Bulletin of the Transilvania University of Braşov - Series III: Mathematics, Informatics, Physics, Vol 5(54) 2012, Special Issue: Proceedings of the Seventh Congress of Romanian Mathematicians, 155-166, published by Transilvania University Press, Braşov and Publishing House of the Romanian Academy

A GENERALIZATION OF STRICTLY CONVERGENT POWER SERIES AND APPLICATIONS

In memory of Professor Nicolae Popescu

Ghiocel GROZA ${ }^{1}$ and Azeem HAIDER ${ }^{2}$

Abstract

A representation of strictly convergent power series as Newton interpolating series is given. In the case of one indeterminate bounded Newton interpolating series are studied as a generalization of strictly convergent power series. A method for analytic p-adic continuation by means of bounded Newton interpolating series is presented.

2000 Mathematics Subject Classification 30G06, 13J05,12J25.
Key words formal series, strictly convergent power series, analytic elements.

1 Introduction

Let R be a commutative ring with identity and $\mathbf{S}=\left\{\left(\alpha_{k, 1}, \ldots, \alpha_{k, n}\right)\right\}_{k \geq 1}$ a fixed sequence of elements of R^{n}. In Section 2 we define the R-algebra of Newton interpolating series in n variables denoted by $R_{\mathbf{S}}[[\mathbf{X}]]$. Algebraic properties of $K_{\mathbf{S}}[[\mathbf{X}]]$, when K is a local field are presented in [5].

If R is a commutative ring with identity and $\|\|$ is a non-trivial non-archimedean norm on R with $\|1\|=1$, then $(R,\| \|)$ is called a normed ring. We consider the sets (see [1], Chapter 1): $\stackrel{\circ}{R}=\{x \in R:\|x\| \leq 1\}, \stackrel{\vee}{R}=\{x \in R:\|x\|<1\}$. Then $\stackrel{\circ}{R}$ is a commutative ring with identity and $\stackrel{\vee}{R}$ is an ideal in $\stackrel{\circ}{R}$. We denote the residue ring $\stackrel{\circ}{R} / \stackrel{\vee}{R}$ by \widetilde{R}. If R is an integral domain with a non-trivial non-archimedean multiplicative norm, hence an absolute value $|\mid$, then $(R,| |)$ is called a valued ring. If $(K,| |)$ is a valued field and $(R,| |)$ is a valued ring which is a K-algebra we suppose that the absolute value of R extends that of K.

Let R be a complete non-archimedean normed ring and $R<X>$ the R-algebra of

[^0]strictly convergent (restricted formal) power series (see [1], p.35, [4] or [8]). Useful generalizations are given in [6] (so-called separated power series) and [2] (strictly analytic functions defined on a class of domains called analoid sets). If $R=\mathbb{C}_{p}$ endowed with the p-adic absolute value, it is known when a Mahler series may be represented as a strictly convergent power series (see [8], p.354). In Section 3, by means of an arbitrary sequence \mathbf{S} of elements of $\stackrel{\circ}{R}$, in the case of n variables, we define $\mathcal{H} R_{\mathbf{S}}[[\mathbf{X}]]$ an R-subalgebra of $R_{\mathbf{S}}[[\mathbf{X}]]$ which is a Banach algebra with respect to the Gauss norm. Theorem 2 from Section 3 shows that the algebra of strictly convergent power series $R<\mathbf{X}>$ and $\mathcal{H} R_{\mathbf{S}}[[\mathbf{X}]]$ are isometrically isomorphic.

In Section $4, K$ is a complete valued field having its residue field at most countable and T is a fixed set of representatives of the residue field in the valuation ring. By means of T we construct a sequence S_{T} such that every element of T appears infinitely many times in S_{T}. In the case $n=1$, we study the K-subalgebra $B K_{S_{T}}[[X]]$ of $K_{S_{T}}[[X]]$ which contains the series having bounded coefficients. By Theorem 2 these series are generalization of strictly convergent power series. With respect to Gauss norm $B K_{S_{T}}[[X]]$ is a Banach algebra such that $B K[[X]]$, the K-algebra of formal power series with bounded coefficients, is homeomorphic to a residue algebra of $B K_{S_{T}}[[X]]$ by a closed ideal (see Theorem 4). Moreover for every $f \in B K[[X]]$ there exists a series of $g \in B K_{S_{T}}[[X]]$ such that the corresponding functions defined on the maximal ideal of the valuation ring are equal (see Corollary 2). Theorem 5 with its corollary deal with properties of zeros of associated functions to the elements of $B K_{S_{T}}[[X]]$. Theorem 6 is Identity Theorem for the elements of $B K_{S_{T}}[[X]]$.

It is well known that the analytic continuation in the p-adic analysis cannot be achieved by means of Taylor expansions. By means of Krasner's method it is possible to define analytic elements on the unit open ball for a set of functions defined by bounded power series which satisfy Christol-Robba's condition but there are simple examples of functions which do not belong to this set. If $K=\mathbb{C}_{p}$, we define in Section 5 so-called Newton analytic elements which extend on the unit ball the usual analytic elements (see [3] or [8]). In this manner we define analytic continuation of bounded power series even in the case when the conditions of Christol-Robba's Theorem do not hold (see Remark 1).

2 Basic notations and definitions

Let n be a fixed positive integer. If $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right) \in \mathbb{N}^{n}$, we set $N(\nu)=\nu_{1}+\nu_{2}+$ $\ldots+\nu_{n}$, for every $i=1,2, \ldots, n$, and $\mathbf{0}=(0, \ldots, 0) \in \mathbb{N}^{n}$. For $\nu, \tau=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right) \in \mathbb{N}^{n}$, $j \in \mathbb{N}$, we define $\nu+\tau=\left(\nu_{1}+\tau_{1}, \ldots, \nu_{n}+\tau_{n}\right)$ and $j \nu=\left(j \nu_{1}, j \nu_{2}, \ldots, j \nu_{n}\right)$. We set $\nu<_{l} \tau$ if ν is less than τ with respect to the following lexicographical order: $\nu_{s}<\tau_{s}$, where s is the greatest positive integer less than n such that $\nu_{s} \neq \tau_{s}$. We order also \mathbb{N}^{n} in the following way: $\nu<_{o} \tau$ if either $N(\nu)<N(\tau)$ or $N(\nu)=N(\tau)$ and $\nu<_{l} \tau$. We denote by ∞^{n} a symbol such that $\nu<_{o} \infty^{n}$ for every $\nu \in \mathbb{N}^{n}$. It is obvious that for a fixed $\tau \in \mathbb{N}^{n}$, the set $\left\{\nu \in \mathbb{N}^{n}: \nu \leq_{o} \tau\right\}$ is finite.

Let R be a commutative ring with identity and $\mathbf{S}=\left\{\left(\alpha_{k, 1}, \ldots, \alpha_{k, n}\right)\right\}_{k>1}$ a fixed sequence of elements of R^{n}. In the polynomial ring $R[\mathbf{X}]=R\left[X_{1}, \ldots, X_{n}\right]$ we construct by
recurrence, with respect to the defined order $<_{o}$ of \mathbb{N}^{n}, the polynomials

$$
U_{\mathbf{0}}=1, U_{(1,0, \ldots, 0)}=X_{1}-\alpha_{1,1}, \ldots, U_{(0,0, \ldots, 1)}=X_{n}-\alpha_{1, n}
$$

and generally for every $\tau=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right) \in \mathbb{N}^{n}$,

$$
\begin{equation*}
U_{\tau}=\prod_{0<j \leq \pi_{1}(\tau)}\left(X_{1}-\alpha_{j, 1}\right) \prod_{0<j \leq \pi_{2}(\tau)}\left(X_{2}-\alpha_{j, 2}\right) \ldots \prod_{0<j \leq \pi_{n}(\tau)}\left(X_{n}-\alpha_{j, n}\right), \tag{1}
\end{equation*}
$$

where $\pi_{i}(\tau)=\tau_{i}$. If, for each $\tau \in \mathbb{N}^{n}$, we consider the principal ideal of $R[\mathbf{X}] \mathcal{I}_{\tau}=<U_{\tau}>$, then $\left\{\mathcal{I}_{\tau}\right\}_{\tau \in \mathbb{N}^{n}}$ is a system of neighborhoods of zero of the polynomial ring. Thus $R[\mathbf{X}]$ becomes a topological Hausdorff space with respect to this topology denoted by $\mathcal{T}_{\mathbf{S}}$. We consider $R_{\mathbf{S}}[[\mathbf{X}]]$ the completion of $R[\mathbf{X}]$ with respect to $\mathcal{T}_{\mathbf{S}}$. It is easy to prove that we can represent $R_{\mathbf{S}}[[\mathbf{X}]]$ as the set of formal series

$$
\begin{equation*}
R_{\mathbf{S}}[[\mathbf{X}]]=\left\{f=\sum_{\tau=\mathbf{0}}^{\infty^{n}} a_{\tau} U_{\tau} \mid a_{\tau} \in R\right\} \tag{2}
\end{equation*}
$$

where in each series the order of terms are given by $<_{o}$, two such expressions being regarded as equal if and only if they have the same coefficients. We call an element f from $R_{\mathbf{S}}[[\mathbf{X}]]$ a (formal) Newton interpolating series with coefficients in R defined by the sequence \mathbf{S}. If $n=1, R[\mathbf{X}]=R[X]$ and $S=\left\{\alpha_{k}\right\}_{k \geq 1}$, then the polynomials u_{i} defined by (1) can be written in the form

$$
\begin{equation*}
u_{0}=1, u_{i}=\prod_{j=1}^{i}\left(X-\alpha_{j}\right), i \geq 1 \tag{3}
\end{equation*}
$$

Since, for every nonnegative integer j,

$$
\begin{equation*}
X^{j}=u_{j}+\sum_{i=1}^{j} q_{i, j}\left(\alpha_{1}, \ldots, \alpha_{j-i+1}\right) u_{j-i} \tag{4}
\end{equation*}
$$

where $q_{i, j}$ are homogeneous polynomials of degree i with integral coefficients (i.e. belonging to the canonical homomorphic image of \mathbb{Z} in R), it follows that every polynomial $P=$ $\sum_{i=0}^{p} b_{i} X^{i} \in R[X]$ can be written uniquely in the form

$$
\begin{equation*}
P=\sum_{i=0}^{p} a_{i} u_{i} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i}=b_{i}+\sum_{j=i+1}^{p} b_{j} Q_{i, j}\left(\alpha_{1}, \ldots, \alpha_{i+1}\right) \tag{6}
\end{equation*}
$$

and $Q_{i, j}$ are homogeneous polynomials with integral coefficients. Hence if u_{i}, u_{j} are given by (3), we obtain that for every k such that $\max \{i, j\} \leq k \leq i+j$, there exist in R the
elements $d_{k}(i, j)$ uniquely defined such that

$$
\begin{equation*}
u_{i} u_{j}=\sum_{k=\max \{i, j\}}^{i+j} d_{k}(i, j) u_{k} . \tag{7}
\end{equation*}
$$

Now we consider $P=\sum_{\nu \leq_{o} \tau} b_{\nu} \mathbf{X}^{\nu} \in R[\mathbf{X}]$. From (5) and (6), by induction on n, it follows that

$$
\begin{equation*}
P=\sum_{\nu \leq_{o} \tau} a_{\nu} U_{\nu}, a_{\nu} \in R . \tag{8}
\end{equation*}
$$

If $f, g=\sum_{\nu=0}^{\infty^{n}} b_{\nu} U_{\nu} \in R_{\mathbf{S}}[[\mathbf{X}]]$, we define addition and multiplication of f and g as follows:

$$
\begin{gather*}
f+g=\sum_{\nu=\mathbf{0}}^{\infty^{n}}\left(a_{\nu}+b_{\nu}\right) U_{\nu}, \tag{9}\\
f g=\sum_{\nu=\mathbf{0}}^{\infty^{n}} p_{\nu} U_{\nu}, \tag{10}
\end{gather*}
$$

where

$$
\begin{equation*}
p_{\nu}=\sum_{\mu, \theta \in I(\nu)} D_{\nu}(\mu, \theta) a_{\mu} b_{\theta}, \tag{11}
\end{equation*}
$$

$D_{\nu}(\mu, \theta)=d_{\nu_{1}}\left(\mu_{1}, \theta_{1}\right) \ldots d_{\nu_{n}}\left(\mu_{n}, \theta_{n}\right), d_{i}(s, t)$ are defined in (7) and $I(\nu)=\left\{(\mu, \theta) \in \mathbb{N}^{n} \times \mathbb{N}^{n}:\right.$ $\left.\max \{\mu, \theta\} \leq_{o} \nu, \mu+\theta \geq_{o} \nu\right\}$. Thus with respect to these definitions of addition and multiplication, $R_{\mathbf{S}}[[\mathbf{X}]]$ becomes a complete Hausdorff topological commutative R-algebra which contains $R[\mathbf{X}]$. Moreover by (1), (9)-(11) it follows that as R-algebras

$$
\begin{equation*}
R_{\mathbf{S}^{n-1}}\left[\mathbf{X}^{(n-1)}\right]_{S_{n}}\left[X_{n}\right] \cong R_{\mathbf{S}}[[\mathbf{X}]], \tag{12}
\end{equation*}
$$

where $\mathbf{S}^{n-1}=\left\{\left(\alpha_{k, 1}, \ldots, \alpha_{k, n-1}\right)\right\}_{k \geq 1}, \mathbf{X}^{(n-1)}=\left(X_{1}, \ldots, X_{n-1}\right)$ and $S_{n}=\left\{\alpha_{k, n}\right\}_{k \geq 1}$.

3 A representation of strictly convergent power series

Let $(R,\| \|)$ be a normed ring and $\mathbf{S}=\left\{\left(\alpha_{k, 1}, \ldots, \alpha_{k, n}\right)\right\}_{k \geq 1}$ a fixed sequence of elements of $\stackrel{\circ}{R}$. We consider

$$
\begin{equation*}
\mathcal{H} R_{\mathbf{S}}[[\mathbf{X}]]=\left\{f=\sum_{\nu=\mathbf{0}}^{\infty^{n}} a_{\nu} U_{\nu} \in R_{\mathbf{S}}[[\mathbf{X}]]: \lim _{N(\nu) \rightarrow \infty}\left\|a_{\nu}\right\|=0\right\} . \tag{13}
\end{equation*}
$$

If $f=\sum_{\nu=\mathbf{0}}^{\infty^{n}} a_{\nu} U_{\nu} \in \mathcal{H} R_{\mathbf{S}}[[\mathbf{X}]]$, then we define

$$
\begin{equation*}
\|f\|_{\mathcal{H} R_{\mathbf{S}}[[\mathbf{X}]]}=\sup _{\nu}\left\|a_{\nu}\right\| . \tag{14}
\end{equation*}
$$

Theorem 1. If R is a normed (resp. valued) ring and \mathbf{S} is a fixed sequence of elements of $\stackrel{\circ}{R}^{n}$, then $\mathcal{H} R_{\mathbf{S}}[[\mathbf{X}]]$ is a R-subalgebra of $R_{\mathbf{S}}[[\mathbf{X}]]$ and $\|\|$ defined by (14) is a nonarchimedean norm (resp. absolute value) on $\mathcal{H} R_{\mathbf{S}}[[\mathbf{X}]]$. Moreover if R is a complete normed (resp. valued) ring, then $\mathcal{H} R_{\mathbf{S}}[[\mathbf{X}]]$ becomes a Banach R-algebra which is the completion of $R[\mathbf{X}]$ with respect to the metric defined by the norm (resp. absolute value).

Proof. First suppose $n=1$. Let $f, g=\sum_{i=0}^{\infty} b_{i} u_{i}$ be elements of $\mathcal{H} R_{S}[[X]]$. Then, by (9) and (14), with $n=1$, we obtain $\|f \pm g\|=\sup _{i}\left\{\left\|a_{i} \pm b_{i}\right\|\right\} \leq \max \{\|f\|,\|g\|\}$. Similarly, by (7), (10) and (11), since $u_{i} \in \stackrel{\circ}{R}[X]$, it follows that $d_{k}(i, j) \in \stackrel{\circ}{R}$ and $\|f g\|=\sup \left\|p_{i}\right\| \leq$ $\|f\|\|g\|$. If R is a valued ring we choose $i(f)$ the greatest index i such that $\left|\begin{array}{c}i \\ a_{i}\end{array}\right|=|f|$, then by (7) and (11) $\left|p_{i(f)+i(g)}\right|=\left|a_{i(f)}\right|\left|b_{i(g)}\right|=|f||g|$ and $|f g|=|f||g|$. Hence $\mathcal{H} R_{S}[[X]]$ is a R-subalgebra of $R_{S}[[X]]$ and $\|\|$ defined by (14) is a non-archimedean norm (resp. absolute value) on $\mathcal{H} R_{S}[[X]]$.

When R is complete it follows that $\mathcal{H} R_{S}[[X]]$ is complete because it is isometrically isomorphic, as an R-module, to $c(R)$, the space of zero sequences over R (see [1], Proposition 6 , Sec. 2.1). Now the theorem follows by induction on n by using (12).
Theorem 2. If R is a complete normed ring and $S=\left\{\alpha_{k}\right\}_{k \geq 1}$ is a fixed sequence of elements of $\stackrel{\circ}{R}$, then the Banach R-algebra $\mathcal{H} R_{S}[[X]]$ is isometrically isomorphic to the R-algebra $R<X>$ of strictly convergent power series.

Proof. If $P=\sum_{i=0}^{p} b_{i} X^{i} \in R[X]$, then it can be written also in the form (5), where a_{i} are given in (6). Similarly we obtain

$$
\begin{equation*}
b_{i}=a_{i}+\sum_{j=i+1}^{p} a_{j} T_{i, j}\left(\alpha_{1}, \ldots, \alpha_{j}\right), \tag{15}
\end{equation*}
$$

where $T_{i, j}$ are homogeneous polynomial with integral coefficients. Suppose $\|P\|_{\mathcal{H} R_{S}[[X]]}=$ $\left\|a_{i_{0}}\right\|$, where i_{0} is the greatest index with this property. Since $\left\|T_{i, j}\left(\alpha_{1}, \ldots, \alpha_{i+1}\right)\right\| \leq 1$, it follows that $\left\|b_{i_{0}}\right\|=\left\|a_{i_{0}}\right\|$ and $\left\|b_{i}\right\| \leq \max _{j \geq i}\left\{\left\|a_{j}\right\|\right\}$. Hence $\|P\|_{R<X>}=\|P\|_{\mathcal{H} R_{S}[[X]]}$.

Now, by means of (6) we define $\phi: R<X>\rightarrow \mathcal{H} R_{S}[[X]]$ such that

$$
\begin{equation*}
\phi\left(\sum_{i=0}^{\infty} b_{i} X^{i}\right)=\sum_{i=0}^{\infty} a_{i} u_{i}, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i}=b_{i}+\sum_{j=i+1}^{\infty} b_{j} Q_{i, j}\left(\alpha_{1}, \ldots, \alpha_{i+1}\right) \tag{17}
\end{equation*}
$$

Similarly, by using (15), we can define $\psi: \mathcal{H} R_{S}[[X]] \rightarrow R<X>$ such that

$$
\begin{equation*}
\psi\left(\sum_{i=0}^{\infty} a_{i} u_{i}\right)=\sum_{i=0}^{\infty} b_{i} X^{i} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{i}=a_{i}+\sum_{j=i+1}^{\infty} a_{j} T_{i, j}\left(\alpha_{1}, \ldots, \alpha_{j}\right) \tag{19}
\end{equation*}
$$

Then the mappings ϕ and ψ are well defined and continuous with respect to the corresponding norms. By (16)-(19) we obtain that the restricted mappings ϕ and ψ are inverse to each other on $R[X]$. Since $R[X]$ is dense in $R<X>$ and $\mathcal{H} R_{S}[[X]]$ it follows that ϕ and ψ are inverse to each other and hence we obtain that ϕ is bijective map. In fact ϕ is the identity map on $R[X]$ so ϕ is also a R-algebra morphism. So we obtain that $R<X>$ and $\mathcal{H} R_{S}[[X]]$ are isomorphic R-algebras.

Corollary 1. If K is a complete valued field and $\mathbf{S}=\left\{\left(\alpha_{k, 1}, \ldots, \alpha_{k, n}\right)\right\}_{k \geq 1}$ is a fixed sequence of elements of $\stackrel{\circ}{K}^{n}$, then the algebra of strictly convergent power series $K<\mathbf{X}>$ is isometrically isomorphic to $\mathcal{H} K_{\mathbf{S}}[[\mathbf{X}]]$.

Proof. The corollary follows from (12) and Theorem 2.

4 Bounded Newton interpolating series

In this section K will denote a complete valued field having its residue field at most countable. For $a \in K$ and r a positive real number, we put $B^{+}(a, r)=\{x \in K:|x-a| \leq$ $r\}$ and $B^{-}(a, r)=\{x \in K:|x-a|<r\}$. We choose $T=\left\{\beta_{j}\right\}_{j \geq 1}$ a fixed set, at most countable, of elements in $\stackrel{\circ}{K}$ and we construct a sequence $S_{T}=\left\{\alpha_{i}\right\}_{i \geq 1}$ of elements of T.

By using (3) we define the K-algebra $K_{S_{T}}[[X]]$ with

$$
\begin{equation*}
u_{i}=\prod_{j=1}^{i}\left(X-\alpha_{j}\right)=\prod_{j=1}^{m(i)}\left(X-\beta_{j}\right)^{\theta(i, j)} \tag{20}
\end{equation*}
$$

where $m(i)$ is the number of distinct $X-\beta_{j}$ which divides $u_{i}(X)$. We consider

$$
\begin{equation*}
B K_{S_{T}}[[X]]=\left\{f=\sum_{i=0}^{\infty} a_{i} u_{i} \in K_{S_{T}}[[X]]: \exists M>0,\left|a_{i}\right|<M, \forall i\right\} . \tag{21}
\end{equation*}
$$

We call an element f from $B K_{S_{T}}[[X]]$ a bounded Newton interpolating series with coefficients in K defined by the sequence S_{T}. If $f=\sum_{i=0}^{\infty} a_{i} u_{i} \in B K_{S_{T}}[[X]]$, the real number

$$
\begin{equation*}
\|f\|_{B K_{S_{T}}}[[X]]=\sup _{i}\left|a_{i}\right| \tag{22}
\end{equation*}
$$

is well defined. As usual we call $\left\|\|_{B K_{S_{T}}}[[X]]\right.$, given in (22), the Gauss norm on $B K_{S_{T}}[[X]]$. In the case when $T=\left\{\beta_{1}\right\}, B K_{S_{T}}[[X]]$ becomes

$$
B K\left[\left[X-\beta_{1}\right]\right]
$$

$$
\begin{equation*}
=\left\{f=\sum_{i=0}^{\infty} a_{i}\left(X-\beta_{1}\right)^{i} \in K\left[\left[X-\beta_{1}\right]\right]: \exists M>0,\left|a_{i}\right|<M, \forall i\right\} . \tag{23}
\end{equation*}
$$

Theorem 3. $B K_{S_{T}}[[X]]$ is a subalgebra of the K-algebra $K_{S_{T}}[[X]]$ and the Gauss norm is a K-algebra non-archimedean norm on $B K_{S_{T}}[[X]]$ making it into a Banach K-algebra.

Proof. Let $f, g=\sum_{i=0}^{\infty} b_{i} u_{i} \in B K_{S_{T}}[[X]]$. By (9) and (22) we obtain $\|f \pm g\|_{B K_{S_{T}}[[X]]}=$ $\sup _{i}\left|a_{i} \pm b_{i}\right| \leq \max \left\{\|f\|_{B K_{S_{T}}[[X]]},\|g\|_{B K_{S_{T}}[[X]]}\right\}$. Similarly, since $u_{i}(X) \in \stackrel{\circ}{K}[X]$, by (6) and (7) it follows that $d_{i}(s, t) \in \stackrel{\circ}{K}$ and (10), (11), (22) imply

$$
\begin{equation*}
\|f g\|_{B K_{S_{T}}[[X]]} \leq \sup _{i}\left\{\max _{(j, k) \in I(i)}\left|a_{j} b_{k}\right|\right\} \leq\|f\|_{B K_{S_{T}}[[X]]}\|g\|_{B K_{S_{T}}[[X]]} . \tag{24}
\end{equation*}
$$

Thus $B K_{S_{T}}[[X]]$ is a subalgebra of $K_{S_{T}}[[X]]$ and the Gauss norm is a K-algebra norm on $B K_{S_{T}}[[X]] . B K_{S_{T}}[[X]]$ is complete because it is isometrically isomorphic as K-vector space to $b(K)$, the space of bounded sequences over K (see [1], Proposition 6, Sec. 2.1).

Now we choose $T=\left\{\beta_{j}\right\}_{j \geq 1}$ a fixed set of representatives of \widetilde{K} in $\stackrel{\circ}{K}$ and $S_{T}=\left\{\alpha_{i}\right\}_{i \geq 1}$ a sequence of elements of T such that every element of T appears infinitely many times in S_{T}. Similarly with the case of Tate algebra (see [1], Sec. 5.1) we prove for $B K_{S_{T}}[[X]]$ two results, one on continuity and other on Identity Theorem. If $D \subset K$ is the domain of convergence of the series $f \in B K_{S_{T}}[[X]]$, then obviously $T \subset D$. We have the following

Lemma 1. If $T=\left\{\beta_{j}\right\}_{j \geq 1}$ is a fixed set of representatives of \widetilde{K} in $\stackrel{\circ}{K}, S_{T}=\left\{\alpha_{i}\right\}_{i \geq 1}$ is a sequence of elements of T such that every element of T appears infinitely many times in S_{T} and $f=\sum_{i=0}^{\infty} a_{i} u_{i} \in B K_{S_{T}}[[X]]$, then
a) $\stackrel{\circ}{K} \subset D$;
b) if f converges at $\bar{x} \in K$, then it converges for every $x \in K$ such that $|x| \leq|\bar{x}|$;
c) if $x \in \stackrel{\circ}{K}^{\text {, then }}|f(x)| \leq\|f\|_{B K_{S_{T}}}[[X]]$.

Proof. a) If $x \in \stackrel{\circ}{K}$, then there is a $\beta_{j} \in T$ such that $\left|x-\beta_{j}\right|<1$ and for every $i \neq j$, $\left|x-\beta_{i}\right|=1$. Since β_{j} appears infinitely many times in S_{T}, by $(20), \lim _{i \rightarrow \infty} \theta(i, j)=\infty$ which implies $\lim _{i \rightarrow \infty} a_{i} u_{i}(x)=0$ and f converges at x.
b) It is enough to consider $|\bar{x}|>1$. Then for every $i,\left|\bar{x}-\beta_{i}\right|=|\bar{x}|,\left|a_{i} u_{i}(x)\right| \leq$ $\left|a_{i}\right| \max \{1,|x|\}^{i} \leq\left|a_{i} u_{i}(\bar{x})\right|$ and this implies b).
c) If $x \in \stackrel{\circ}{K}$, then $|f(x)| \leq \sup _{i}\left|a_{i} u_{i}(x)\right| \leq \sup _{i}\left|a_{i}\right|=\|f\|_{B K_{S_{T}}[[X]] \text {. }}$

Proposition 1. If $T=\left\{\beta_{j}\right\}_{j \geq 1}$ is a fixed set of representatives of \widetilde{K} in $\stackrel{\circ}{K}$ and $S_{T}=$ $\left\{\alpha_{i}\right\}_{i \geq 1}$ is a sequence of elements of T such that every element of T appears infinitely many times in S_{T}, then every $f=\sum_{i=0}^{\infty} a_{i} u_{i} \in B K_{S_{T}}[[X]]$ defines a continuous function
on D, denoted also by f, such that $y \rightarrow f(y)=\sum_{i=0}^{\infty} a_{i} u_{i}(y) \in K$. Moreover, if $x_{0} \in D$, then there exists $\beta_{j} \in T$ such that the series $\sum_{i=0}^{\infty} a_{i} u_{i}(x)$ converges uniformly to $f(x)$ on $B^{+}\left(\beta_{j},\left|x_{0}-\beta_{j}\right|\right)$.

Proof. We may suppose $f \neq 0$. If $y \in \stackrel{\circ}{K}$, then $\lim _{i \rightarrow \infty} a_{i} u_{i}(y)=0$ and the series $\sum_{i=0}^{\infty} a_{i} u_{i}(y)$ converges to some element of K.

If $y_{0} \in \stackrel{\circ}{K}$ we consider a real number $\varepsilon>0$. By putting $\delta=\frac{\varepsilon}{\|f\|}$ we take $y \in \stackrel{\circ}{K}$ such that $\left|y-y_{0}\right|<\delta$. Hence it follows that

$$
\left|f(y)-f\left(y_{0}\right)\right| \leq \sup _{i}\left|a_{i}\right|\left|u_{i}(y)-u_{i}\left(y_{0}\right)\right| \leq\|f\| \sup _{i}\left|u_{i}(y)-u_{i}\left(y_{0}\right)\right| .
$$

Since $u_{i}(y)-u_{i}\left(y_{0}\right)=\left(y-y_{0}\right) w_{i}\left(y, y_{0}\right)$, where $w_{i}\left(y, y_{0}\right) \in \stackrel{\circ}{K}$, we obtain that $\left|f(y)-f\left(y_{0}\right)\right|$ $<\varepsilon$ and f gives rise to a continuous function on $\stackrel{\circ}{K}$.

Now, we suppose $y_{0} \in D,\left|y_{0}\right|>1$ and we choose a real number $\varepsilon>0$. We take $y \in D$ such that $\left|y-y_{0}\right|<1$. Hence it follows that $\left|a_{i} u_{i}(y)\right|=\left|a_{i} y^{i}\right|=\left|a_{i} y_{0}^{i}\right|=\left|a_{i} u_{i}\left(y_{0}\right)\right|$. Thus we can choose i_{0} such that for every $y \in B^{-}\left(y_{0}, 1\right)\left|f(y)-S_{i_{0}}(y)\right|<\varepsilon$, where S_{i} is the partial sum of the series f. Since $S_{i_{0}}(y)$ is a continuous function there is $\delta<1$ such that for every $y \in B^{-}\left(y_{0}, \delta\right),\left|S_{i_{0}}(y)-S_{i_{0}}\left(y_{0}\right)\right|<\varepsilon$. Then

$$
\left|f(y)-f\left(y_{0}\right)\right| \leq \max \left\{\left|f(y)-S_{i_{0}}(y)\right|,\left|S_{i_{0}}(y)-S_{i_{0}}\left(y_{0}\right)\right|,\left|S_{i_{0}}\left(y_{0}\right)-f\left(y_{0}\right)\right|\right\}<\varepsilon
$$

and f gives rise to a continuous function on D.
Suppose $x_{0} \in D$. If $x_{0} \in \stackrel{\circ}{K}$, we choose $\beta_{j} \in T$ such that $\left|x_{0}-\beta_{j}\right|<1$. Then for every $x \in B^{+}\left(\beta_{j},\left|x_{0}-\beta_{j}\right|\right)$ and $k \neq j,\left|x-\beta_{k}\right|=1$. Hence $\left|a_{i} u_{i}(x)\right| \leq\left|a_{i} u_{i}\left(x_{0}\right)\right|$ and the series converges uniformly on $B^{+}\left(\beta_{j},\left|x_{0}-\beta_{j}\right|\right)$.

If $\left|x_{0}\right|>1$, then for every $\beta_{j} \in T,\left|x_{0}-\beta_{j}\right|=\left|x_{0}\right|$. Thus for every $x \in B^{+}\left(\beta_{j},\left|x_{0}-\beta_{j}\right|\right)=$ $B^{+}\left(0,\left|x_{0}\right|\right),\left|a_{i} u_{i}(x)\right| \leq\left|a_{i} u_{i}\left(x_{0}\right)\right|$, which implies the proposition.

Theorem 4. Let $T=\left\{\beta_{j}\right\}_{j \geq 1}$ be a fixed set of representatives of \widetilde{K} in $\stackrel{\circ}{K}$ and let $S_{T}=\left\{\alpha_{k}\right\}_{k \geq 1}$ be a sequence of elements of T. If there exists $\beta_{k} \in T$ which appears infinitely many times in S_{T}, then there exists a K-algebra homomorphism $\varphi: B K_{S_{T}}[[X]] \rightarrow$ $B K\left[\left[X-\beta_{k}\right]\right]$ such that:
a) φ is a continuous K-algebra homomorphism from $B K_{S_{T}}[[X]]$ onto $B K\left[\left[X-\beta_{k}\right]\right]$;
b) for every $g \in B K_{S_{T}}[[X]]$ and $x \in B^{-}\left(\beta_{k}, 1\right), g(x)=\varphi(g)(x)$;
c) the induced isomorphism $\bar{\varphi}: B K_{S_{T}}[[X]] / \operatorname{Ker} \varphi \rightarrow B K[[X]]$ is a homeomorphism, where $B K_{S_{T}}[[X]] / K e r \varphi$ is provided with the quotient topology.

Proof. a) Consider $g=\sum_{i=0}^{\infty} a_{i} u_{i} \in B K_{S_{T}}[[X]], g_{n}$ its nth partial sum and $\mu(i, k)=$ $\max \{t: \theta(t, k) \leq i\}$. Since, for every $j \neq k, X-\beta_{j}=X-\beta_{k}+\beta_{k}-\beta_{j}$, by (20) it follows that, for every $n \geq \mu(i, k)$, the coefficient of $\left(X-\beta_{k}\right)^{i}$ in the polynomial g_{n} written as an
element from $B K\left[\left[X-\beta_{k}\right]\right]$ has the form

$$
\begin{equation*}
c_{i, k}=\sum_{j=i}^{\mu(i, k)} P_{i, j, k} a_{j} \tag{25}
\end{equation*}
$$

where $P_{i, j, k}$ are polynomials with integral coefficients in β_{j}, and

$$
\begin{equation*}
P_{i, \mu(i, k), k}=\prod_{j=1, j \neq k}^{m(i)}\left(\beta_{k}-\beta_{j}\right)^{\theta(i, j)} . \tag{26}
\end{equation*}
$$

Then $\sum_{i=0}^{\infty} c_{i, k}\left(X-\beta_{k}\right)^{i} \in B K\left[\left[X-\beta_{k}\right]\right]$ and we define

$$
\begin{equation*}
\varphi(g)=\sum_{i=0}^{\infty} c_{i, k}\left(X-\beta_{k}\right)^{i} . \tag{27}
\end{equation*}
$$

Since $K[X]$ is dense in $B K_{S}[[X]]$, for every S, (resp. $B K\left[\left[X-\beta_{k}\right]\right]$) with respect to the topology \mathcal{T}_{S} defined by the principal ideals $\left\langle u_{i}\right\rangle$ (resp. the corresponding topology \mathcal{T} defined by the powers of $\left.X-\beta_{k}\right), \varphi$ is continuous with respect to $\mathcal{T}_{S_{T}}$ and \mathcal{T} and its restriction to $K[X]$ is the identity map, it follows that it is a K-algebra homomorphism. Moreover, because (25) implies that

$$
\begin{equation*}
\|\varphi(g)\|_{K B\left[\left[X-\beta_{k}\right]\right]} \leq\|g\|_{B K_{S}[[X]]} \tag{28}
\end{equation*}
$$

it follows that φ is continuous.
If $f=\sum_{i=0}^{\infty} b_{i}\left(X-\beta_{k}\right)^{i} \in B K\left[\left[X-\beta_{k}\right]\right]$, then choose $g=\sum_{i=0}^{\infty} a_{i} u_{i} \in K_{S_{T}}[[X]]$ such that $a_{0}=b_{0}$ and generally by recurrence, for $i \geq 1$,

$$
a_{i}=\left\{\begin{array}{l}
0, \text { if } i \neq \mu(j, k) \text { for every } j \tag{29}\\
\frac{b_{j}-\sum_{s=j}^{\mu(j, k)-1} P_{j, s, k} a_{s}}{P_{j, \mu(j, k), k}}, \text { if } i=\mu(j, k)
\end{array},\right.
$$

where the polynomials $P_{i, j, k}$ defined in (25) are independent of the coefficients a_{j}. Since $\left|\beta_{i}\right| \leq 1, g \in B K_{S_{T}}[[X]]$. If, for every $i \geq 1, a_{i}$ is given in (29), by (25) we obtain $c_{i, k}=b_{i}$ which implies $\varphi(g)=f$.
b) Since we may choose $g \in B K_{S_{T}}[[X]]$ such that $\varphi(g)=f$, by (28), we obtain, for every $x \in B^{-}\left(\beta_{k}, 1\right)$,

$$
\left|f(x)-g_{n}(x)\right| \leq\left\|f-g_{n}\right\|_{B K\left[\left[X-\beta_{k}\right]\right]}=\left\|\varphi\left(g-g_{n}\right)\right\|_{B K\left[\left[X-\beta_{k}\right]\right]} \leq\left\|g-g_{n}\right\|_{B K_{S_{T}}[[X]]}
$$

Hence it follows b).
c) Since φ is continuous and by (29) for every $f \in B K\left[\left[X-\beta_{k}\right]\right]$ we may choose $g \in B K_{S_{T}}[[X]]$ such that $\|g\|_{B K_{S_{T}}[[X]]} \leq\|f\|_{B K\left[\left[X-\beta_{k}\right]\right]}$ by Lemma 2 from [1], p. 21φ is strict which implies the statement.

By Theorem 4 we obtain easily the following result.

Corollary 2. If $f \in B K[[X]], T=\left\{\beta_{j}\right\}_{j \geq 1}, 0 \in T$, is a set of representatives of \widetilde{K} in $\stackrel{\circ}{K}$ and $S_{T}=\left\{\alpha_{i}\right\}_{i \geq 1}$ a sequence of elements of T such that every element of T appears infinitely many times in S_{T}, then there exists $g \in B K_{S_{T}}[[X]]$ such that $f(x)=g(x)$, for every $x \in B^{-}(0,1)$.

For $f \in B K_{S_{T}}[[X]]$ denote $Z(f)=\{a \in \stackrel{\circ}{K} \mid f(a)=0\}$ the set of all zeros of f in $\stackrel{\circ}{K}$ without counting the multiplicities.

Theorem 5. If $T=\left\{\beta_{j}\right\}_{j \geq 1}$ is a fixed set of representatives of \widetilde{K} in $\stackrel{\circ}{K}, S_{T}=\left\{\alpha_{i}\right\}_{i \geq 1}$ is a sequence of elements of T such that every element of T appears infinitely many times in $S_{T}, f \in B K_{S_{T}}[[X]]$ and for a fix j, β_{j} is an accumulation point of $Z(f)$, then $B^{-}\left(\beta_{j}, 1\right) \subset$ $Z(f)$.

Proof. Suppose first $f=\sum_{i=0}^{\infty} a_{i} u_{i} \in B K_{S_{T}}[[X]]$ and $\beta_{j}=0$. Now by Theorem 4 we have a morphism $\varphi: B K_{S_{T}}[[X]] \rightarrow B K[[X]]$ such that $\varphi(f)=g \in B K[[X]]$ and $f(x)=g(x)$, for every $x \in B^{-}(0,1)$. We choose a sequence $\left\{\gamma_{k}\right\}_{k \geq 1}$ of distinct elements of $Z(f) \cap B^{-}(0,1)$ such that $\lim _{k \rightarrow \infty} \gamma_{k}=0$. Then $f\left(\gamma_{k}\right)=0=g\left(\gamma_{k}\right)$, for all k. We show that $g=0$ in $B K[[X]]$. If $g \neq 0$ and b_{t} is the first nonzero coefficient of g then $g=X^{t} \sum_{i=0}^{\infty} b_{t+i} X^{i}$. Now for k large enough $\left|\sum_{i=0}^{\infty} b_{t+i} \gamma_{k}^{i}\right|=\left|b_{t}\right|$. But $g\left(\gamma_{k}\right)=0$ implies $b_{t}=0$. Hence $g=0$ and $f(\gamma)=g(\gamma)=0$ for all $\gamma \in B^{-}(0,1)$. The case $\beta_{j} \neq 0$ can be reduced easily to the previous case by replacing X with $X+\beta_{j}$.

Corollary 3. If $T=\left\{\beta_{j}\right\}_{j \geq 1}$, is a fixed set of representatives of \widetilde{K} in $\stackrel{\circ}{K}$ and $S_{T}=\left\{\alpha_{i}\right\}_{i \geq 1}$ a sequence of elements of T such that every element of T appears infinitely many times in $S_{T}, f \in B K_{S_{T}}[[X]]$ and for a fix j, there exists an element $\xi_{j} \in B^{-}\left(\beta_{j}, 1\right)$, which is an accumulation point $Z(f)$, then $B^{-}\left(\beta_{j}, 1\right) \subset Z(f)$.

Proof. It is enough to replace X with $X+\beta_{j}-\xi_{j}$ and to use Corollary 2 and Theorem 5

Now we can prove Identity Theorem for elements of $B K_{S_{T}}[[X]]$.
Theorem 6. If $T=\left\{\beta_{j}\right\}_{j \geq 1}$, is a fixed set of representatives of \widetilde{K} in $\stackrel{\circ}{K}$ and $S_{T}=\left\{\alpha_{i}\right\}_{i \geq 1}$ a sequence of elements of T such that every element of T appears infinitely many times in $S_{T}, f \in B K_{S_{T}}[[X]]$ and for every j, there exists an element $\xi_{j} \in B^{-}\left(\beta_{j}, 1\right)$, which is an accumulation point $Z(f)$, then $f=0$.

Proof. Because $\stackrel{\circ}{K}=\bigcup_{\beta_{j} \in T} B^{-}\left(\beta_{j}, 1\right)$, by Corollary 3 it follows that $f(x)=0$ for every $x \in \stackrel{\circ}{K}$. Suppose that $f=\sum_{i=t}^{\infty} a_{i} u_{i} \neq 0$ and $a_{t} \neq 0$. If $u_{t+1}(X) / u_{t}(X)=X-\beta_{j}$ we choose a sequence $\left\{\gamma_{k}\right\}_{k \geq 1}$ of distinct elements of $Z(f)$ which tends to β_{j}. Since $f\left(\gamma_{k}\right)=0$, for all k it follows that $a_{t}=0$ which implies that $f=0$.

Now we fixed $T=\left\{\beta_{j}\right\}_{j \geq 1}$ a set of representatives of \widetilde{K} in $\stackrel{\circ}{K}$ and we construct a particular sequence $S_{T}=\left\{\alpha_{i}\right\}_{i \geq 1}$ of elements of T, such that every element of T appears infinitely many times in S_{T}. Thus for every positive integer i there is a unique integer $k(i)$ such that

$$
\begin{equation*}
\frac{(k(i)-1) k(i)}{2}<i \leq \frac{k(i)(k(i)+1)}{2} \tag{30}
\end{equation*}
$$

and we put

$$
\begin{equation*}
s(i)=i-\frac{(k(i)-1) k(i)}{2} \tag{31}
\end{equation*}
$$

Then we take

$$
\alpha_{i}=\left\{\begin{array}{l}
\beta_{r(i-1)+1}, \text { if } \widetilde{K} \text { has } q \text { elements } \tag{32}\\
\beta_{s(i)}, \text { if } \widetilde{K} \text { is countable }
\end{array}\right.
$$

where $r(i)$ is the remainder obtained by dividing i into q. In this case we say that the pair $\left(T, S_{T}\right)$ has the standard form.

5 Newton analytic elements

Let D be a closed subset of \mathbb{C}_{p}. The Runge theorem of complex analysis leaded Krasner to call an analytic element a function $f: D \rightarrow \mathbb{C}_{p}$ which is a uniform limit of a sequence of rational functions having no pole in D. By a result of Christol-Robba (see Theorem of Sec. 4.6 of $[8])$ it is known which series of $B \mathbb{C}_{p}[[X]]$ define analytic elements. There are simple examples of series of $B \mathbb{C}_{p}[[X]]$ which do not define analytic elements on $B^{-}(0,1)$ (see [8], p. 353).

Now we built Newton analytic elements on $B^{+}(0,1)$ and $B^{-}(0,1)$. Consider $K=\mathbb{C}_{p}$, a pair $\left(T, S_{T}\right)$ having the standard form $D=B^{+}(0,1)$ and a function $f: D \rightarrow K$. We call f a Newton analytic element if it is the sum of a series of $B \mathbb{C}_{p_{S_{T}}}[[X]]$ on D. By Corollary 1 and Theorem, Sec. 4.3, Ch. 6 of [8], it follows that the Banach algebra of analytic elements on $B^{+}(0,1)$ is isomorphic to a subalgebra of $B \mathbb{C}_{p_{S_{T}}}[[X]]$. In order to define Newton analytic elements on $B^{-}(0,1)$ we suppose that the pair $\left(T, S_{T}\right)$ has the standard form and $\beta_{1}=0$. We take $T_{s} \subset T, T_{s} \neq T$, such that $0 \in T_{s}$ and $S_{T_{s}^{c}}$ the sequence obtained from S_{T} by canceling all the terms equal to $\beta_{j} \in T_{s}$. We denote by v_{i} the corresponding polynomials defined by (3) by means of $S_{T_{s}^{c}}$.

In $B K_{S_{T}}[[X]]$ we denote by M the multiplicative system generated by the polynomials $X-\beta_{i}, \beta_{i} \in T_{s}^{c}$ and by $M^{-1} B K_{S_{T}}[[X]]$ the ring of fractions of $B K_{S_{T}}[[X]]$ with respect to M. By using an idea for power series (see [7]), we define

$$
\begin{equation*}
\mathcal{H} N \mathbb{C}_{p_{S_{T_{s}^{c}}}}[[X]]=\left\{F=\sum_{i=-\infty}^{-1} a_{i} v_{-i}^{-1}+f\right\} \tag{33}
\end{equation*}
$$

where $a_{i} \in \mathbb{C}_{p}, \lim _{i \rightarrow-\infty} a_{i}=0$ and $f \in B \mathbb{C}_{p_{S_{T}}}[[X]]$. If $F \in \mathcal{H} N \mathbb{C}_{p_{S_{T_{s}^{c}}}}[[X]]$ we put

$$
\begin{equation*}
\|F\|_{\mathcal{H} N \mathbb{C}_{p_{S_{T}}}}[[X]]=\max \left\{\max _{-\infty<i \leq-1}\left\{\left|a_{i}\right|\right\},\|f\|_{B \mathbb{C}_{p_{S_{T}}}}[[X]]\right\} . \tag{34}
\end{equation*}
$$

It can be proved that $\mathcal{H} N \mathbb{C}_{p_{S_{T}}}[[X]]$ is the completion of the algebra $M^{-1} B \mathbb{C}_{p_{S_{T}}}[[X]]$ with respect to the restriction of the norm given by (34).

Consider $K=\mathbb{C}_{p},\left(T, S_{T}\right)$ a pair having the standard form with $\beta_{1}=0, T_{s}=0$, $D=B^{-}(0,1)$ and a function $f: D \rightarrow \mathbb{C}_{p}$. We call f a Newton analytic element if it is the sum of a series of $\mathcal{H} N \mathbb{C}_{p_{S_{s}^{c}}}[[X]]$.

Remark 1. Let $\left(T, S_{T}\right)$ be a pair having the standard form with $\beta_{1}=0$. If we denote the set of all Newton analytic elements on $B^{+}(0,1)$ as $\mathcal{H} N\left(B^{+}(0,1)\right)=B \mathbb{C}_{p_{S_{T}}}[[X]]$ and the set of all Newton analytic elements on $B^{-}(0,1)$ as $\mathcal{H} N\left(B^{-}(0,1)\right)=\mathcal{H} N \mathbb{C}_{p_{S_{s}^{c}}}[[X]]$, with $T_{s}=\{0\}$, then as in the classical case that Banach K-algebra $\mathcal{H} N\left(B^{-}(0,1)\right)$ is isomorphic to a completion of a ring of fractions of the algebra $\mathcal{H} N\left(B^{+}(0,1)\right)$.

By Corollary 2 and Lemma 1 it follows that every $g \in B \mathbb{C}_{p}[[X]]$ defines a Newton analytic element on $B^{-}(0,1)$ which can be extended to a Newton analytic element on $B^{+}(0,1)$. Hence Theorem 6 implies that for a fixed family of sequences $Z_{j}=\left\{\gamma_{j, n}\right\}_{n \geq 1}$, $j \geq 2$ such that $\gamma_{j, n} \in B^{-}\left(\beta_{j}, 1\right)$ and each Z_{j} has an accumulation point, every $g \in$ $B \mathbb{C}_{p_{S_{T}}}[[X]]$ can be extended to $G \in \mathcal{H} N\left(B^{+}(0,1)\right)$ uniquely defined by its values at $\gamma_{j, n}$.

References

[1] Bosch, S., Güntzer, U. and Remert, R., Non-Archimedean Analysis, Springer-Verlag, Berlin, 1984.
[2] Boussaf, K., Strictly analytic functions on p-adic analytic open sets, Publ. Mat., Barc. 43, (1999). 127-162.
[3] Escassut, A., Analytic elements in p-adic analysis, World Scientific Publishing, Singapore, 1995.
[4] Fresnel, J. and van der Put, M., Géométrie Analytique Rigide et Applications, Birkhäuser, Boston, 1981.
[5] Groza, G. and Haider, A., On the ring of Newton interpolating series over a local field, Math. Rep., Bucur. 9(59) (2007), no. 4, 343-356.
[6] Lipshitz, L., Robinson, Z., Rings of separated power series and quasi-affinoid geometry Astérisque 264, SMF 2000.
[7] Parshin, A. N., Abelian covering of arithemetic schemas (in Russian), Doklad SSSR 243 (1978), no. 4.
[8] Robert, A., A course in p-adic analysis, Springer-Verlag, New York, 2000.

[^0]: ${ }^{1}$ Department of Mathematics and Computer Science, Technical University of Civil Engineering of Bucharest, Romania, email:grozag@utcb.ro
 ${ }^{2}$ Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan, email:azeemhaider@gmail.com

