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Abstract

A representation of strictly convergent power series as Newton interpolating series
is given. In the case of one indeterminate bounded Newton interpolating series are
studied as a generalization of strictly convergent power series. A method for analytic
p−adic continuation by means of bounded Newton interpolating series is presented.
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1 Introduction

Let R be a commutative ring with identity and S = {(αk,1, ..., αk,n)}k≥1 a fixed se-
quence of elements of Rn. In Section 2 we define the R-algebra of Newton interpolating
series in n variables denoted by RS[[X]]. Algebraic properties of KS[[X]], when K is a
local field are presented in [5].

If R is a commutative ring with identity and ‖ ‖ is a non-trivial non-archimedean norm
on R with ‖1‖ = 1, then (R, ‖ ‖) is called a normed ring. We consider the sets (see [1],

Chapter 1):
◦
R= {x ∈ R : ‖x‖ ≤ 1} ,

∨
R= {x ∈ R : ‖x‖ < 1}. Then

◦
R is a commutative

ring with identity and
∨
R is an ideal in

◦
R . We denote the residue ring

◦
R /

∨
R by R̃. If

R is an integral domain with a non-trivial non-archimedean multiplicative norm, hence
an absolute value | | , then (R, | |) is called a valued ring . If (K, | |) is a valued field and
(R, | |) is a valued ring which is a K-algebra we suppose that the absolute value of R
extends that of K.

Let R be a complete non-archimedean normed ring and R < X > the R-algebra of
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strictly convergent (restricted formal) power series (see [1], p.35, [4] or [8]). Useful gen-
eralizations are given in [6] (so-called separated power series) and [2] (strictly analytic
functions defined on a class of domains called analoid sets). If R = Cp endowed with the
p-adic absolute value, it is known when a Mahler series may be represented as a strictly
convergent power series (see [8], p.354). In Section 3, by means of an arbitrary sequence

S of elements of
◦
R

n

, in the case of n variables, we define HRS[[X]] an R-subalgebra of
RS[[X]] which is a Banach algebra with respect to the Gauss norm. Theorem 2 from Sec-
tion 3 shows that the algebra of strictly convergent power series R < X > and HRS[[X]]
are isometrically isomorphic.

In Section 4, K is a complete valued field having its residue field at most countable
and T is a fixed set of representatives of the residue field in the valuation ring. By means
of T we construct a sequence ST such that every element of T appears infinitely many
times in ST . In the case n = 1, we study the K-subalgebra BKST

[[X]] of KST
[[X]] which

contains the series having bounded coefficients. By Theorem 2 these series are general-
ization of strictly convergent power series. With respect to Gauss norm BKST

[[X]] is a
Banach algebra such that BK[[X]], the K-algebra of formal power series with bounded
coefficients, is homeomorphic to a residue algebra of BKST

[[X]] by a closed ideal (see The-
orem 4). Moreover for every f ∈ BK[[X]] there exists a series of g ∈ BKST

[[X]] such that
the corresponding functions defined on the maximal ideal of the valuation ring are equal
(see Corollary 2). Theorem 5 with its corollary deal with properties of zeros of associated
functions to the elements of BKST

[[X]]. Theorem 6 is Identity Theorem for the elements
of BKST

[[X]].
It is well known that the analytic continuation in the p-adic analysis cannot be achieved

by means of Taylor expansions. By means of Krasner’s method it is possible to define ana-
lytic elements on the unit open ball for a set of functions defined by bounded power series
which satisfy Christol-Robba’s condition but there are simple examples of functions which
do not belong to this set. If K = Cp, we define in Section 5 so-called Newton analytic
elements which extend on the unit ball the usual analytic elements (see [3] or [8]). In this
manner we define analytic continuation of bounded power series even in the case when the
conditions of Christol-Robba’s Theorem do not hold (see Remark 1).

2 Basic notations and definitions

Let n be a fixed positive integer. If ν = (ν1, ν2, ..., νn) ∈ Nn, we set N(ν) = ν1 + ν2 +
... + νn, for every i = 1, 2, . . . , n, and 0 = (0, ..., 0) ∈ Nn. For ν, τ = (τ1, τ2, ..., τn) ∈ Nn,
j ∈ N, we define ν + τ = (ν1 + τ1, ..., νn + τn) and jν = (jν1, jν2, ..., jνn). We set ν <l τ if
ν is less than τ with respect to the following lexicographical order: νs < τs, where s is the
greatest positive integer less than n such that νs 6= τs. We order also Nn in the following
way: ν <o τ if either N(ν) < N(τ) or N(ν) = N(τ) and ν <l τ . We denote by ∞n a
symbol such that ν <o ∞n for every ν ∈ Nn. It is obvious that for a fixed τ ∈ Nn, the set
{ν ∈ Nn : ν ≤o τ} is finite.

Let R be a commutative ring with identity and S = {(αk,1, ..., αk,n)}k≥1 a fixed se-
quence of elements of Rn. In the polynomial ring R[X] =R [X1, ..., Xn] we construct by
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recurrence, with respect to the defined order <o of Nn, the polynomials

U0 = 1, U(1,0,...,0) = X1 − α1,1, ..., U(0,0,...,1) = Xn − α1,n

and generally for every τ = (τ1, τ2, ..., τn) ∈ Nn,

Uτ =
∏

0<j≤π1(τ)

(X1 − αj,1)
∏

0<j≤π2(τ)

(X2 − αj,2) ...
∏

0<j≤πn(τ)

(Xn − αj,n) , (1)

where πi(τ) = τi. If, for each τ ∈ Nn, we consider the principal ideal of R[X] Iτ =< Uτ >,
then {Iτ}τ∈Nn is a system of neighborhoods of zero of the polynomial ring. Thus R[X]
becomes a topological Hausdorff space with respect to this topology denoted by TS. We
consider RS[[X]] the completion of R[X] with respect to TS. It is easy to prove that we
can represent RS[[X]] as the set of formal series

RS[[X]] =

{
f =

∞n∑
τ=0

aτUτ | aτ ∈ R

}
, (2)

where in each series the order of terms are given by<o, two such expressions being regarded
as equal if and only if they have the same coefficients. We call an element f from RS[[X]]
a (formal) Newton interpolating series with coefficients in R defined by the sequence S.
If n = 1, R[X] = R[X] and S = {αk}k≥1, then the polynomials ui defined by (1) can be
written in the form

u0 = 1, ui =
i∏

j=1

(X − αj), i ≥ 1. (3)

Since, for every nonnegative integer j,

Xj = uj +
j∑

i=1

qi,j (α1, ..., αj−i+1)uj−i, (4)

where qi,j are homogeneous polynomials of degree i with integral coefficients (i.e. belonging
to the canonical homomorphic image of Z in R), it follows that every polynomial P =
p∑

i=0
biX

i ∈ R[X] can be written uniquely in the form

P =
p∑

i=0

aiui, (5)

where

ai = bi +
p∑

j=i+1

bjQi,j(α1, ..., αi+1), (6)

and Qi,j are homogeneous polynomials with integral coefficients. Hence if ui, uj are given
by (3), we obtain that for every k such that max {i, j} ≤ k ≤ i + j, there exist in R the
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elements dk(i, j) uniquely defined such that

uiuj =
i+j∑

k=max {i,j}

dk(i, j)uk. (7)

Now we consider P =
∑

ν≤oτ
bνXν ∈ R[X]. From (5) and (6), by induction on n, it follows

that
P =

∑
ν≤oτ

aνUν , aν ∈ R. (8)

If f, g =
∞n∑
ν=0

bνUν ∈ RS[[X]], we define addition and multiplication of f and g as

follows:

f + g =
∞n∑
ν=0

(aν + bν)Uν , (9)

fg =
∞n∑
ν=0

pνUν , (10)

where
pν =

∑
µ,θ∈I(ν)

Dν(µ, θ)aµbθ, (11)

Dν(µ, θ) = dν1(µ1, θ1)...dνn(µn, θn), di(s, t) are defined in (7) and I(ν) = {(µ, θ) ∈ Nn×Nn :
max {µ, θ} ≤o ν, µ + θ ≥o ν}. Thus with respect to these definitions of addition and
multiplication, RS[[X]] becomes a complete Hausdorff topological commutative R-algebra
which contains R[X]. Moreover by (1), (9)-(11) it follows that as R-algebras

RSn−1 [X(n−1)]Sn [Xn] ∼= RS[[X]], (12)

where Sn−1 = {(αk,1, ..., αk,n−1)}k≥1 , X
(n−1) = (X1, ..., Xn−1) and Sn = {αk,n}k≥1 .

3 A representation of strictly convergent power series

Let (R, ‖ ‖) be a normed ring and S = {(αk,1, ..., αk,n)}k≥1 a fixed sequence of elements

of
◦
R

n

. We consider

HRS[[X]] =

{
f =

∞n∑
ν=0

aνUν ∈ RS[[X]] : lim
N(ν)→∞

‖aν‖ = 0

}
. (13)

If f =
∞n∑
ν=0

aνUν ∈ HRS[[X]], then we define

‖f‖HRS[[X]] = sup
ν
‖aν‖. (14)
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Theorem 1. If R is a normed (resp. valued) ring and S is a fixed sequence of elements

of
◦
R

n

, then HRS[[X]] is a R-subalgebra of RS[[X]] and ‖ ‖ defined by (14) is a non-
archimedean norm (resp. absolute value) on HRS[[X]]. Moreover if R is a complete
normed (resp. valued) ring, then HRS[[X]] becomes a Banach R-algebra which is the
completion of R[X] with respect to the metric defined by the norm (resp. absolute value).

Proof. First suppose n = 1. Let f, g =
∞∑
i=0

biui be elements of HRS [[X]]. Then, by (9)

and (14), with n = 1, we obtain ‖f ± g‖ = sup
i
{‖ai ± bi‖} ≤ max {‖f‖, ‖g‖}. Similarly,

by (7), (10) and (11), since ui ∈
◦
R [X], it follows that dk(i, j) ∈

◦
R and ‖fg‖ = sup

i
‖pi‖ ≤

‖f‖‖g‖. If R is a valued ring we choose i(f) the greatest index i such that |ai| = |f |,
then by (7) and (11)

∣∣pi(f)+i(g)

∣∣ = ∣∣ai(f)

∣∣ ∣∣bi(g)

∣∣ = |f ||g| and |fg| = |f ||g|. Hence HRS [[X]]
is a R−subalgebra of RS [[X]] and ‖ ‖ defined by (14) is a non-archimedean norm (resp.
absolute value) on HRS [[X]].

When R is complete it follows that HRS [[X]] is complete because it is isometrically iso-
morphic, as an R-module, to c(R), the space of zero sequences over R (see [1], Proposition
6, Sec. 2.1). Now the theorem follows by induction on n by using (12). �

Theorem 2. If R is a complete normed ring and S = {αk}k≥1 is a fixed sequence of

elements of
◦
R, then the Banach R−algebra HRS [[X]] is isometrically isomorphic to the

R-algebra R < X > of strictly convergent power series.

Proof. If P =
p∑

i=0
biX

i ∈ R[X], then it can be written also in the form (5), where ai

are given in (6). Similarly we obtain

bi = ai +
p∑

j=i+1

ajTi,j(α1, ..., αj), (15)

where Ti,j are homogeneous polynomial with integral coefficients. Suppose ‖P‖HRS [[X]] =
‖ai0‖, where i0 is the greatest index with this property. Since ‖Ti,j(α1, ..., αi+1)‖ ≤ 1, it
follows that ‖bi0‖ = ‖ai0‖ and ‖bi‖ ≤ max

j≥i
{‖aj‖}. Hence ‖P‖R<X> = ‖P‖HRS [[X]].

Now, by means of (6) we define φ : R < X >→ HRS [[X]] such that

φ

( ∞∑
i=0

biX
i

)
=

∞∑
i=0

aiui, (16)

where

ai = bi +
∞∑

j=i+1

bjQi,j(α1, ..., αi+1). (17)

Similarly, by using (15), we can define ψ : HRS [[X]] → R < X > such that

ψ

( ∞∑
i=0

aiui

)
=

∞∑
i=0

biX
i, (18)
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where

bi = ai +
∞∑

j=i+1

ajTi,j(α1, ..., αj). (19)

Then the mappings φ and ψ are well defined and continuous with respect to the corre-
sponding norms. By (16)-(19) we obtain that the restricted mappings φ and ψ are inverse
to each other on R[X]. Since R[X] is dense in R < X > and HRS [[X]] it follows that φ
and ψ are inverse to each other and hence we obtain that φ is bijective map. In fact φ is
the identity map on R[X] so φ is also a R−algebra morphism. So we obtain that R < X >
and HRS [[X]] are isomorphic R−algebras. �

Corollary 1. If K is a complete valued field and S = {(αk,1, ..., αk,n)}k≥1 is a fixed

sequence of elements of
◦
K

n

, then the algebra of strictly convergent power series K < X >
is isometrically isomorphic to HKS[[X]].

Proof. The corollary follows from (12) and Theorem 2. �

4 Bounded Newton interpolating series

In this section K will denote a complete valued field having its residue field at most
countable. For a ∈ K and r a positive real number, we put B+ (a, r) = {x ∈ K : |x− a| ≤
r} and B− (a, r) = {x ∈ K : |x − a| < r}. We choose T = {βj}j≥1 a fixed set, at most

countable, of elements in
◦
K and we construct a sequence ST = {αi}i≥1 of elements of T.

By using (3) we define the K-algebra KST
[[X]] with

ui =
i∏

j=1

(X − αj) =
m(i)∏
j=1

(X − βj)
θ(i,j), (20)

where m(i) is the number of distinct X − βj which divides ui(X). We consider

BKST
[[X]] =

{
f =

∞∑
i=0

aiui ∈ KST
[[X]] : ∃M > 0, |ai| < M,∀ i

}
. (21)

We call an element f from BKST
[[X]] a bounded Newton interpolating series with coeffi-

cients in K defined by the sequence ST . If f =
∞∑
i=0

aiui ∈ BKST
[[X]], the real number

‖f‖BKST
[[X]] = sup

i
|ai| (22)

is well defined. As usual we call ‖ ‖BKST
[[X]] , given in (22), the Gauss norm on BKST

[[X]].
In the case when T = {β1}, BKST

[[X]] becomes

BK[[X − β1]]
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=

{
f =

∞∑
i=0

ai(X − β1)i ∈ K[[X − β1]] : ∃M > 0, |ai| < M,∀ i

}
. (23)

Theorem 3. BKST
[[X]] is a subalgebra of the K-algebra KST

[[X]] and the Gauss norm
is a K- algebra non-archimedean norm on BKST

[[X]] making it into a Banach K-algebra.

Proof. Let f, g =
∞∑
i=0

biui ∈ BKST
[[X]]. By (9) and (22) we obtain ‖f ± g‖BKST

[[X]] =

sup
i
|ai ± bi| ≤ max

{
‖f‖BKST

[[X]] , ‖g‖BKST
[[X]]

}
. Similarly, since ui(X) ∈

◦
K [X], by (6)

and (7) it follows that di(s, t) ∈
◦
K and (10), (11), (22) imply

‖fg‖BKST
[[X]] ≤ sup

i

{
max

(j,k)∈I(i)
|ajbk|

}
≤ ‖f‖BKST

[[X]] ‖g‖BKST
[[X]] . (24)

Thus BKST
[[X]] is a subalgebra of KST

[[X]] and the Gauss norm is a K-algebra norm
on BKST

[[X]]. BKST
[[X]] is complete because it is isometrically isomorphic as K-vector

space to b(K), the space of bounded sequences over K (see [1], Proposition 6, Sec. 2.1).
�

Now we choose T = {βj}j≥1 a fixed set of representatives of K̃ in
◦
K and ST = {αi}i≥1

a sequence of elements of T such that every element of T appears infinitely many times
in ST . Similarly with the case of Tate algebra (see [1], Sec. 5.1) we prove for BKST

[[X]]
two results, one on continuity and other on Identity Theorem. If D ⊂ K is the domain of
convergence of the series f ∈ BKST

[[X]], then obviously T ⊂ D. We have the following

Lemma 1. If T = {βj}j≥1 is a fixed set of representatives of K̃ in
◦
K, ST = {αi}i≥1 is a

sequence of elements of T such that every element of T appears infinitely many times in

ST and f =
∞∑
i=0

aiui ∈ BKST
[[X]], then

a)
◦
K⊂ D;

b) if f converges at x̄ ∈ K, then it converges for every x ∈ K such that |x| ≤ |x̄|;
c) if x ∈

◦
K, then |f(x)| ≤ ‖f‖BKST

[[X]].

Proof. a) If x ∈
◦
K, then there is a βj ∈ T such that |x − βj | < 1 and for every i 6= j,

|x− βi| = 1. Since βj appears infinitely many times in ST , by (20), lim
i→∞

θ(i, j) = ∞ which

implies lim
i→∞

aiui(x) = 0 and f converges at x.

b) It is enough to consider |x̄| > 1. Then for every i, |x̄ − βi| = |x̄|, |aiui(x)| ≤
|ai|max{1, |x|}i ≤ |aiui(x̄)| and this implies b).

c) If x ∈
◦
K, then |f(x)| ≤ sup

i
|aiui(x)| ≤ sup

i
|ai| = ‖f‖BKST

[[X]]. �

Proposition 1. If T = {βj}j≥1 is a fixed set of representatives of K̃ in
◦
K and ST =

{αi}i≥1 is a sequence of elements of T such that every element of T appears infinitely

many times in ST , then every f =
∞∑
i=0

aiui ∈ BKST
[[X]] defines a continuous function
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on D, denoted also by f, such that y → f(y) =
∞∑
i=0

aiui(y) ∈ K. Moreover, if x0 ∈ D,

then there exists βj ∈ T such that the series
∞∑
i=0

aiui(x) converges uniformly to f(x) on

B+(βj , |x0 − βj |).

Proof. We may suppose f 6= 0. If y ∈
◦
K, then lim

i→∞
aiui(y) = 0 and the series

∞∑
i=0

aiui(y)

converges to some element of K.
If y0 ∈

◦
K we consider a real number ε > 0. By putting δ = ε

‖f‖ we take y ∈
◦
K such that

|y − y0| < δ. Hence it follows that

|f(y)− f(y0)| ≤ sup
i
|ai| |ui(y)− ui (y0)| ≤ ‖f‖ sup

i
|ui(y)− ui (y0)| .

Since ui(y)−ui (y0) = (y − y0)wi(y, y0), where wi (y, y0) ∈
◦
K, we obtain that |f(y)− f(y0)|

< ε and f gives rise to a continuous function on
◦
K .

Now, we suppose y0 ∈ D, |y0| > 1 and we choose a real number ε > 0. We take y ∈ D
such that |y − y0| < 1. Hence it follows that |aiui(y)| = |aiy

i| = |aiy
i
0| = |aiui(y0)|. Thus

we can choose i0 such that for every y ∈ B−(y0, 1) |f(y) − Si0(y)| < ε, where Si is the
partial sum of the series f. Since Si0(y) is a continuous function there is δ < 1 such that
for every y ∈ B−(y0, δ), |Si0(y)− Si0(y0)| < ε. Then

|f(y)− f(y0)| ≤ max {|f(y)− Si0(y)|, |Si0(y)− Si0(y0)|, |Si0(y0)− f(y0)|} < ε

and f gives rise to a continuous function on D.
Suppose x0 ∈ D. If x0 ∈

◦
K, we choose βj ∈ T such that |x0 − βj | < 1. Then for every

x ∈ B+(βj , |x0 − βj |) and k 6= j, |x− βk| = 1. Hence |aiui(x)| ≤ |aiui(x0)| and the series
converges uniformly on B+(βj , |x0 − βj |).

If |x0| > 1, then for every βj ∈ T, |x0−βj | = |x0|. Thus for every x ∈ B+(βj , |x0−βj |) =
B+(0, |x0|), |aiui(x)| ≤ |aiui(x0)|, which implies the proposition. �

Theorem 4. Let T = {βj}j≥1 be a fixed set of representatives of K̃ in
◦
K and let

ST = {αk}k≥1 be a sequence of elements of T . If there exists βk ∈ T which appears in-
finitely many times in ST , then there exists a K-algebra homomorphism ϕ : BKST

[[X]] →
BK[[X − βk]] such that:

a) ϕ is a continuous K-algebra homomorphism from BKST
[[X]] onto BK[[X − βk]];

b) for every g ∈ BKST
[[X]] and x ∈ B−(βk, 1), g(x) = ϕ(g)(x);

c) the induced isomorphism ϕ̄ : BKST
[[X]]/Kerϕ → BK[[X]] is a homeomorphism,

where BKST
[[X]]/Kerϕ is provided with the quotient topology.

Proof. a) Consider g =
∞∑
i=0

aiui ∈ BKST
[[X]], gn its nth partial sum and µ(i, k) =

max{t : θ(t, k) ≤ i}. Since, for every j 6= k, X − βj = X − βk + βk − βj , by (20) it follows
that, for every n ≥ µ(i, k), the coefficient of (X − βk)i in the polynomial gn written as an
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element from BK[[X − βk]] has the form

ci,k =
µ(i,k)∑
j=i

Pi,j,kaj , (25)

where Pi,j,k are polynomials with integral coefficients in βj , and

Pi,µ(i,k),k =
m(i)∏

j=1, j 6=k

(βk − βj)θ(i,j). (26)

Then
∞∑
i=0

ci,k(X − βk)i ∈ BK[[X − βk]] and we define

ϕ(g) =
∞∑
i=0

ci,k(X − βk)i. (27)

Since K[X] is dense in BKS [[X]], for every S, (resp. BK[[X − βk]]) with respect to the
topology TS defined by the principal ideals < ui > (resp. the corresponding topology T
defined by the powers of X − βk), ϕ is continuous with respect to TST

and T and its
restriction to K[X] is the identity map, it follows that it is a K-algebra homomorphism.
Moreover, because (25) implies that

‖ϕ(g)‖KB[[X−βk]] ≤ ‖g‖BKS [[X]], (28)

it follows that ϕ is continuous.

If f =
∞∑
i=0

bi(X − βk)i ∈ BK[[X − βk]], then choose g =
∞∑
i=0

aiui ∈ KST
[[X]] such that

a0 = b0 and generally by recurrence, for i ≥ 1,

ai =


0, if i 6= µ(j, k) for every j

bj−
µ(j,k)−1∑

s=j
Pj,s,kas

Pj,µ(j,k),k
, if i = µ(j, k)

, (29)

where the polynomials Pi,j,k defined in (25) are independent of the coefficients aj . Since
|βi| ≤ 1, g ∈ BKST

[[X]]. If, for every i ≥ 1, ai is given in (29), by (25) we obtain ci,k = bi
which implies ϕ(g) = f .

b) Since we may choose g ∈ BKST
[[X]] such that ϕ(g) = f, by (28), we obtain, for

every x ∈ B−(βk, 1),

|f(x)− gn(x)| ≤ ‖f − gn‖BK[[X−βk]] = ‖ϕ(g − gn)‖BK[[X−βk]] ≤ ‖g − gn‖BKST
[[X]].

Hence it follows b).
c) Since ϕ is continuous and by (29) for every f ∈ BK[[X − βk]] we may choose

g ∈ BKST
[[X]] such that ‖g‖BKST

[[X]] ≤ ‖f‖BK[[X−βk]] by Lemma 2 from [1], p. 21 ϕ is
strict which implies the statement. �

By Theorem 4 we obtain easily the following result.
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Corollary 2. If f ∈ BK[[X]], T = {βj}j≥1, 0 ∈ T, is a set of representatives of K̃ in
◦
K and ST = {αi}i≥1 a sequence of elements of T such that every element of T appears
infinitely many times in ST , then there exists g ∈ BKST

[[X]] such that f(x) = g(x), for
every x ∈ B−(0, 1).

For f ∈ BKST
[[X]] denote Z(f) = {a ∈

◦
K| f(a) = 0} the set of all zeros of f in

◦
K

without counting the multiplicities.

Theorem 5. If T = {βj}j≥1 is a fixed set of representatives of K̃ in
◦
K, ST = {αi}i≥1 is

a sequence of elements of T such that every element of T appears infinitely many times in
ST , f ∈ BKST

[[X]] and for a fix j, βj is an accumulation point of Z(f), then B−(βj , 1) ⊂
Z(f).

Proof. Suppose first f =
∞∑
i=0

aiui ∈ BKST
[[X]] and βj = 0. Now by Theorem 4

we have a morphism ϕ : BKST
[[X]] → BK[[X]] such that ϕ(f) = g ∈ BK[[X]] and

f(x) = g(x), for every x ∈ B−(0, 1). We choose a sequence {γk}k≥1 of distinct elements
of Z(f)∩B−(0, 1) such that lim

k→∞
γk = 0. Then f(γk) = 0 = g(γk), for all k. We show that

g = 0 in BK[[X]]. If g 6= 0 and bt is the first nonzero coefficient of g then g = Xt
∞∑
i=0

bt+iX
i.

Now for k large enough
∣∣∣∣ ∞∑
i=0

bt+iγ
i
k

∣∣∣∣ = |bt|. But g(γk) = 0 implies bt = 0. Hence g = 0

and f(γ) = g(γ) = 0 for all γ ∈ B−(0, 1). The case βj 6= 0 can be reduced easily to the
previous case by replacing X with X + βj . �

Corollary 3. If T = {βj}j≥1, is a fixed set of representatives of K̃ in
◦
K and ST = {αi}i≥1

a sequence of elements of T such that every element of T appears infinitely many times
in ST , f ∈ BKST

[[X]] and for a fix j, there exists an element ξj ∈ B−(βj , 1), which is an
accumulation point Z(f), then B−(βj , 1) ⊂ Z(f).

Proof. It is enough to replace X with X+βj − ξj and to use Corollary 2 and Theorem
5 �

Now we can prove Identity Theorem for elements of BKST
[[X]].

Theorem 6. If T = {βj}j≥1, is a fixed set of representatives of K̃ in
◦
K and ST = {αi}i≥1

a sequence of elements of T such that every element of T appears infinitely many times in
ST , f ∈ BKST

[[X]] and for every j, there exists an element ξj ∈ B−(βj , 1), which is an
accumulation point Z(f), then f = 0.

Proof. Because
◦
K=

⋃
βj∈T

B−(βj , 1), by Corollary 3 it follows that f(x) = 0 for every

x ∈
◦
K. Suppose that f =

∞∑
i=t

aiui 6= 0 and at 6= 0. If ut+1(X)/ut(X) = X − βj we choose a

sequence {γk}k≥1 of distinct elements of Z(f) which tends to βj . Since f(γk) = 0, for all
k it follows that at =0 which implies that f = 0. �
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Now we fixed T = {βj}j≥1 a set of representatives of K̃ in
◦
K and we construct a

particular sequence ST = {αi}i≥1 of elements of T, such that every element of T appears
infinitely many times in ST . Thus for every positive integer i there is a unique integer k(i)
such that

(k(i)− 1)k(i)
2

< i ≤ k(i)(k(i) + 1)
2

(30)

and we put

s(i) = i− (k(i)− 1)k(i)
2

. (31)

Then we take

αi =

{
βr(i−1)+1, if K̃ has q elements

βs(i), if K̃ is countable,
(32)

where r(i) is the remainder obtained by dividing i into q. In this case we say that the pair
(T, ST ) has the standard form.

5 Newton analytic elements

Let D be a closed subset of Cp. The Runge theorem of complex analysis leaded Krasner
to call an analytic element a function f : D → Cp which is a uniform limit of a sequence
of rational functions having no pole in D. By a result of Christol-Robba (see Theorem of
Sec. 4.6 of [8]) it is known which series of BCp[[X]] define analytic elements. There are
simple examples of series of BCp[[X]] which do not define analytic elements on B−(0, 1)
(see [8], p. 353).

Now we built Newton analytic elements on B+(0, 1) and B−(0, 1). Consider K = Cp,
a pair (T, ST ) having the standard form D = B+(0, 1) and a function f : D → K. We
call f a Newton analytic element if it is the sum of a series of BCpST

[[X]] on D. By
Corollary 1 and Theorem, Sec. 4.3, Ch. 6 of [8], it follows that the Banach algebra of
analytic elements on B+(0, 1) is isomorphic to a subalgebra of BCpST

[[X]]. In order to
define Newton analytic elements on B−(0, 1) we suppose that the pair (T, ST ) has the
standard form and β1 = 0. We take Ts ⊂ T , Ts 6= T , such that 0 ∈ Ts and ST c

s
the

sequence obtained from ST by canceling all the terms equal to βj ∈ Ts. We denote by vi

the corresponding polynomials defined by (3) by means of ST c
s
.

In BKST
[[X]] we denote by M the multiplicative system generated by the polynomials

X − βi, βi ∈ T c
s and by M−1BKST

[[X]] the ring of fractions of BKST
[[X]] with respect

to M. By using an idea for power series (see [7]), we define

HNCpSTc
s
[[X]] = {F =

−1∑
i=−∞

aiv
−1
−i + f}, (33)

where ai ∈ Cp, lim
i→−∞

ai = 0 and f ∈ BCpST
[[X]]. If F ∈ HNCpSTc

s
[[X]] we put

‖F‖HNCpSTc
s

[[X]] = max{ max
−∞<i≤−1

{|ai|}, ‖f‖BCpST
[[X]]}. (34)



166 Ghiocel Groza and Azeem Haider

It can be proved that HNCpSTc
s
[[X]] is the completion of the algebra M−1BCpST

[[X]]
with respect to the restriction of the norm given by (34).

Consider K = Cp, (T, ST ) a pair having the standard form with β1 = 0, Ts = 0,
D = B−(0, 1) and a function f : D → Cp. We call f a Newton analytic element if it is the
sum of a series of HNCpSTc

s
[[X]].

Remark 1. Let (T, ST ) be a pair having the standard form with β1 = 0. If we denote the
set of all Newton analytic elements on B+(0, 1) as HN(B+(0, 1)) = BCpST

[[X]] and the
set of all Newton analytic elements on B−(0, 1) as HN(B−(0, 1)) = HNCpSTc

s
[[X]], with

Ts = {0}, then as in the classical case that Banach K-algebra HN(B−(0, 1)) is isomorphic
to a completion of a ring of fractions of the algebra HN(B+(0, 1)).

By Corollary 2 and Lemma 1 it follows that every g ∈ BCp[[X]] defines a Newton
analytic element on B−(0, 1) which can be extended to a Newton analytic element on
B+(0, 1). Hence Theorem 6 implies that for a fixed family of sequences Zj = {γj,n}n≥1,
j ≥ 2 such that γj,n ∈ B−(βj , 1) and each Zj has an accumulation point, every g ∈
BCpST

[[X]] can be extended to G ∈ HN(B+(0, 1)) uniquely defined by its values at γj,n.
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