞ for the Markov
chain {pn, n ≥ 1}, and we have

|Ung(z)− U∞g| ≤ K‖g‖BL
ncn

(1− c)2
,

for any positive integer n ≥ 1, all g ∈ L(W ), and any z ∈ W . If ∆ < ∞, the properties of
the associated RSCC allow us to state stronger results concerning the convergence of the
iterates of the transition operator U . As we have already mentioned, the Markov chain
{pn, n ≥ 1} is compact and by theorem 3.2.2, page 93 in [6], the Ionescu Tulcea-Marinescu
ergodic theorem applies ([6], theorem A2.4, page 263).

Moreover, lemma 1 implies that any eigenfunction g ∈ L(W ) of U , corresponding to a
eigenvalue γ with |γ| = 1, is a constant function. Hence, γ = 1 is the only eigenvalue of
modulus 1 of U and the subspace

E(1) = {g ∈ L(W ) : Ug = g}

is one dimensional. Thus, we can get the stated conclusions from the Ionescu Tulcea-
Marinescu ergodic theorem and theorem 3.2.4, page 94 in [6].

3 Concluding remarks.

In practice, the matrix Q or the initial probability distribution p• may be unknown,
and only some estimations of them may be used in the formulas for pn or wn. An impor-
tant question is how these misspecifications influence the results, for a large n. For the
prediction filter {p∗n, n ≥ 1}, with a wrong transition matrix and initial distribution, Le
Gland and Mevel have proved in [4] that we have an P•-a.s. exponential rate of forget-
ting of the initial distribution. They suppose that both the real and the wrong transition
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matrices are primitive. Under these assumptions, they have also proved that the Markov
chains {Sn, Yn, p∗n, n ≥ 1} is geometrically ergodic.

A simple extension is to consider a HMM for which the mutually independence of the
observations {Yn, n ≥ 1}, given the sequence {Sn, n ≥ 1}, is replaced by a Markovian
dependence. For example, in [8] we generalize the example 2.1 and we consider a hybrid
model with observations {Yn, n ≥ 1}

Yn = C(Sn)Xn + vn, (3.14)

and two sequences of hidden states: {Sn, n ≥ 1}, as in the previously presented HMM,
and {Xn, n ≥ 1} with X0 ∼ N(µ,Σ) and

Xn = AXn−1 + wn, wn ∼ N(0,H), n ≥ 1. (3.15)

Here A is the m × m transition matrix, C(i), i ∈ S, are the d × m output matrices for
the state-space model, and H is the symmetric and positive definite covariance matrix of
the normal distribution corresponding to the independent random vectors wn, n ≥ 1. The
noise sequences {wn, n ≥ 1} and {vn, n ≥ 1} are independent. Moreover, the sequences
{Sn, n ≥ 1} and {X0, wn, n ≥ 1} are independent, X0, wn, n ≥ 1 are independent, and
conditional on {Sn, n ≥ 1}, vn, n ≥ 1, are Gaussian and mutually independent such that,
if Sn = i, i ∈ S, then vn ∼ N(0, R(i)), where R(i) is the d × d symmetric and positive
definite covariance matrix. For any n ≥ 1, i ∈ S, Ax ∈ B(Rm) and Ay ∈ B(Rd), we have

P•(Yn ∈ Ay|Xn = x, Sn = i) =
∫

Ay

bi(x, y)λd(dy), (3.16)

P•(Xn ∈ Ax|Xn−1 = x) =
∫

Ax

a(y, x)λm(dy), (3.17)

where

bi(x, y) = (2π)−d/2[detR(i)]−1/2 exp[−(y − C(i)x)tR(i)−1(y − C(i)x)/2],

a(y, x) = (2π)−m/2[detH]−1/2 exp[−(y −Ax)tH−1(y −Ax)/2],

and λd and λm are the Lebesgue measures on Rd and Rm, respectively.
Since the model (3.14) - (3.15) is a mixture model with an exponentially increasing

number of components, deterministic inference algorithms become intractable rapidly.
Usually, to overcome this difficulty, the Gibbs sampler ([2]) is applied. This means to
implement an iterative algorithm and to draw samples {Xn(l), n ≥ 0}, l = 1, . . . , L and
then, for each sample, to calculate the prediction filter wn(l) = (wi

n(l)), n ≥ 1 in order
to draw a sample for the hidden sequence {Sn, n ≥ 1}, too. Here, w1 = p•, and for any
n ≥ 2

wi
n(l) = P•(Sn = i|Yn−1, Xn−1(l), . . . , Y1, X1(l)).

In [8] we prove the P•-a.s. exponential rate of forgetting of the initial distribution. De-
pendence with complete connections can be used to study the ergodic properties of the
prediction filter wn(l) = (wi

n(l)), n ≥ 1 (the details will be reported elsewhere).
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A version of the generalized model (3.14) - (3.15) is also obtained in [2] when applying
the Gibbs sampler for a hybrid model, formed by a state-space model and a HMM. These
hybrids, which combine the discrete switching structure of the HMMs with the linear
Gaussian dynamics of the state-space models, are used in various fields, from control
engineering to econometrics.
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