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NUMERICAL ANALYSIS OF THE STOKES/DARCY COUPLING

Albert Constantin DUMITRACHE1

Abstract

We consider a differential system based on the coupling of the Stokes and Darcy
equations for modeling the interaction between surface and porous-media flows. We
formulate the problem as an interface equation, we analyze the associated Steklov-
Poincar operators, and we prove its well-posedness. We propose an iterative method
to solve the coupling of the Stokes and Darcy equations.
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1 Indroduction

Let Ω ⊂ Rd (d = 2, 3) be a bounded domain, decomposed into two non intersecting
subdomains Ωf and Ωp separated by an interface Γ, i.e. Ω = Ωf ∪ Ωp, Ωf ∩ Ωp = ∅ and
Ωf ∩Ωp = Γ. We suppose the boundaries ∂Ωf and ∂Ωp to be Lipschitz continuous. From
the physical point of view, Γ is a surface separating the domain Ωf filled by a fluid, from
a domain Ωp formed by a porous medium. We assume that the fluid contained in Ωf has
a fixed surface (i.e. we do not consider the free surface fluid case) and can filtrate through
the adjacent porous medium.
We introduce the Stokes equations: ∀t > 0,

−∇ · T (uf , pf ) = f in Ωf

∇ · uf = 0 in Ωf (1.1)

where T (uf , pf ) = v(∇uf +∇Tuf )−pfI is the Cauchy stress tensor, v > 0 is the kinematic
viscosity of the fluid, while uf and pf are the fluid velocity and pressure;
We define the piezometric head ϕ where z is the elevation from a reference level, pp is the
pressure of the fluid in Ωp, ρf its density and g is the gravity acceleration.
The fluid motion in Ωp is described by the equations:

up = −K∇ϕ Ωp
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Figure 1: Schematic representation of a 2D section of possible computational domains:
the surface-groundwater

∇ · up = 0 Ωp (1.2)

where up is the fluid velocity, and K is the hydraulic conductivity tensor K =
= diag(K1,K2,K3) with K = (Kij)i,j=1,...,d ∈ L∞(Ωp). In the following we shall de-
note K = K/n.

In our analysis we shall adopt homogeneous boundary conditions. In particular, for
the Stokes problem we impose the no-slip condition uf = 0 on ∂Ωf \Γ, while for the Darcy
problem, we set the piezometric head ϕ = 0 on ΓDp and we require the normal velocity

to be null, up · np = 0 on ΓNp · np and nf denote the unit outward normal vectors to the
surfaces Ωf and Ωp and we have nf = −np on Γ. We suppose np and nf to be regular
enough. In the following we shall indicate n = np for simplicity of notation.

We supplement with the following conditions on Γ :

uf · n = up · n (1.3)

−n · T (uf , pf ) · n = gϕ (1.4)

υαBJ√
K

ufτj − τj · T (uf , pf ) · n = 0 (1.5)

where τj (j = 1, ..., d− 1) are linear independent unit tangential vectors to the boundary
Γ, and αBJ is the characteristic length of the porous medium.
Conditions (1.3) and (1.4) impose the continuity of the normal velocity on Γ, as well as
that of the normal component of the normal stress, however they allow pressure to be
discontinuous across the interface. The so-called Beavers-Joseph-Saffman condition (1.5)
does not yield any coupling.
Indeed, it provides a boundary condition for the Stokes problem since it involves only
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quantities in the domain Ωf .
The coupled Stokes/Darcy model is as follows:

−∇ · T (uf , pf ) = f Ωf

∇ · uf = 0 Ωf

up = −K∇ϕ Ωp

∇ · up = 0 Ωp (1.6)

uf · n = up · on Γ

−n · T (uf , pf ) · n = gϕ on Γ
υαBJ√
K

ufτj − τj · T (uf , pf ) · n = 0 on Γ.

We define the following functional spaces:

HΓf
= {v ∈ H1(Ωf ) : v = 0 on Γf}

HΓf∪Γin
f

= {v ∈ HΓf
(Ωf ) : v = 0 on Γinf , Hf = (HΓf∪Γin

f
)d

H0
f = {v ∈ Hf (Ωf ) : v · nf = 0 on Γ}

H̃f = {v ∈ H1(Ωf )d : v = 0 on Γ ∪ Γf} (1.7)

Q = L2(Ωf ), Q0 = {q ∈ Q :

∫
Ωf

q = 0}

Hp = {Ψ ∈ H1(Ωp) : Ψ = 0 on Γp}, H0
p = {Ψ ∈ Hp : Ψ = 0 on Γ}.

We denote by |·|1 and ‖ · ‖1 the H1-seminorm and norm and by ‖ · ‖2 the L2-norm; it
will always be clear form the context whether we are referring to spaces on Ωf and Ωp .

Finally, we consider the trace space Λ = H
1
2
00(Γ).

Then, we introduce the bilinear forms

af (v, w) =

∫
Ωf

fracυ2(∇v +∇T v) · (∇w +∇Tw) ∀v, w ∈ (H1(Ωf ))d

bf (v, q) = −
∫

Ωf

q∇ · v ∀v ∈ (H1(Ωf ))d ∀q ∈ Q

ap(ϕ,Ψ) =

∫
Ωp)
∇Ψ ·K∇ϕ ∀ϕ,Ψ ∈ H1(Ωp).

The weak formulation of Stokes/Darcy reads from [5]:
find uf ∈ Hf , pf ∈ Q, ϕ ∈ Hp such that

af (uf , v) + bf (v, pf ) +

∫
Γ
gϕ(v · n) +

∫
Γ

d−1∑
i=1

vαBJ√
K

[(uf ) · τj ](v · τj) =

∫
Ωf

fv (1.8)

bf (uf , q) = 0 (1.9)

ap(ϕ,Ψ) =

∫
Γ

Ψ(uf · n)

for all v ∈ Hf , q ∈ Q, Ψ ∈ Hp.
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2 The Steklov-Poincar interface equation associated to the
coupled problem

In this section we apply domain decomposition techniques at the differential level to
study the Stokes/Darcy problem. The Stokes/Darcy problem can be rewritten in a multi-
domain formulation

Proposition 2.1. Let Λ be the space of traces introduced in Section 1. Problem (1.8)-
(1.9) can be reformulated in an equivalent way as follows:
Find u0

f inHf , pf ∈ Q, ϕ ∈ Hp such that

af (u0
f + Efuin, w) + bf (w, pf ) +

∫
Γ

d−1∑
j=1

vαBJ√
K

[(u0
f + Efuin) · τj ](R1µ · τj)

=

∫
Ωf

fw ∀w ∈ H0
f (2.10)

bf (u0
f + Efuin, q) = 0 ∀q ∈ Q (2.11)

ap(ϕ0 + Epϕp,Ψ) = 0 ∀Ψ ∈ H0
p (2.12)∫

Γ
(u0
f · n)µ = ap(ϕ0 + Epϕ,R2µ) ∀µ ∈ Λ (2.13)∫

Γ
gϕµ =

∫
Ωf

f(R1µ)− ap(u0
f + Efuin, R1µ)− bf (R1µ, pf )

−
∫

Γ

d−1∑
j=1

vαBJ√
K

[(u0
f + Efuin) · τf ](R1µ · τj) (2.14)

where R1 is any possible extension operator from Λ to Hp such that (R1µ) · n = µ on Γ

for all µ ∈ Λ and R2 is any possible extension operator from H
1
2 (Γ) to Hp to R2µ = µ on

Γ for all µ ∈ H
1
2 (Γ).

The proof is made by direct inspection considering uf = u0
f +Efuin and ϕ = ϕ0 +Epϕp

with u0
f ∈ Hf and ϕ ∈ Hp.

We choose now a suitable governing variable on the interface . We set the interface
variable λ as the trace of the normal velocity on the interface:

λ = uf · n = K∂nϕ.

Remark that using the simplified condition uf · τj = 0, , the multi-domain formulation
of the Stokes/ Darcy problem (2.10)-(2.14) becomes:
Find u0

f ∈ Hτ
f , pf ∈ Q, ϕ ∈ Hp such that

af (u0
f + Efuin, w) + bf (w, pf ) =

∫
Ωf

fw ∀w ∈ (w ∈ (H1
0 (Ωf ))d (2.15)
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bf (u0
f + Efuin, q) = 0 ∀q ∈ Q (2.16)

ap(ϕ0 + Epϕp,Ψ) = 0 ∀Ψ ∈ H0
p (2.17)∫

Γ
(u0
f · n)µ = ap(ϕ0 + Epϕp, R2µ) ∀µ ∈ Λ (2.18)∫

Γ
gϕ0µ =

∫
Ωf

f(Rτ1µ)− af (u0
f + Efuin, R

τ
1µ, pf ) ∀µ ∈ Λ (2.19)

with R2 defined as in Proposition 1 and Rτ1 : Λ→ Hτ
f is any possible continuos extension

operator so Rτ1µ · n = µ pe Γ for all µ ∈ Λ with Hτ
f = {v ∈ Hf : v · τj = 0 on Γ}.

For this simplification model (2.15)-(2.19) Discciatti in [9] made the analysis. We will do
the analysis for the multi-domain formulation of the Stokes/ Darcy problem (2.10)-(2.14).
We define the continuous extension operator

EΓ : H
1
2 → Hτ

f , η → EΓη such that EΓη · η = η on Γ.

We consider the interface variable λ = uf · n on Γ, λ ∈ Λ with λ = λ0 + λ∗ where λ∗
satisfies ∫

Γ
λ∗ = −

∫
Γin
f

uin · n (2.20)

and λ0 ∈ Λ0 with

Λ0 = {µ ∈ Λ :

∫
Γ
µ = 0} ⊂ Λ.

Then we introduce two auxiliary problems whose solutions are related to the global prob-
lem (2.15)-(2.19):
(P1) Find w∗0 ∈ (H1

0 (Ωf ))d, π ∈ Q0 such that

af (w∗0 + Efuin + EΓλ∗, v) + bf (v, π∗) +

∫
Γ

d−1∑
i=1

vαBJ√
K

+ [(w∗0 + Efuin) · τj ](v · τj)

=

∫
Ωf

fv ∀v ∈ (H1
0 (Ωf ))d

where Q0 = {q ∈ Q :
∫

Ωf
q = 0}.

(P2) Find ϕ∗ ∈ Hp such that

ap(ϕ
∗ + Epϕp,Ψ) =

∫
Γ
λ∗Ψ ∀Ψ ∈ Hp.

We define the following extension operators:

Rf : Λ0 → Hτ
f ×Q0, η → Rfη = (R1

fη,R
2
fη) such that (R1

fη) · η = η on Γ and

af (R1
fη, v) + bf (v,R2

fη) +

∫
Γ

d−1∑
j=1

vαBJ√
K

(R1
fη · τj)(v · τj) = 0 ∀v ∈ (H1

0 (Ωf ))d (2.21)
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bf (R1
fη, q)0 ∀q ∈ Q0 (2.22)

Rp : Λ→ Hp with η → Rpη such that

ap(Rpη,R2µ) =

∫
Γ
ηµ ∀µ ∈ H

1
2 (Γ) (2.23)

We define the following extension operators:
For all η ∈ Λ0, µ ∈ Λ

< Sη, µ >= af (R1
fη, v) + bf (v,R2

fη) +

∫
Γ

d−1∑
j=1

vαBJ√
K

(R1
fη · τj)(v · τj) +

∫
Γ
g(Rpη)µ.

Which can be split as the sum of two sub-operators S = Sf + Sp

< Sfη, µ >= af (R1
fη, v) + bf (v,R2

fη) +

∫
Γ

d−1∑
j=1

vαBJ√
K

(R1
fη · τj)(v · τj) (2.24)

< Spη, µ >=

∫
Γ
g(Rpη)µ (2.25)

We define the functional χ : Λ→ R

< χ, µ >

∫
Ωf

fv − af (w∗0 + Efuin + EΓλ∗, v)− bf (v, π∗)

−
∫

Γ

d−1∑
j=1

vαBJ√
K

((w∗0 + Efuin + EΓλ∗) · τj)(v · τj)−
∫

Γ
gϕ∗0µ ∀µ ∈ Λ. (2.26)

We can express the solutin of the coupled problem in terms of the interface variable λ0.

Theorem 2.1. The solutions to (2.15)-(2.19) can be characterized as follows:

u0
f = w∗0 +R1

fλ0 + EΓλ∗, pf = π∗ +R2
fλ0 + p̂f , ϕ0 = ϕ∗0 +Rpλ0 (2.27)

where p̂f = (meas(Ωf ))−1
∫

Ωf
pf and λ0 ∈ Λ0 is the solution of the following Steklov-

Poincare problem
< Sλ0, µ0 >=< χ, µ0 > ∀µ0 ∈ Λ0. (2.28)

Moreover, p̂f can be obtenied from λ0 by solving the algebric equation

p̂f =
1

meas(Γ)
< Sλ0 − χ, ζ > (2.29)

where ζ ∈ Λ is a fixed function such that

1

meas(Γ)

∫
Γ
ζ = 1.

For the proof, we refer to Badea L., Discacciati M., Quarteroni A (2008) in [3] with
minor modification.
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3 Iterative finite element solution of the coupled problem

In this section, we introduce and analyze an iterative method to compute the solution
of a conforming finite element approximation of (2.16)-(2.18). For the easiness of notation,
we will write the algorithms in continuous form. However, they can be straightforwardly
translated into a discrete setting considering conforming internal Galerkin approximations
of the spaces (1.7).

Moreover, the convergence results that we will present hold in the discrete case without
any dependence of the convergence rate on the grid parameter h, since they are established
by using the properties of the operators in the continuous case.

We consider a triangulation Th of the domain Ωf ∪ Ωp, depending on a positive pa-
rameter h > 0, made up of triangles if d = 2, or tetrahedra in the three-dimensional case.
We assume that the triangulations induced on the subdomains Ωf and Ωp are compatible
on Γ, that is they share the same edges (if d = 2) or faces (if d = 3) therein.

The crucial issue concerning the finite dimensional spaces, say Vh and Qh, approximat-
ing the spaces of velocity and pressure is that they must satisfy the discrete compatibility
condition:
there exists a positive constant β∗ > 0, independent of h, such that

∀qh ∈ Qh, ∃vh ∈ Vh, vh 6= 0 : bh(vh, qh) ≥ β∗ ‖ vh ‖1‖ qh ‖0 (3.30)

Spaces satisfying (3.30) are said inf-sup stable.
The following error estimates hold (see Girault V., Raviart P(1986) in [10] and Quar-

teroni A., Valli A.(1994) in [11]). There exist two positive constants C1 and C2 such
that

EhS ≤ C1H
r(‖ uf ‖r+1 + ‖ pf ‖r), r = 1, 2.

If uf ∈ Hr+1(Ωf ) and pf ∈ Hr(Ωf ) where

EhS =‖ ∇uf −∇ufh ‖0

while

EhD ≤ C2h
l ‖ ϕ ‖l+1, l = min(2, s− 1).

If ϕ ∈ HS(Ωp), s ≥ 2 with EhD =‖ ϕ− ϕh ‖l .
The iterative method we propose to compute the solution of the Stokes/Darcy problem

(2.10)-(2.14) consists in solving first Darcy problem in Ωp imposing the continuity of the
normal velocities across Γ. Then, we solve the Stokes problem imposing the continuity
of the normal stresses across the interface, using the value of ϕ on Γ that we have just
computed in the porous media domain.

The iterative scheme reads as follows:
Given uin, construct λ∗ as (2.20). Then, let λ0 ∈ Λ0 be the initial guess, and for k ≥ 0:
(i) Find ϕk+1

0 ∈ Hp such that, for all Ψ ∈ Hp

ap(ϕ
k+1
0 ,Ψ)−

∫
Γ
nΨλk0 = −ap(Epϕp,Ψ) +

∫
Γ
nΨλ∗ (3.31)
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(ii) Find (u0
f )k+1 ∈ Hτ

f , pk+1
f ∈ Q :

af ((u0
f )k+1, w)+bf (w, pk+1

f )−
∫

Γ

d−1∑
j=1

vαBJ√
K

((u0
f )k+1·τj)(v·τj) =

∫
Ωf

fw

−af (Efuin, w)−
∫

Γ

d−1∑
j=1

vαBJ√
K

((Efuin) · τj) · τj)(v · τj) ∀w ∈ Hτ
f (3.32)

bf ((u0
f )k+1, q) = −bf (Efuin, q) (3.33)

with

ϕk+1 = ϕk+1
0 + Epϕp.

(iii) Update λk0 :

λk+1
0 = θ(uk+1

f · n− λ∗)Γ + (1− θ)λk0 (3.34)

θ being a positive relaxation parameter and uk+1
f = (u0

f )k+1 + Efuin.

Lemma 3.1. The iterative substructuring scheme (3.32)-(3.34) to compute the solution
of the finite element approximation of the coupled problem Stokes/Darcy (2.10)-(2.14) is
equivalent to a preconditioned Richardson method for the discrete Steklov-Poincare equa-
tion (2.28), the preconditioner being the operator Sf introduced in (2.24).

Therefore we can conclude that (3.31)-(3.34) is equivalent to the preconditioned Richard-
son scheme: let λ0

0 ∈ Λ0 be given; for k ≥ 0, find

λk+1
0 ∈ Λ0, λk+1

0 = λk0 + θS−1
f (χ− Sλk0) (3.35)

The formulation (3.35) is very convenient for the analysis of convergence of the it-
erative scheme (3.31)-(3.34). Indeed, with this aim we can apply the following abstract
convergence result (see A. Quarteroni and A. Valli(1999) in [11].

Lemma 3.2. Let X be a (real) Hilbert space and X ′ be its dual. We consider a linear
invertible continuous operator Q : X → X ′, which can be split as Q = Q1 +Q2 where both
linear operators. Taken Z ∈ X ′, let x ∈ X be the unknown solution to the equation

Qx = Z (3.36)

and consider for its solution the preconditioned Richardson method

Q2(xk+1 − xk) = θ(Z −Qxk), k ≥ 0

θ being a positive relaxation parameter.
Suppose that the following conditions are satisfied:

(i) Q2 is symmetric, continuous with constant β2 and coercive with constant α2;
(ii) Q1 is continuous with constant β1;
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(iii) Q is coercive with constant αQ.
Then, for any given x0 ∈ X and for any 0 < θ < θmax with

θmax =
2α3

f

β̂f (β̂f + βp)2

the sequence

xk+1 = xk+1 + θQ−1
2 (Z −Qxk)

converges in X to the solution of problem (3.36).

We can now prove the main result of this section.

Theorem 3.1. For any choice of the initial guess λ0
0 ∈ Λ0 and for suitable values of

the relaxation parameter θ the iterative method (3.31)-(3.34) converges to the solution
(u0
f , pf , ϕ0) ∈ Hτ

f ×Q×Hp the coupled Stokes/Darcy problem (2.10)-(2.14).

Proof. Upon setting X = Λ0, Q = S, Q1 = Sp, Q2 = Sf and Z = χ the proof follows from
Lemma 2, whose hypotheses are satisfied thanks to Corollary 1. In fact, for any initial
guess λ0

0 ∈ Λ0 with 0 < θ < θmax

θmax =
2α3

f

β̂f (β̂f + βp)2

the sequence defined in (??) converges to the solution of the Steklov-Poincare equation
(2.28).
Taking the limit k →∞ n the iterative procedure (3.31)-(3.34), it follows that

{((u0
f )k, pkp, ϕ

k
0)}k → (u0

f , pf , ϕ0).

We give a schematic overview of the numerical algorithm
Algorithm 1. Choose an initial guess (uf )0 · n on Γ. Then, for k = 0, 1, ... until conver-
gence, do
1. Solve Darcy equation with boundary condition −K∂nϕk+1 = uuf · n on Γ.

2. Solve Stokes problem imposing −n · T (u
k+ 1

2
f , p

k+ 1
2

f ) · n = gϕk+1 on Γ.

3. Update: uk+1
f · n = θu

k+ 1
2

f · n+ (1− θ)ukf · n on Γ, with θ ∈ (0, 1).
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