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Abstract

The general differential Maxwell system is solved explicitly in the case of an ar-
bitrary inhomogeneous linear isotropic medium. The analytic mathematical study is
done taking into account the initial real industrial phenomena statement of technical
electrodynamics

2000 Mathematics Subject Classification: 35A25, 35G99, 78A25, 35Q60.
Key words: general differential Maxwell system, unified wave PDE, mathemati-

cal solution, electromagnetic field, technical electrodynamics, inhomogeneous excited
medium.

1 Introduction

The present paper deals with the investigation of the general differential Maxwell sys-
tem. The latter is the mathematical model of the phenomena in technical and classical
electrodynamics that concern the signal transmissions in the various kinds of media, mul-
tidimensional circuits and filters with the distributed parameters as well [1].

As far as it is known, the specific case of the aforesaid system was introduced for
the first time in [2] in the case of an isotropic homogeneous immobile medium. The
medium was given as an arbitrary excited, but such important assumption was not taken
into account, as in the framework of the initial problem statement, as in the future re-
search. Moreover, the same paper [2] did not affect the solution of the proposed differential
Maxwell system and neglected the outside electromagnetic field tensions.

The next investigating step was done in [3] when the above mentioned differential
Maxwell system was studied in the presence of the outside electromagnetic field tensions
and excitation of a medium. Additionally, the system’s diagonalization problem was raised
and fulfilled. The last action meant the reduction of the aforesaid matrix problem to
the equivalent totality of the appropriate scalar equations with respect to the only one
component of the sought for electromagnetic field vector functions. Then this totality was
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expressed as the unified general scalar wave PDE whose explicit solution [4] based on the
preceding conclusions in the simplest cases of media [5].

All mentioned results were independent of the boundary conditions and original matrix
structure. Only two restrictions were imposed to the operator matrix elements, - their
commutativity in pairs and invertibility.

The proposed paper concerns the study of the general differential Maxwell system when
an arbitrary isotropic linear inhomogeneous excited medium is given. Such problem
statement generalizes essentially [2], [3] and spreads all over the vast number of industrial
problems in technical and classical electrodynamics whose analytic solution was not done
yet.

Therefore, the goal of the suggested article is an explicit solution of the general differ-
ential Maxwell system in the case of an arbitrary isotropic inhomogeneous linear excited
medium.

2 The problem statement

Let the general differential Maxwell system be given{
rot ~H = (σ ± λεa) ~E + εa

∂ ~E
∂t + ~jos

−rot ~E = (r ± λµa) ~H + µa
∂ ~H
∂t + ~eos,

(2.1)

where: ~E, ~H = ~E, ~H(x, y, z, t) are the sought for vector functions that describe ten-
sions of the electric and magnetic field correspondingly, and their scalar components
are Ek,Hk = Ek,Hk(x, y, z, t) (k = 1, 3). The outside current sources and tensions
~jos, ~eos = ~jos, ~eos(x, y, z, t) with scalar components jos

k , eos
k = jos

k , eos
k (x, y, z, t) (k = 1, 3)

are known.
Since a medium is accepted as inhomogeneous here, the specific conductivity σ,

absolute and dielectric permeability µa, εa depend on the spatial coordinates, just as,
σ, µa, εa = σ, µa, εa(x, y, z). We remind of such assumption as the considerable general-
ization of the generally accepted classical requirement when σ, µa, εa are usual positive
physical constants [1], [2]. Further, in (2.1) λ = const > 0 is the parameter of the signal
that excites the medium, and an additional ”symmetrical” number r > 0 exists only theo-
retically at the current stage of study. The change of sign in front of λ means the reaction
of the medium to the signal excitation; ”+” is an absorption, ”-” implies a seizure.

So, the medium is an arbitrary excited and inhomogeneous.
The scalar functions Ek,Hk, j

os
k , eos

k (k = 1, 3) and σ, µa, εa are n-times continuously
differentiable in some domain of the respective space R4 and R3 in terms of either (x, y, z, t)
or (x, y, z). The numerical value of n will be introduced a little bit later when it can be
confirmed by the results of the first step of solution.

The form of domain is determined when the specific applied industrial and appropriate
boundary problem appear.

The same fact holds the specific feature of the aforesaid functions’ non smooth behavior
too. This characteristic depends also on the concrete industrial problem statement and
can be specified only when the corresponding initial and boundary conditions are fixed.
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Hence, it should be noted once more, that all suggested here results, as in [3] - [5], are
irrespective of the boundary problem statement.

Now we come directly to the explicit solution of the above raised problem by means
of the following method that is written below.

The required study is done in two stages. The first step concerns the diagonalization
procedure of (2.1) ”by blocks” and ”by coordinates”, represents the operator analogy of
Gauss method and bases on the results of [3]. The second step is an explicit solution of the
unified wave scalar general PDE which appears as the final result of the diagonalization
procedure.

The next section describes the first stage of the proposed solving method.

3 The problem solution in terms of the diagonalization pro-
cedure

So, the purpose of the present section is the reduction of the original vector problem,
i.e. of (2.1), to the equivalent system of scalar equations where each of them has an only
one unknown component of the electromagnetic vector field functions.

Let

A = rot, ∂0 =
∂

∂t
, ∂∗0 = ∂0 ± λ, C = σ + εa∂

∗
0 , D = r + µa∂

∗
0 (3.2)

be the auxiliary designations of the corresponding differential operators from (2.1). Then
this system (2.1) can be rewritten as follows, and the diagonalization ”by blocks” [3] begins{

A ~H − C ~E = ~jos | D

−A~E −D ~H = ~eos | (−A)
⊕ (3.3)

m{
−(DC + A2) ~E = D~jos + A~eos | (−A)

−A~E −D ~H = ~eos | (−(DC + A2))
⊕ (3.4)

m{
−(A2 + DC) ~E = D~jos + A~eos

−(A2 + DC)D ~H = (A2 + DC)~eos −AD~jos −A2~eos.
(3.5)

Operator applications (3.3) - (3.5) reflect the diagonalization of (2.1) ”by blocks” [3] and
reduce this original system to the equivalent unified ”vector-scalar” equation with respect
to the only one of the electromagnetic field vector functions

−(A2 + DC)~Fi = ~ϕi (i = 1, 2), (3.6)

where
~F1 = ~E, ~F2 = ~H; ~ϕ1 = A~eos + D~jos, ~ϕ2 = C~eos −A~jos. (3.7)



106 Irina Dmitrieva

Therefore, the diagonalization ”by blocks” is finished and the diagonalization ”by coordi-
nates” begins.

Taking into account the following formulae

A2 = (rot)(rot) = (grad)(div)−∆; ∆ =
3∑

k=1

∂2
k ;

∂1 = ∂
∂x , ∂2 = ∂

∂y , ∂3 = ∂
∂z ,

(3.8)

and operator polynomial

∂̃2
0 = DC = µaεa(∂∗0)2 + (σµa + rεa)∂∗0 + rσ, (3.9)

the operator from the left side of (3.6) can be expressed as follows

A2 + DC = grad(∂1 + ∂2 + ∂3)−∆ + ∂̃2
0 . (3.10)

New symbols in (3.10) are from (3.8), (3.9).
Using (3.10), the former equation (3.6) can be rewritten like that

A23Fi1 −B12Fi2 −B13Fi3 = ϕi1

−B12Fi1 + A13Fi2 −B23Fi3 = ϕi2

−B13Fi1 −B23Fi2 + A12Fi3 = ϕi3,
(i = 1, 2) (3.11)

where operators

Ajk = ∂2
j + ∂2

k + ∂̃2
0 (j 6= k), Bjk = ∂j∂k (j 6= k) (j, k = 1, 3) (3.12)

and scalar functions

Fik = Fik(x, y, z, t), ϕik = ϕik(x, y, z, t) (k = 1, 3; i = 1, 2) (3.13)

are given in terms of (3.7) - (3.9) and

~Fi = {Fik}3
k=1 (i = 1, 2); ~ϕi = {ϕik}3

k=1 (i = 1, 2). (3.14)

Applying directly the diagonalization process from [3] to (3.11) - (3.14), we obtain the
required diagonal matrix that is equivalent to the unified scalar general wave equation
regarding the unknown components (3.14) of the function ~Fi (i = 1, 2) from (3.7):

∂̃2
0(∂̃2

0 −∆)Fik = (∂2
k − ∂̃2

0)ϕik + ∂k(∂νϕiν + ∂lϕil);
ν 6= l, k 6= ν, k 6= l (k, ν, l = 1, 3; i = 1, 2).

(3.15)

In (3.15), the functions ϕik and partial differential operators are from (3.7), (3.13), (3.14)
and (3.8), (3.9) respectively.

Closing this section, it should be noted that the numerical value of n from the previous
section 2 can be specified as four. The structure of (3.15) confirms the given number,
since n meant the order of the higher continuous derivative of the scalar functions from
the original system (2.1).

Thus, the first step of the suggested solution is finished completely, and the last, second
above mentioned stage of study remains.
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4 Solution of the unified scalar equation

It is clear that (3.15) can be considered from the general mathematical viewpoint as
the following PDE

∂̃2
0(∂̃2

0 −∆)F = f, (4.16)

where F is Fik from (3.15) and f is the right part of (3.15).
Using technique of [4], the fourth order equation (4.16) is simplified by the introduction

of new unknown function
Φ = ∂̃2

0F. (4.17)

Then (4.16), in terms of (4.17), becomes the second-order PDE

(∂̃2
0 −∆)Φ = f (4.18)

that can be solved effectively by the integral transform method [6].
Namely, after application of the corresponding integral transformation, either by each

of spatial variables x, y, z, or using the unified multidimensional transformation by (x, y, z)
simultaneously [7], we come to the linear inhomogeneous ODE with constant coefficients
in terms of the relevant transforms dependent on the time variable t:

(µ̃aε̃a(
d

dt
± λ)2 + (σ̃µ̃a + rε̃a)(

d

dt
± λ) + (rσ̃ − ∆̃))Φ̃ = f̃ . (4.19)

”Tilde” means here the transform of the corresponding initial function.
Solving the linear homogeneous ODE that is raised by (4.19), we get the fundamental

solution system [8]

{χm = χm(t, p) = eηmt(cos ξmt + i sin ξmt), m = 1, 2};
ηm = Re(ωm), ξm = Im(ωm);

ω1,2 = 1
2µ̃aε̃a

(
−((σ̃µ̃a + rε̃a)± 2λµ̃aε̃a)±

√
(σ̃µ̃a − rε̃a)2 + 4µ̃aε̃a∆̃

)
.

(4.20)

Then the general solution of (4.19) is looking for as

Φ̃ =
2∑

m=1

Cmχm +
2∑

m=1

C?
mχm, ∀C?

m = const ∈ R (m = 1, 2), (4.21)

where the first sum is the partial solution of (4.19) and the second sum is the general
solution of the homogeneous ODE that is generated by (4.19). Further, the unknown
functions Cm = Cm(t, p) (m = 1, 2) are determined by the following system [8]{

C
′
1χ1 + C

′
2χ2 = 0

C
′
1χ

′
1 + C

′
2χ

′
2 = f̃ ,

C
′
m = dCm

dt , χ
′
m = dχm

dt (m = 1, 2).
(4.22)

Everywhere in (4.20) - (4.22), the numerical values of p describe the set of parameters
of the applied integral transformations.
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Solving (4.22), we find the sought for functions

C1,2 = ± 1
(η1 − η2) + i(ξ1 − ξ2)

∫
f̃

eη1,2t(cos ξ1,2t + i sin ξ1,2t)
dt. (4.23)

Turning to the original expressions of ω1,2 from (4.20), basing on (4.21), (4.23), the
required general solution of (4.19) can be written below

Φ̃ = 1
(η1−η2)+i(ξ1−ξ2)(e

ω1t
∫

e−ω1tf̃dt− eω2t
∫

e−ω2tf̃dt) +
2∑

m=1
C?

mχm,

∀C?
m = const ∈ R, m = 1, 2.

(4.24)

In the right part of (4.24), the first functional item is the partial solution of (4.19), and the
second one that is expressed as the sum, represents the general solution of the homogeneous
ODE with respect to (4.19).

Since (4.17) is the particular case of (4.18), when ∆ = 0, and instead of Φ, f the
corresponding functions F , Φ can be considered, the unknown transform F̃ looks like

F̃ =
1

(η∗1 − η∗2) + i(ξ∗1 − ξ∗2)
(eω∗

1 t

∫
e−ω∗

1 tΦ̃dt− eω∗
2 t

∫
e−ω∗

2 tΦ̃dt), (4.25)

where

ω∗1,2 = −
([

r/µ̃a

σ̃/ε̃a

]
± λ

)
, η∗m = Re(ω∗m), ξ∗m = Im(ω∗m) (m = 1, 2), (4.26)

and Φ̃ is given in (4.24).
Applying to (4.25) the appropriate inverse integral transformation, we find the original

required solution of (4.16). This final result closes the given section, means the initial
problem’s explicit study and the purpose of the present paper’s achievement.

5 Concluding remarks

Closing the present article, it should be noted once more that the explicit solution and
the given method are independent of the boundary problem statement. Moreover, as far as
it is known, the temporal variable t was not considered earlier as mostly important during
the application of the integral transform procedure. It means that the integral transforma-
tion did not affect the spatial variables but influenced upon t. Such approach complicated
the concrete boundary problem’s investigation in the case of the spatial dimension whose
order was bigger than one.

Thus, there is a tentative hope that the proposed here method will allow to simplify an
explicit analytic solution of the applied industrial problems in technical electrodynamics
and classical electromagnetic field theory not infringing the original physical phenomenon
statement.

The suggested results were announced briefly in [9].
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