Bulletin of the Transilvania University of Braşov - Series III: Mathematics, Informatics, Physics, Vol 5(54) 2012, Special Issue: Proceedings of the Seventh Congress of Romanian Mathematicians, 167-178, published by Transilvania University Press, Braşov and Publishing House of the Romanian Academy

EXISTENCE OF POSITIVE SOLUTIONS FOR A NONLINEAR HIGHER-ORDER MULTI-POINT BOUNDARY VALUE PROBLEM

Johnny HENDERSON ${ }^{1}$ and Rodica LUCA ${ }^{2}$

Abstract

We investigate the existence of positive solutions of a system of higher-order nonlinear ordinary differential equations, subject to multi-point boundary conditions.

2000 Mathematics Subject Classification: 34B10, 34B18.
Key words: higher-order differential system, multi-point boundary conditions, positive solutions.

1 Introduction

In recent years, the multi-point boundary value problems for second-order or higherorder differential or difference equations/systems have been investigated by many authors, by using different methods such us fixed point theorems in cones, the Leray-Schauder continuation theorem and its nonlinear alternatives and the coincidence degree theory.

In this paper, we consider the system of nonlinear higher-order ordinary differential equations

$$
\left\{\begin{array}{l}
u^{(n)}(t)+\lambda c(t) f(u(t), v(t))=0, \quad t \in(0, T), \quad n \in \mathbb{N}, \quad n \geq 2 \tag{S}\\
v^{(m)}(t)+\mu d(t) g(u(t), v(t))=0, \quad t \in(0, T), \quad m \in \mathbb{N}, \quad m \geq 2
\end{array}\right.
$$

with the multi-point boundary conditions
$(B C) \quad\left\{\begin{array}{l}u(0)=u^{\prime}(0)=\cdots=u^{(n-2)}(0)=0, u(T)=\sum_{i=1}^{p-2} a_{i} u\left(\xi_{i}\right), p \in \mathbb{N}, p \geq 3, \\ v(0)=v^{\prime}(0)=\cdots=v^{(m-2)}(0)=0, v(T)=\sum_{i=1}^{q-2} b_{i} v\left(\eta_{i}\right), q \in \mathbb{N}, q \geq 3 .\end{array}\right.$
We give sufficient conditions on λ, μ, f and g such that positive solutions of $(S)-(B C)$ exist. By a positive solution of problem $(S)-(B C)$ we mean a pair of functions $(u, v) \in$

[^0]$C^{n}([0, T]) \times C^{m}([0, T])$ satisfying (S) and $(B C)$ with $u(t) \geq 0, v(t) \geq 0$ for all $t \in[0, T]$ and $\|u\|+\|v\|>0$, where $\|u\|=\sup _{t \in[0, T]}|u(t)|$. This problem is a generalization of the one studied in [19], where $n=m, p=q, a_{i}=b_{i}, \xi_{i}=\eta_{i}$ for all $i=1, \ldots, p-2$. The system (S) with $n=m, f(u, v)=\widetilde{f}(v), g(u, v)=\widetilde{g}(u)$ (denoted by (\widetilde{S})) and the boundary conditions $(B C)$ with $p=q, a_{i}=b_{i}, \xi_{i}=\eta_{i}, i=1, \ldots, p-2$ (denoted by $(\widetilde{B C})$) has been investigated in [16]. In [4], the authors studied the system (\widetilde{S}) with $T=1$ and the boundary conditions $u(0)=u^{\prime}(0)=\cdots=u^{(n-2)}(0)=0, u(1)=\alpha u(\eta)$, $v(0)=v^{\prime}(0)=\cdots=v^{(n-2)}(0)=0, v(1)=\alpha v(\eta)$, where $0<\eta<1,0<\alpha \eta^{n-1}<1$. We also mention the paper [20], where the authors used the fixed point index theory to prove the existence of positive solutions for the system (S) with $\lambda=\mu=1$ and $(B C)$, where $\frac{1}{2} \leq \xi_{1}<\xi_{2}<\cdots<\xi_{p}<1, \quad \frac{1}{2} \leq \eta_{1}<\eta_{2}<\cdots<\eta_{q}<1$.

The system (S) with $n=m=2$ and the boundary conditions $\alpha u(0)-\beta u^{\prime}(0)=$ $0, u(T)=\sum_{i=1}^{m} a_{i} u\left(\xi_{i}\right), m \geq 1, \gamma v(0)-\delta v^{\prime}(0)=0, v(T)=\sum_{i=1}^{n} b_{i} v\left(\eta_{i}\right), n \geq 1$, has been investigated in [2]. Some particular cases of the last problem were studied in [6], [8], [9], [17]. In [5], the authors investigated the system (\widetilde{S}) with $n=m=2$ and the boundary conditions $\alpha u(0)-\beta u^{\prime}(0)=0, \alpha v(0)-\beta v^{\prime}(0)=0, \gamma u(1)+\delta u^{\prime}(1)=0, \gamma v(1)+\delta v^{\prime}(1)=0$, with $\alpha, \beta, \gamma, \delta \geq 0, \alpha+\beta+\gamma+\delta>0$. For the discrete problem corresponding to (S) with $n=m=2$ and various boundary conditions, we would like to mention the papers [3], [7], [10], [14], [15], [18].

In Section 2, we present some auxiliary results which investigate two boundary value problems for higher-order equations (the problems (1)-(2) and (3)-(4) below). In Section 3, we give some existence theorems for the positive solutions with respect to a cone for our problem (S)-(BC). The proofs of these results are similar to those of Theorems 3.1 and 3.2 from [1]. These theorems are based on the Krasnoselskii fixed point theorem (see [12], [13]), which we present now.

Theorem 1. Let $(X,\|\cdot\|)$ be a normed linear space, $K \subset X$ a cone, $0<a<b$ two given numbers and $K(a, b)=\{x \in K, a \leq\|x\| \leq b\}, K_{a}=\{x \in K,\|x\|=a\}, K_{b}=\{x \in$ $K,\|x\|=b\}$. Let $T: K(a, b) \rightarrow K$ be a completely continuous operator such that one of the following conditions is satisfied:
i) $\|T x\| \leq\|x\|$ if $x \in K_{a}$ and $\|T x\| \geq\|x\|$ if $x \in K_{b}$;
ii) $\|T x\| \geq\|x\|$ if $x \in K_{a}$ and $\|T x\| \leq\|x\|$ if $x \in K_{b}$.

Then T has a fixed point in $K(a, b)$.
Finally, some examples are presented in Section 4 to illustrate our main results.

2 Auxiliary results

In this section, we present some auxiliary results from [11] and [16], related to the following n-order differential equation with p-point boundary conditions

$$
\begin{equation*}
u^{(n)}(t)+y(t)=0, \quad t \in(0, T), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
u(0)=u^{\prime}(0)=\cdots=u^{(n-2)}(0)=0, u(T)=\sum_{i=1}^{p-2} a_{i} u\left(\xi_{i}\right) . \tag{2}
\end{equation*}
$$

Lemma 1. ([11], [16]) If $d=T^{n-1}-\sum_{i=1}^{p-2} a_{i} \xi_{i}^{n-1} \neq 0,0<\xi_{1}<\cdots<\xi_{p-2}<T$ and $y \in C([0, T])$, then the solution of (1)-(2) is given by

$$
\begin{aligned}
u(t)=\frac{t^{n-1}}{d(n-1)!} & \int_{0}^{T}(T-s)^{n-1} y(s) d s-\frac{t^{n-1}}{d(n-1)!} \sum_{i=1}^{p-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right)^{n-1} y(s) d s \\
& -\frac{1}{(n-1)!} \int_{0}^{t}(t-s)^{n-1} y(s) d s, \quad 0 \leq t \leq T
\end{aligned}
$$

Lemma 2. ([11], [16]) Under the assumptions of Lemma 1, the Green's function for the boundary value problem (1)-(2) is given by

Using the above Green's function the solution of problem (1)-(2) is expressed as $u(t)=$ $\int_{0}^{T} G_{1}(t, s) y(s) d s$.

Lemma 3. ([11], [16]) If $a_{i}>0$ for all $i=1, \ldots, p-2,0<\xi_{1}<\cdots<\xi_{p-2}<T$, $d>0$ and $y \in C([0, T]), y(t) \geq 0$ for all $t \in[0, T]$, then the solution u of problem (1)-(2) satisfies $u(t) \geq 0$ for all $t \in[0, T]$.

Lemma 4. ([16]) If $a_{i}>0$ for all $i=1, \ldots, p-2,0<\xi_{1}<\cdots<\xi_{p-2}<T, d>0$, $y \in C([0, T]), y(t) \geq 0$ for all $t \in[0, T]$, then the solution of problem (1)-(2) satisfies

$$
\left\{\begin{array}{l}
u(t) \leq \frac{T^{n-1}}{d(n-1)!} \int_{0}^{T}(T-s)^{n-1} y(s) d s, \quad \forall t \in[0, T], \\
u\left(\xi_{j}\right) \geq \frac{\xi_{j}^{n-1}}{d(n-1)!} \int_{\xi_{p-2}}^{T}(T-s)^{n-1} y(s) d s, \quad \forall j=\overline{1, p-2} .
\end{array}\right.
$$

Lemma 5. ([11]) Assume that $0<\xi_{1}<\cdots<\xi_{p-2}<T, a_{i}>0$ for all $i=1, \ldots, p-2$, $d>0$ and $y \in C([0, T]), y(t) \geq 0$ for all $t \in[0, T]$. Then the solution of problem (1)-(2) satisfies $\inf _{t \in\left[\xi_{p-2}, T\right]} u(t) \geq \gamma_{1}\|u\|$, where

$$
\gamma_{1}=\left\{\begin{array}{l}
\min \left\{\frac{a_{p-2}\left(T-\xi_{p-2}\right)}{T-a_{p-2} \xi_{p-2}}, \frac{a_{p-2} \xi_{p-2}^{n-1}}{T^{n-1}}\right\}, \text { if } \sum_{i=1}^{p-2} a_{i}<1, \\
\min \left\{\frac{a_{1} \xi_{1}^{n-1}}{T^{n-1}}, \frac{\xi_{p-2}^{n-1}}{T^{n-1}}\right\}, \text { if } \sum_{i=1}^{p-2} a_{i} \geq 1 .
\end{array}\right.
$$

We can also formulate similar results as Lemma 1 - Lemma 5 above for the boundary value problem

$$
\begin{gather*}
v^{(m)}(t)+h(t)=0, \quad t \in(0, T) \tag{3}\\
v(0)=v^{\prime}(0)=\cdots=v^{(m-2)}(0)=0, \quad v(T)=\sum_{i=1}^{q-2} b_{i} v\left(\eta_{i}\right) . \tag{4}
\end{gather*}
$$

If $e=T^{m-1}-\sum_{i=1}^{q-2} b_{i} \eta_{i}^{m-1} \neq 0,0<\eta_{1}<\cdots<\eta_{q-2}<T$ and $h \in C([0, T])$, we denote by G_{2} the Green's function corresponding to problem (3)-(4). Under similar assumptions as those from Lemma 5, we have the inequality $\inf _{t \in\left[\eta_{q-2}, T\right]} v(t) \geq \gamma_{2}\|v\|$, where v is the solution of problem (3)-(4) and γ_{2} has a similar form as γ_{1} from Lemma 5 with n, p and a_{i} replaced by m, q and b_{i}, respectively.

3 Main results

In this section, we give sufficient conditions on λ, μ, f and g such that positive solutions with respect to a cone for our problem $(S)-(B C)$ exist.

We present the assumptions that we shall use in the sequel.
$\quad(H 1) 0<\xi_{1}<\cdots<\xi_{p-2}<T, a_{i}>0, i=\overline{1, p-2}, d=T^{n-1}-\sum_{i=1}^{p-2} a_{i} \xi_{i}^{n-1}>0$,
$0<\eta_{1}<\cdots<\eta_{q-2}<T, b_{i}>0, \quad i=\overline{1, q-2}, e=T^{m-1}-\sum_{i=1}^{q-2} b_{i} \eta_{i}^{m-1}>0$.
(H2) The functions $c, d:[0, T] \rightarrow[0, \infty)$ are continuous and there exist $t_{1}, t_{2} \in\left[\theta_{0}, T\right]$ such that $c\left(t_{1}\right)>0$ and $d\left(t_{2}\right)>0$, where $\theta_{0}=\max \left\{\xi_{p-2}, \eta_{q-2}\right\}$.
$\left(H 2^{\prime}\right)$ The functions $c, d:[0, T] \rightarrow[0, \infty)$ are continuous and there exist $t_{1} \in\left[\xi_{p-2}, T\right]$, $t_{2} \in\left[\eta_{q-2}, T\right]$ such that $c\left(t_{1}\right)>0$ and $d\left(t_{2}\right)>0$.
(H3) The functions $f, g:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ are continuous.

Throughout this section, we let

$$
\begin{aligned}
f_{0}^{s} & =\limsup _{(u, v) \rightarrow\left(0^{+}, 0^{+}\right)} \frac{f(u, v)}{u+v}, g_{0}^{s}=\limsup _{(u, v) \rightarrow\left(0^{+}, 0^{+}\right)} \frac{g(u, v)}{u+v}, \\
f_{0}^{i} & =\liminf _{(u, v) \rightarrow\left(0^{+}, 0^{+}\right)} \frac{f(u, v)}{u+v}, g_{0}^{i}=\liminf _{(u, v) \rightarrow\left(0^{+}, 0^{+}\right)} \frac{g(u, v)}{u+v}, \\
f_{\infty}^{s} & =\limsup _{(u, v) \rightarrow(\infty, \infty)} \frac{f(u, v)}{u+v}, g_{\infty}^{s}=\limsup _{(u, v) \rightarrow(\infty, \infty)} \frac{g(u, v)}{u+v}, \\
f_{\infty}^{i} & =\liminf _{(u, v) \rightarrow(\infty, \infty)} \frac{f(u, v)}{u+v}, g_{\infty}^{i}=\liminf _{(u, v) \rightarrow(\infty, \infty)} \frac{g(u, v)}{u+v} .
\end{aligned}
$$

We consider the Banach space $X=C([0, T])$ with supremum norm $\|\cdot\|$, and the Banach space $Y=X \times X$ with the norm $\|(u, v)\|_{Y}=\|u\|+\|v\|$.

We define the cone $C \subset Y$ by $C=\left\{(u, v) \in Y ; u(t) \geq 0, v(t) \geq 0, \forall t \in[0, T]\right.$ and $\left.\inf _{t \in\left[\theta_{0}, T\right]}(u(t)+v(t)) \geq \gamma\|(u, v)\|_{Y}\right\}$, where $\gamma=\min \left\{\gamma_{1}, \gamma_{2}\right\}$ and γ_{1}, γ_{2} are defined in Section 2.

First, for $f_{0}^{s}, g_{0}^{s}, f_{\infty}^{i}, g_{\infty}^{i} \in(0, \infty)$ and positive numbers $\alpha_{1}, \alpha_{2}>0$ such that $\alpha_{1}+\alpha_{2}=$ 1 , we define the positive numbers L_{1}, L_{2}, L_{3} and L_{4} by

$$
\begin{aligned}
L_{1} & =\alpha_{1}\left(\frac{\gamma \xi_{p-2}^{n-1}}{d(n-1)!} \int_{\theta_{0}}^{T}(T-s)^{n-1} c(s) f_{\infty}^{i} d s\right)^{-1} \\
L_{2} & =\alpha_{1}\left(\frac{T^{n-1}}{d(n-1)!} \int_{0}^{T}(T-s)^{n-1} c(s) f_{0}^{s} d s\right)^{-1} \\
L_{3} & =\alpha_{2}\left(\frac{\gamma \eta_{q-2}^{m-1}}{e(m-1)!} \int_{\theta_{0}}^{T}(T-s)^{m-1} d(s) g_{\infty}^{i} d s\right)^{-1} \\
L_{4} & =\alpha_{2}\left(\frac{T^{m-1}}{e(m-1)!} \int_{0}^{T}(T-s)^{m-1} d(s) g_{0}^{s} d s\right)^{-1}
\end{aligned}
$$

Theorem 2. Assume that (H1), (H2) and (H3) hold and $\alpha_{1}, \alpha_{2}>0$ are positive numbers such that $\alpha_{1}+\alpha_{2}=1$.
a) If $f_{0}^{s}, g_{0}^{s}, f_{\infty}^{i}, g_{\infty}^{i} \in(0, \infty), L_{1}<L_{2}$ and $L_{3}<L_{4}$, then for each $\lambda \in\left(L_{1}, L_{2}\right)$ and $\mu \in\left(L_{3}, L_{4}\right)$ there exists a positive solution $(u(t), v(t)), t \in[0, T]$ for $(S)-(B C)$.
b) If $f_{0}^{s}=g_{0}^{s}=0, f_{\infty}^{i}, g_{\infty}^{i} \in(0, \infty)$, then for each $\lambda \in\left(L_{1}, \infty\right)$ and $\mu \in\left(L_{3}, \infty\right)$ there exists a positive solution $(u(t), v(t)), t \in[0, T]$ for $(S)-(B C)$.
c) If $f_{0}^{s}, g_{0}^{s} \in(0, \infty), f_{\infty}^{i}=g_{\infty}^{i}=\infty$, then for each $\lambda \in\left(0, L_{2}\right)$ and $\mu \in\left(0, L_{4}\right)$ there exists a positive solution $(u(t), v(t)), t \in[0, T]$ for $(S)-(B C)$.
d) If $f_{0}^{s}=g_{0}^{s}=0, f_{\infty}^{i}=g_{\infty}^{i}=\infty$, then for each $\lambda \in(0, \infty)$ and $\mu \in(0, \infty)$ there exists a positive solution $(u(t), v(t)), t \in[0, T]$ for $(S)-(B C)$.
Sketch of proof. a) We suppose $f_{0}^{s}, g_{0}^{s}, f_{\infty}^{i}, g_{\infty}^{i} \in(0, \infty), L_{1}<L_{2}$ and $L_{3}<L_{4}$. Let $P_{1}, P_{2}: Y \rightarrow X$ and $\mathcal{Q}: Y \rightarrow Y$ be the operators defined by

$$
\begin{array}{ll}
P_{1}(u, v)(t)=\lambda \int_{0}^{T} G_{1}(t, s) c(s) f(u(s), v(s)) d s, & t \in[0, T], \\
P_{2}(u, v)(t)=\mu \int_{0}^{T} G_{2}(t, s) d(s) g(u(s), v(s)) d s, & t \in[0, T],
\end{array}
$$

and $\mathcal{Q}(u, v)=\left(P_{1}(u, v), P_{2}(u, v)\right),(u, v) \in Y$, where G_{1}, G_{2} are the Green's functions defined in Section 2.

The solutions of problem $(S)-(B C)$ are the fixed points of the operator \mathcal{Q}.
We consider an arbitrary element $(u, v) \in C$. Because $P_{1}(u, v)$ and $P_{2}(u, v)$ satisfy the problem (1)-(2) for $y(t)=\lambda c(t) f(u(t), v(t)), t \in[0, T]$, and the problem (3)-(4) for $h(t)=\mu d(t) g(u(t), v(t)), t \in[0, T]$, respectively, then by Lemma 5 , we obtain

$$
\inf _{t \in\left[\theta_{0}, T\right]} P_{1}(u, v)(t) \geq \gamma_{1}\left\|P_{1}(u, v)\right\|, \inf _{t \in\left[\theta_{0}, T\right]} P_{2}(u, v)(t) \geq \gamma_{2}\left\|P_{2}(u, v)\right\| .
$$

Therefore we deduce

$$
\inf _{t \in\left[\theta_{0}, T\right]}\left[P_{1}(u, v)(t)+P_{2}(u, v)(t)\right] \geq \gamma_{1}\left\|P_{1}(u, v)\right\|+\gamma_{2}\left\|P_{2}(u, v)\right\| \geq \gamma\|\mathcal{Q}(u, v)\|_{Y} .
$$

By using Lemma 3, (H2) and (H3), we obtain that $P_{1}(u, v)(t) \geq 0, P_{2}(u, v)(t) \geq 0$, for all $t \in[0, T]$, and so we deduce that $\mathcal{Q}(u, v) \in C$. Hence we get $\mathcal{Q}(C) \subset C$.

By using standard arguments, we can easily show that P_{1} and P_{2} are completely continuous, and then \mathcal{Q} is a completely continuous operator.

Now let $\lambda \in\left(L_{1}, L_{2}\right), \mu \in\left(L_{3}, L_{4}\right)$, and let $\varepsilon>0$ be a positive number such that $\varepsilon<f_{\infty}^{i}, \varepsilon<g_{\infty}^{i}$ and

$$
\begin{aligned}
& \alpha_{1}\left(\frac{\gamma \xi_{p-2}^{n-1}}{d(n-1)!} \int_{\theta_{0}}^{T}(T-s)^{n-1} c(s)\left(f_{\infty}^{i}-\varepsilon\right) d s\right)^{-1} \leq \lambda, \\
& \alpha_{1}\left(\frac{T^{n-1}}{d(n-1)!} \int_{0}^{T}(T-s)^{n-1} c(s)\left(f_{0}^{s}+\varepsilon\right) d s\right)^{-1} \geq \lambda, \\
& \alpha_{2}\left(\frac{\gamma \eta_{q-2}^{m-1}}{e(m-1)!} \int_{\theta_{0}}^{T}(T-s)^{m-1} d(s)\left(g_{\infty}^{i}-\varepsilon\right) d s\right)^{-1} \leq \mu, \\
& \alpha_{2}\left(\frac{T^{m-1}}{e(m-1)!} \int_{0}^{T}(T-s)^{m-1} d(s)\left(g_{0}^{s}+\varepsilon\right) d s\right)^{-1} \geq \mu .
\end{aligned}
$$

By (H3), we deduce that there exists $K_{1}>0$ such that for all $u, v \in \mathbb{R}_{+}$, with $0 \leq u+v \leq K_{1}$, we have $f(u, v) \leq\left(f_{0}^{s}+\varepsilon\right)(u+v)$ and $g(u, v) \leq\left(g_{0}^{s}+\varepsilon\right)(u+v)$.

We define the ball $\Omega_{1}=\left\{(u, v) \in Y,\|(u, v)\|_{Y}<K_{1}\right\}$. Now let $(u, v) \in C \cap \partial \Omega_{1}$, that is $(u, v) \in C$ with $\|(u, v)\|_{Y}=K_{1}$ or, equivalently, $\|u\|+\|v\|=K_{1}$. Then $u(t)+v(t) \leq K_{1}$ for all $t \in[0, T]$. By Lemma 4, after some computations, we deduce that $P_{1}(u, v)(t) \leq$ $\alpha_{1}\|(u, v)\|_{Y}$ for all $t \in[0, T]$. Therefore $\left\|P_{1}(u, v)\right\| \leq \alpha_{1}\|(u, v)\|_{Y}$. In a similar manner, we obtain $\left\|P_{2}(u, v)\right\| \leq \alpha_{2}\|(u, v)\|_{Y}$.

Then for $(u, v) \in C \cap \partial \Omega_{1}$ we deduce

$$
\|\mathcal{Q}(u, v)\|_{Y}=\left\|\left(P_{1}(u, v), P_{2}(u, v)\right)\right\|_{Y} \leq \alpha_{1}\|(u, v)\|_{Y}+\alpha_{2}\|(u, v)\|_{Y}=\|(u, v)\|_{Y}
$$

By the definitions of f_{∞}^{i} and g_{∞}^{i}, there exists $\bar{K}_{2}>0$ such that $f(u, v) \geq\left(f_{\infty}^{i}-\varepsilon\right)(u+v)$ and $g(u, v) \geq\left(g_{\infty}^{i}-\varepsilon\right)(u+v)$ for all $u, v \geq 0$, with $u+v \geq \bar{K}_{2}$. We consider $K_{2}=$
$\max \left\{2 K_{1}, \bar{K}_{2} / r\right\}$, and we define $\Omega_{2}=\left\{(u, v) \in Y,\|(u, v)\|_{Y}<K_{2}\right\}$. Then for $(u, v) \in C$ with $\|(u, v)\|_{Y}=K_{2}$, we obtain

$$
u(t)+v(t) \geq \gamma_{1}\|u\|+\gamma_{2}\|v\| \geq \gamma(\|u\|+\|v\|)=\gamma\|(u, v)\|_{Y}=\gamma K_{2} \geq \bar{K}_{2}, \quad \forall t \in\left[\theta_{0}, T\right] .
$$

Then by Lemma 4, after some computations, we deduce that $P_{1}(u, v)\left(\xi_{p-2}\right) \geq \alpha_{1}\|(u, v)\|_{Y}$. So $\left\|P_{1}(u, v)\right\| \geq P_{1}(u, v)\left(\xi_{p-2}\right) \geq \alpha_{1}\|(u, v)\|_{Y}$. In a similar manner, we obtain $\left\|P_{2}(u, v)\right\| \geq$ $P_{2}(u, v)\left(\eta_{q-2}\right) \geq \alpha_{2}\|(u, v)\|_{Y}$.

Hence for $(u, v) \in C \cap \partial \Omega_{2}$ we obtain

$$
\|\mathcal{Q}(u, v)\|_{Y}=\left\|P_{1}(u, v)\right\|+\left\|P_{2}(u, v)\right\| \geq\left(\alpha_{1}+\alpha_{2}\right)\|(u, v)\|_{Y}=\|(u, v)\|_{Y}
$$

By using Theorem 1 i) with $T=\mathcal{Q}, K=C, a=K_{1}, b=K_{2}, K(a, b)=C \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, $K_{a}=C \cap \partial \Omega_{1}, K_{b}=C \cap \partial \Omega_{2}$, we deduce that \mathcal{Q} has a fixed point $(u, v) \in C \cap\left(\Omega_{2} \backslash \Omega_{1}\right)$ such that $K_{1} \leq\|(u, v)\|_{Y} \leq K_{2}$ or $K_{1} \leq\|u\|+\|v\| \leq K_{2}$.

The proofs of cases b)-d) are similar to that of case a) and we shall omit them (see also the paper [1]).

Remark 1. The condition $L_{1}<L_{2}$ from Theorem 2 is equivalent to

$$
f_{0}^{s} T^{n-1} \int_{0}^{T}(T-s)^{n-1} c(s) d s<f_{\infty}^{i} \gamma \xi_{p-2}^{n-1} \int_{\theta_{0}}^{T}(T-s)^{n-1} c(s) d s
$$

and $L_{3}<L_{4}$ is equivalent to

$$
g_{0}^{s} T^{m-1} \int_{0}^{T}(T-s)^{m-1} d(s) d s<g_{\infty}^{i} \gamma \eta_{q-2}^{m-1} \int_{\theta_{0}}^{T}(T-s)^{m-1} d(s) d s
$$

In what follows, for $f_{0}^{i}, g_{0}^{i}, f_{\infty}^{s}, g_{\infty}^{s} \in(0, \infty)$ and positive numbers $\alpha_{1}, \alpha_{2}>0$ such that $\alpha_{1}+\alpha_{2}=1$, we define the positive numbers $\widetilde{L}_{1}, \widetilde{L}_{2}, \widetilde{L}_{3}$ and \widetilde{L}_{4} by

$$
\begin{aligned}
\widetilde{L}_{1} & =\alpha_{1}\left(\frac{\gamma \xi_{p-2}^{n-1}}{d(n-1)!} \int_{\xi_{p-2}}^{T}(T-s)^{n-1} c(s) f_{0}^{i} d s\right)^{-1} \\
\widetilde{L}_{2} & =\alpha_{1}\left(\frac{T^{n-1}}{d(n-1)!} \int_{0}^{T}(T-s)^{n-1} c(s) f_{\infty}^{s} d s\right)^{-1} \\
\widetilde{L}_{3} & =\alpha_{2}\left(\frac{\gamma \eta_{q-2}^{m-1}}{e(m-1)!} \int_{\eta_{q-2}}^{T}(T-s)^{m-1} d(s) g_{0}^{i} d s\right)^{-1} \\
\widetilde{L}_{4} & =\alpha_{2}\left(\frac{T^{m-1}}{e(m-1)!} \int_{0}^{T}(T-s)^{m-1} d(s) g_{\infty}^{s} d s\right)^{-1}
\end{aligned}
$$

Theorem 3. Assume that (H1), (H2') and (H3) hold and $\alpha_{1}, \alpha_{2}>0$ are positive numbers such that $\alpha_{1}+\alpha_{2}=1$.
a) If $f_{0}^{i}, g_{0}^{i}, f_{\infty}^{s}, g_{\infty}^{s} \in(0, \infty), \widetilde{L}_{1}<\widetilde{L}_{2}$ and $\widetilde{L}_{3}<\widetilde{L}_{4}$, then for each $\lambda \in\left(\widetilde{L}_{1}, \widetilde{L}_{2}\right)$ and $\mu \in\left(\widetilde{L}_{3}, \widetilde{L}_{4}\right)$ there exists a positive solution $(u(t), v(t)), t \in[0, T]$ for $(S)-(B C)$.
b) If $f_{\infty}^{s}=g_{\infty}^{s}=0, f_{0}^{i}, g_{0}^{i} \in(0, \infty)$, then for each $\lambda \in\left(\widetilde{L}_{1}, \infty\right)$ and $\mu \in\left(\widetilde{L}_{3}, \infty\right)$ there exists a positive solution $(u(t), v(t)), t \in[0, T]$ for $(S)-(B C)$.
c) If $f_{\infty}^{s}, g_{\infty}^{s} \in(0, \infty), f_{0}^{i}=g_{0}^{i}=\infty$, then for each $\lambda \in\left(0, \widetilde{L}_{2}\right)$ and $\mu \in\left(0, \widetilde{L}_{4}\right)$ there exists a positive solution $(u(t), v(t)), t \in[0, T]$ for $(S)-(B C)$.
d) If $f_{\infty}^{s}=g_{\infty}^{s}=0, f_{0}^{i}=g_{0}^{i}=\infty$, then for each $\lambda \in(0, \infty)$ and $\mu \in(0, \infty)$ there exists a positive solution $(u(t), v(t)), t \in[0, T]$ for $(S)-(B C)$.
Sketch of proof. a) Let $\lambda \in\left(\widetilde{L}_{1}, \widetilde{L}_{2}\right)$ and $\mu \in\left(\widetilde{L}_{3}, \widetilde{L}_{4}\right)$. We select a positive number ε such that $\varepsilon<f_{0}^{i}, \varepsilon<g_{0}^{i}$ and

$$
\begin{aligned}
& \alpha_{1}\left(\frac{\gamma \xi_{p-2}^{n-1}}{d(n-1)!} \int_{\xi_{p-2}}^{T}(T-s)^{n-1} c(s)\left(f_{0}^{i}-\varepsilon\right) d s\right)^{-1} \leq \lambda \\
& \alpha_{1}\left(\frac{T^{n-1}}{d(n-1)!} \int_{0}^{T}(T-s)^{n-1} c(s)\left(f_{\infty}^{s}+\varepsilon\right) d s\right)^{-1} \geq \lambda \\
& \alpha_{2}\left(\frac{\gamma \eta_{q-2}^{m-1}}{e(m-1)!} \int_{\eta_{q-2}}^{T}(T-s)^{m-1} d(s)\left(g_{0}^{i}-\varepsilon\right) d s\right)^{-1} \leq \mu \\
& \alpha_{2}\left(\frac{T^{m-1}}{e(m-1)!} \int_{0}^{T}(T-s)^{m-1} d(s)\left(g_{\infty}^{s}+\varepsilon\right) d s\right)^{-1} \geq \mu
\end{aligned}
$$

We also consider the operators defined in the proof of Theorem 2. By the definitions of $f_{0}^{i}, g_{0}^{i} \in(0, \infty)$, we deduce that there exists $K_{3}>0$ such that $f(u, v) \geq\left(f_{0}^{i}-\varepsilon\right)(u+$ $v), g(u, v) \geq\left(g_{0}^{i}-\varepsilon\right)(u+v)$ for all $u, v \geq 0$, with $0 \leq u+v \leq K_{3}$.

We denote by $\Omega_{3}=\left\{(u, v) \in Y ;\|(u, v)\|_{Y}<K_{3}\right\}$. Let $(u, v) \in C$ with $\|(u, v)\|_{Y}=K_{3}$, that is $\|u\|+\|v\|=K_{3}$. Because $u(t)+v(t) \leq\|u\|+\|v\|=K_{3}$ for all $t \in[0, T]$, then by using Lemma 4 , we obtain after some computations $P_{1}(u, v)\left(\xi_{p-2}\right) \geq \alpha_{1}\|(u, v)\|_{Y}$. Therefore, $\left\|P_{1}(u, v)\right\| \geq\left(P_{1}(u, v)\right)\left(\xi_{p-2}\right) \geq \alpha_{1}\|(u, v)\|_{Y}$. In a similar manner, we obtain $\left\|P_{2}(u, v)\right\| \geq\left(P_{2}(u, v)\right)\left(\eta_{q-2}\right) \geq \alpha_{2}\|(u, v)\|_{Y}$.

Thus for an arbitrary element $(u, v) \in C \cap \partial \Omega_{3}$ we obtain

$$
\|\mathcal{Q}(u, v)\|_{Y} \geq\left(\alpha_{1}+\alpha_{2}\right)\|(u, v)\|_{Y}=\|(u, v)\|_{Y}
$$

Now we define the functions $f^{*}, g^{*}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, f^{*}(x)=\max _{0 \leq u+v \leq x} f(u, v), g^{*}(x)=$ $\max _{0 \leq u+v \leq x} g(u, v), \quad x \in \mathbb{R}_{+}$. Then $f(u, v) \leq f^{*}(x), g(u, v) \leq g^{*}(x)$ for all $(u, v), u \geq 0, v \geq$ 0 and $0 \leq u+v \leq x$. The functions f^{*}, g^{*} are nondecreasing and they satisfy the conditions

$$
\limsup _{x \rightarrow \infty} \frac{f^{*}(x)}{x} \leq f_{\infty}^{s}, \limsup _{x \rightarrow \infty} \frac{g^{*}(x)}{x} \leq g_{\infty}^{s} .
$$

Therefore, for $\varepsilon>0$ there exists $\bar{K}_{4}>0$, such that for all $x \geq \bar{K}_{4}$, we have

$$
\frac{f^{*}(x)}{x} \leq \limsup _{x \rightarrow \infty} \frac{f^{*}(x)}{x}+\varepsilon \leq f_{\infty}^{s}+\varepsilon, \frac{g^{*}(x)}{x} \leq \limsup _{x \rightarrow \infty} \frac{g^{*}(x)}{x}+\varepsilon \leq g_{\infty}^{s}+\varepsilon,
$$

and so $f^{*}(x) \leq\left(f_{\infty}^{s}+\varepsilon\right) x$ and $g^{*}(x) \leq\left(g_{\infty}^{s}+\varepsilon\right) x$.
We now consider $K_{4}=\max \left\{2 K_{3}, \bar{K}_{4}\right\}$, and we denote by $\Omega_{4}=\left\{(u, v) \in Y,\|(u, v)\|_{Y}<\right.$ $\left.K_{4}\right\}$. Let $(u, v) \in C \cap \partial \Omega_{4}$. By definitions of f^{*} and g^{*} we have

$$
f(u(t), v(t)) \leq f^{*}\left(\|(u, v)\|_{Y}\right), \quad g(u(t), v(t)) \leq g^{*}\left(\|(u, v)\|_{Y}\right), \forall t \in[0, T] .
$$

Then for all $t \in[0, T]$, after some computations, we obtain $P_{1}(u, v)(t) \leq \alpha_{1}\|(u, v)\|_{Y}$, and so $\left\|P_{1}(u, v)\right\| \leq \alpha_{1}\|(u, v)\|_{Y}$. In a similar manner, we obtain $\left\|P_{2}(u, v)\right\| \leq \alpha_{2}\|(u, v)\|_{Y}$.

Therefore for $(u, v) \in C \cap \partial \Omega_{4}$ it follows that

$$
\|\mathcal{Q}(u, v)\|_{Y} \leq\left(\alpha_{1}+\alpha_{2}\right)\|(u, v)\|_{Y}=\|(u, v)\|_{Y} .
$$

By using Theorem 1 ii) with $T=\mathcal{Q}, K=C, a=K_{3}, b=K_{4}, K(a, b)=C \cap\left(\bar{\Omega}_{4} \backslash \Omega_{3}\right)$, $K_{a}=C \cap \partial \Omega_{3}, K_{b}=C \cap \partial \Omega_{4}$, we deduce that \mathcal{Q} has a fixed point $(u, v) \in C \cap\left(\bar{\Omega}_{4} \backslash \Omega_{3}\right)$ such that $K_{3} \leq\|(u, v)\|_{Y} \leq K_{4}$.

The proofs of cases b)-d) are similar to that of case a) and we shall omit them (see also the paper [1].
Remark 2. The condition $\widetilde{L}_{1}<\widetilde{L}_{2}$ is equivalent to

$$
f_{\infty}^{s} T^{n-1} \int_{0}^{T}(T-s)^{n-1} c(s) d s \leq f_{0}^{i} \gamma \xi_{p-2}^{n-1} \int_{\xi_{p-2}}^{T}(T-s)^{n-1} c(s) d s
$$

and the condition $\widetilde{L}_{3}<\widetilde{L}_{4}$ is equivalent to

$$
g_{\infty}^{s} T^{m-1} \int_{0}^{T}(T-s)^{m-1} d(s) d s \leq g_{0}^{i} \gamma \eta_{q-2}^{m-1} \int_{\eta_{q-2}}^{T}(T-s)^{m-1} d(s) d s
$$

4 Examples

Let $T=1, n=3, m=4, p=5, q=4, c(t)=c_{0} t, d(t)=d_{0} t$, for $t \in[0,1]$, with $c_{0}, d_{0}>0, \xi_{1}=\frac{1}{4}, \xi_{2}=\frac{1}{2}, \xi_{3}=\frac{3}{4}, \eta_{1}=\frac{1}{3}, \eta_{2}=\frac{2}{3}, a_{1}=1, a_{2}=\frac{1}{2}, a_{3}=\frac{1}{3}, b_{1}=1, b_{2}=2$. We have $d=\frac{5}{8}, e=\frac{10}{27}, \theta_{0}=\frac{3}{4}, \gamma_{1}=\frac{1}{16}, \gamma_{2}=\frac{1}{27}, \gamma=\frac{1}{27}$.

We consider the higher-order differential system

$$
\left\{\begin{array}{l}
u^{(3)}(t)+\lambda c_{0} t f(u(t), v(t))=0, \quad t \in(0,1), \tag{1}\\
v^{(4)}(t)+\mu d_{0} \operatorname{tg}(u(t), v(t))=0, \quad t \in(0,1),
\end{array}\right.
$$

with the boundary conditions
$\left(B C_{1}\right)$

$$
\left\{\begin{array}{l}
u(0)=u^{\prime}(0)=0, u(1)=u\left(\frac{1}{4}\right)+\frac{1}{2} u\left(\frac{1}{2}\right)+\frac{1}{3} u\left(\frac{3}{4}\right), \\
v(0)=v^{\prime}(0)=v^{\prime \prime}(0)=0, \quad v(1)=v\left(\frac{1}{3}\right)+2 v\left(\frac{2}{3}\right)
\end{array}\right.
$$

1. First we consider the functions

$$
f(u, v)=\frac{(u+v)\left(p_{1} u+1\right)\left(q_{1}+\sin v\right)}{u+1}, g(u, v)=\frac{(u+v)\left(p_{2} v+1\right)\left(q_{2}+\cos u\right)}{v+1},
$$

with $p_{1}, p_{2}>0, q_{1}, q_{2}>1$.
It follows that $f_{0}^{s}=f_{0}^{i}=q_{1}, g_{0}^{s}=g_{0}^{i}=q_{2}+1, f_{\infty}^{s}=p_{1}\left(q_{1}+1\right), f_{\infty}^{i}=p_{1}\left(q_{1}-1\right)$, $g_{\infty}^{s}=p_{2}\left(q_{2}+1\right), g_{\infty}^{i}=p_{2}\left(q_{2}-1\right)$.

The constants $L_{i}, i=\overline{1,4}$ from Section 3 are of the form

$$
L_{1}=\frac{184320 \alpha_{1}}{13 c_{0} p_{1}\left(q_{1}-1\right)}, \quad L_{2}=\frac{15 \alpha_{1}}{c_{0} q_{1}}, \quad L_{3}=\frac{259200 \alpha_{2}}{d_{0} p_{2}\left(q_{2}-1\right)}, \quad L_{4}=\frac{400 \alpha_{2}}{9 d_{0}\left(q_{2}+1\right)},
$$

and the conditions $L_{1}<L_{2}$ and $L_{3}<L_{4}$ are equivalent to

$$
\frac{q_{1}}{p_{1}\left(q_{1}-1\right)}<\frac{13}{12288}, \frac{q_{2}+1}{p_{2}\left(q_{2}-1\right)}<\frac{1}{5832} .
$$

We apply Theorem 2 a) for $\alpha_{1}, \alpha_{2}>0$ with $\alpha_{1}+\alpha_{2}=1$. If the above conditions are satisfied, then for each $\lambda \in\left(L_{1}, L_{2}\right)$ and $\mu \in\left(L_{3}, L_{4}\right)$, there exists a positive solution $(u(t), v(t)), t \in[0, T]$ for problem $\left(S_{1}\right)-\left(B C_{1}\right)$.
2. We consider the functions

$$
f(u, v)=(u+v)^{\beta_{1}}, g(u, v)=(u+v)^{\beta_{2}}, u, v \in[0, \infty)
$$

with $\beta_{1}, \beta_{2}>1$. Then $f_{0}^{s}=f_{0}^{i}=g_{0}^{s}=g_{0}^{i}=0$ and $f_{\infty}^{s}=f_{\infty}^{i}=g_{\infty}^{s}=g_{\infty}^{i}=\infty$. By Theorem 2 d) we deduce that for each $\lambda \in(0, \infty)$ and $\mu \in(0, \infty)$ there exists a positive solution $(u(t), v(t)), t \in[0, T]$ for problem $\left(S_{1}\right)-\left(B C_{1}\right)$.
3. We consider the functions

$$
f(u, v)=(u+v)^{\gamma_{1}}, g(u, v)=(u+v)^{\gamma_{2}}, u, v \in[0, \infty)
$$

with $\gamma_{1}, \gamma_{2} \in(0,1)$. Then $f_{0}^{s}=f_{0}^{i}=g_{0}^{s}=g_{0}^{i}=\infty$ and $f_{\infty}^{s}=f_{\infty}^{i}=g_{\infty}^{s}=g_{\infty}^{i}=0$. By Theorem 3 d) we deduce that for each $\lambda \in(0, \infty)$ and $\mu \in(0, \infty)$ there exists a positive solution $(u(t), v(t)), t \in[0, T]$ for problem $\left(S_{1}\right)-\left(B C_{1}\right)$.

Acknowledgement. The work of the second author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0557.

References

[1] Henderson, J. and Luca, R., Positive solutions for a system of higher-order multi-point boundary value problems, Comput. Math. Appl., 62 (2011), 3920-3932.
[2] Henderson, J. and Luca, R. Positive solutions for a system of second-order multi-point boundary value problems, Appl. Math. Comput., 218 (2012), 6083-6094.
[3] Henderson, J. and Luca, R. Positive solutions for a system of second-order multi-point discrete boundary value problems, J. Difference Equ. Applic., DOI: 10.1080/10236198.2011.582868.
[4] Henderson, J. and Ntouyas, S.K., Positive solutions for systems of nth order three-point nonlocal boundary value problems, Electron. J. Qual. Theory Differ. Equ., 18 (2007), 1-12.
[5] Henderson, J. and Ntouyas, S.K., Positive solutions for systems of nonlinear boundary value problems, Nonlinear Stud., 15 (2008), 51-60.
[6] Henderson, J. and Ntouyas, S.K., Positive solutions for systems of three-point nonlinear boundary value problems, Aust. J. Math. Anal. Appl., 5 (2008), 1-9.
[7] Henderson, J., Ntouyas, S.K. and Purnaras, I.K., Positive solutions for systems of threepoint nonlinear discrete boundary value problems, Neural Parallel Sci. Comput., 16 (2008), 209-224.
[8] Henderson, J., Ntouyas, S.K. and Purnaras, I.K., Positive solutions for systems of generalized three-point nonlinear boundary value problems, Comment. Math. Univ. Carolin., 49 (2008), 79-91.
[9] Henderson, J., Ntouyas, S.K. and Purnaras, I.K.,Positive solutions for systems of m-point nonlinear boundary value problems, Math. Model. Anal., 13 (2008), 357-370.
[10] Henderson, J., Ntouyas, S.K. and Purnaras, I.K., Positive solutions for systems of nonlinear discrete boundary value problems, J. Difference Equ. Appl., 15 (2009), 895-912.
[11] Ji, Y., Guo, Y. and Yu, C., Positive solutions to $(n-1, n) m$-point boundary value problemss with dependence on the first order derivative, Appl. Math. Mech. (English Ed.), 30 (2009), 527-536.
[12] Krasnosel'skii, M.A., Fixed points of cone-compressing or cone-extending operators, Sov. Math. Dokl., 1 (1960), 1285-1288.
[13] Krasnosel'skii, M.A., Topological methods in the theory of nonlinear integral equations, Cambridge University Press, New York, 1964.
[14] Luca, R., Existence of positive solutions for a discrete boundary value problem, Istanbul Univ. Fen Fak. Mat. Fiz. Astron. Derg. (New Ser.), 3 (2008-2009), 119-126.
[15] Luca, R., Positive solutions for m+1-point discrete boundary value problems, Libertas Math., XXIX (2009), 65-82.
[16] Luca, R., Existence of positive solutions for a class of higher-order m-point boundary value problems, Electron. J. Qual. Theory Diff. Equ., 74 (2010), 1-15.
[17] Luca, R., Positive solutions for a second-order m-point boundary value problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 18 (2011), 161-176.
[18] Luca, R., Existence of positive solutions for a second-order $m+1$ point discrete boundary value problem, J. Difference Equ. Appl., 18 (2012), 865-877.
[19] Luca, R., Positive solutions for a higher-order m-point boundary value problem, Mediterr. J. Math., 9 (2012), 381-394.
[20] Su, H., Wei, Z., Zhang, X. and Liu, J. Positive solutions of n-order and m-order multi-point singular boundary value system, Appl. Math. Comput., 188 (2007), 1234-1243.

[^0]: ${ }^{1}$ Department of Mathematics, Baylor University, Waco, Texas, USA, e-mail: Johnny_Henderson@baylor.edu
 ${ }^{2}$ Department of Mathematics, Gh. Asachi Technical University, Iasi, Romania, e-mail: rluca@math.tuiasi.ro

