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Abstract

We investigate the existence of positive solutions of a system of higher-order non-
linear ordinary differential equations, subject to multi-point boundary conditions.
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1 Introduction

In recent years, the multi-point boundary value problems for second-order or higher-
order differential or difference equations/systems have been investigated by many authors,
by using different methods such us fixed point theorems in cones, the Leray-Schauder
continuation theorem and its nonlinear alternatives and the coincidence degree theory.

In this paper, we consider the system of nonlinear higher-order ordinary differential
equations

(S)
{

u(n)(t) + λc(t)f(u(t), v(t)) = 0, t ∈ (0, T ), n ∈ N, n ≥ 2,

v(m)(t) + µd(t)g(u(t), v(t)) = 0, t ∈ (0, T ), m ∈ N, m ≥ 2,

with the multi-point boundary conditions

(BC)


u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =

p−2∑
i=1

aiu(ξi), p ∈ N, p ≥ 3,

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(T ) =
q−2∑
i=1

biv(ηi), q ∈ N, q ≥ 3.

We give sufficient conditions on λ, µ, f and g such that positive solutions of (S)−(BC)
exist. By a positive solution of problem (S)− (BC) we mean a pair of functions (u, v) ∈
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Cn([0, T ]) × Cm([0, T ]) satisfying (S) and (BC) with u(t) ≥ 0, v(t) ≥ 0 for all t ∈ [0, T ]
and ‖u‖ + ‖v‖ > 0, where ‖u‖ = sup

t∈[0,T ]
|u(t)|. This problem is a generalization of the

one studied in [19], where n = m, p = q, ai = bi, ξi = ηi for all i = 1, . . . , p − 2.
The system (S) with n = m, f(u, v) = f̃(v), g(u, v) = g̃(u) (denoted by (S̃)) and the
boundary conditions (BC) with p = q, ai = bi, ξi = ηi, i = 1, . . . , p − 2 (denoted by
(B̃C)) has been investigated in [16]. In [4], the authors studied the system (S̃) with
T = 1 and the boundary conditions u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = αu(η),
v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(1) = αv(η), where 0 < η < 1, 0 < αηn−1 < 1. We
also mention the paper [20], where the authors used the fixed point index theory to prove
the existence of positive solutions for the system (S) with λ = µ = 1 and (BC), where
1
2 ≤ ξ1 < ξ2 < · · · < ξp < 1, 1

2 ≤ η1 < η2 < · · · < ηq < 1.
The system (S) with n = m = 2 and the boundary conditions αu(0) − βu′(0) =

0, u(T ) =
m∑

i=1

aiu(ξi), m ≥ 1, γv(0) − δv′(0) = 0, v(T ) =
n∑

i=1

biv(ηi), n ≥ 1, has been

investigated in [2]. Some particular cases of the last problem were studied in [6], [8], [9],
[17]. In [5], the authors investigated the system (S̃) with n = m = 2 and the boundary
conditions αu(0)−βu′(0) = 0, αv(0)−βv′(0) = 0, γu(1)+δu′(1) = 0, γv(1)+δv′(1) = 0,
with α, β, γ, δ ≥ 0, α+β +γ + δ > 0. For the discrete problem corresponding to (S) with
n = m = 2 and various boundary conditions, we would like to mention the papers [3], [7],
[10], [14], [15], [18].

In Section 2, we present some auxiliary results which investigate two boundary value
problems for higher-order equations (the problems (1)-(2) and (3)-(4) below). In Section
3, we give some existence theorems for the positive solutions with respect to a cone for
our problem (S)-(BC). The proofs of these results are similar to those of Theorems 3.1
and 3.2 from [1]. These theorems are based on the Krasnoselskii fixed point theorem (see
[12], [13]), which we present now.

Theorem 1. Let (X, ‖ · ‖) be a normed linear space, K ⊂ X a cone, 0 < a < b two given
numbers and K(a, b) = {x ∈ K, a ≤ ‖x‖ ≤ b}, Ka = {x ∈ K, ‖x‖ = a}, Kb = {x ∈
K, ‖x‖ = b}. Let T : K(a, b) → K be a completely continuous operator such that one of
the following conditions is satisfied:

i) ‖Tx‖ ≤ ‖x‖ if x ∈ Ka and ‖Tx‖ ≥ ‖x‖ if x ∈ Kb;
ii) ‖Tx‖ ≥ ‖x‖ if x ∈ Ka and ‖Tx‖ ≤ ‖x‖ if x ∈ Kb.

Then T has a fixed point in K(a, b).

Finally, some examples are presented in Section 4 to illustrate our main results.

2 Auxiliary results

In this section, we present some auxiliary results from [11] and [16], related to the
following n-order differential equation with p-point boundary conditions

u(n)(t) + y(t) = 0, t ∈ (0, T ), (1)
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u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =
p−2∑
i=1

aiu(ξi). (2)

Lemma 1. ([11], [16]) If d = Tn−1 −
p−2∑
i=1

aiξ
n−1
i 6= 0, 0 < ξ1 < · · · < ξp−2 < T and

y ∈ C([0, T ]), then the solution of (1)-(2) is given by

u(t)=
tn−1

d(n− 1)!

∫ T

0
(T − s)n−1y(s) ds− tn−1

d(n− 1)!

p−2∑
i=1

ai

∫ ξi

0
(ξi − s)n−1y(s) ds

− 1
(n− 1)!

∫ t

0
(t− s)n−1y(s) ds, 0 ≤ t ≤ T.

Lemma 2. ([11], [16]) Under the assumptions of Lemma 1, the Green’s function for the
boundary value problem (1)-(2) is given by

G1(t, s) =



tn−1

d(n− 1)!

(T − s)n−1 −
p−2∑

i=j+1

ai(ξi − s)n−1

− 1
(n− 1)!

(t− s)n−1,

if ξj ≤ s < ξj+1, s ≤ t,

tn−1

d(n− 1)!

(T − s)n−1 −
p−2∑

i=j+1

ai(ξi − s)n−1

 ,

if ξj ≤ s < ξj+1, s ≥ t, j = 0, . . . p− 3,
tn−1

d(n− 1)!
(T − s)n−1 − 1

(n− 1)!
(t− s)n−1, if ξp−2 ≤ s ≤ T, s ≤ t,

tn−1

d(n− 1)!
(T − s)n−1, if ξp−2 ≤ s ≤ T, s ≥ t, (ξ0 = 0).

Using the above Green’s function the solution of problem (1)-(2) is expressed as u(t) =∫ T

0
G1(t, s)y(s) ds.

Lemma 3. ([11], [16]) If ai > 0 for all i = 1, . . . , p− 2, 0 < ξ1 < · · · < ξp−2 < T , d > 0
and y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ], then the solution u of problem (1)-(2) satisfies
u(t) ≥ 0 for all t ∈ [0, T ].

Lemma 4. ([16]) If ai > 0 for all i = 1, . . . , p − 2, 0 < ξ1 < · · · < ξp−2 < T , d > 0,
y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ], then the solution of problem (1)-(2) satisfies

u(t) ≤ Tn−1

d(n− 1)!

∫ T

0
(T − s)n−1y(s) ds, ∀t ∈ [0, T ],

u(ξj) ≥
ξn−1
j

d(n− 1)!

∫ T

ξp−2

(T − s)n−1y(s) ds, ∀ j = 1, p− 2.
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Lemma 5. ([11]) Assume that 0 < ξ1 < · · · < ξp−2 < T , ai > 0 for all i = 1, . . . , p − 2,
d > 0 and y ∈ C([0, T ]), y(t) ≥ 0 for all t ∈ [0, T ]. Then the solution of problem (1)-(2)
satisfies inf

t∈[ξp−2,T ]
u(t) ≥ γ1‖u‖, where

γ1 =


min

{
ap−2(T − ξp−2)
T − ap−2ξp−2

,
ap−2ξ

n−1
p−2

Tn−1

}
, if

p−2∑
i=1

ai < 1,

min

{
a1ξ

n−1
1

Tn−1
,

ξn−1
p−2

Tn−1

}
, if

p−2∑
i=1

ai ≥ 1.

We can also formulate similar results as Lemma 1 - Lemma 5 above for the boundary
value problem

v(m)(t) + h(t) = 0, t ∈ (0, T ), (3)

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(T ) =
q−2∑
i=1

biv(ηi). (4)

If e = Tm−1 −
q−2∑
i=1

biη
m−1
i 6= 0, 0 < η1 < · · · < ηq−2 < T and h ∈ C([0, T ]), we denote by

G2 the Green’s function corresponding to problem (3)-(4). Under similar assumptions as
those from Lemma 5, we have the inequality inf

t∈[ηq−2,T ]
v(t) ≥ γ2‖v‖, where v is the solution

of problem (3)-(4) and γ2 has a similar form as γ1 from Lemma 5 with n, p and ai replaced
by m, q and bi, respectively.

3 Main results

In this section, we give sufficient conditions on λ, µ, f and g such that positive solutions
with respect to a cone for our problem (S)− (BC) exist.

We present the assumptions that we shall use in the sequel.

(H1) 0 < ξ1 < · · · < ξp−2 < T , ai > 0, i = 1, p− 2, d = Tn−1 −
p−2∑
i=1

aiξ
n−1
i > 0,

0 < η1 < · · · < ηq−2 < T , bi > 0, i = 1, q − 2, e = Tm−1 −
q−2∑
i=1

biη
m−1
i > 0.

(H2) The functions c, d : [0, T ] → [0,∞) are continuous and there exist t1, t2 ∈ [θ0, T ]
such that c(t1) > 0 and d(t2) > 0, where θ0 = max{ξp−2, ηq−2}.

(H2′) The functions c, d : [0, T ] → [0,∞) are continuous and there exist t1 ∈ [ξp−2, T ],
t2 ∈ [ηq−2, T ] such that c(t1) > 0 and d(t2) > 0.

(H3) The functions f, g : [0,∞)× [0,∞) → [0,∞) are continuous.
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Throughout this section, we let

fs
0 = lim sup

(u,v)→(0+,0+)

f(u, v)
u + v

, gs
0 = lim sup

(u,v)→(0+,0+)

g(u, v)
u + v

,

f i
0 = lim inf

(u,v)→(0+,0+)

f(u, v)
u + v

, gi
0 = lim inf

(u,v)→(0+,0+)

g(u, v)
u + v

,

fs
∞ = lim sup

(u,v)→(∞,∞)

f(u, v)
u + v

, gs
∞ = lim sup

(u,v)→(∞,∞)

g(u, v)
u + v

,

f i
∞ = lim inf

(u,v)→(∞,∞)

f(u, v)
u + v

, gi
∞ = lim inf

(u,v)→(∞,∞)

g(u, v)
u + v

.

We consider the Banach space X = C([0, T ]) with supremum norm ‖ · ‖, and the
Banach space Y = X ×X with the norm ‖(u, v)‖Y = ‖u‖+ ‖v‖.

We define the cone C ⊂ Y by
C = {(u, v) ∈ Y ; u(t) ≥ 0, v(t) ≥ 0, ∀ t ∈ [0, T ] and inf

t∈[θ0,T ]
(u(t) + v(t)) ≥ γ‖(u, v)‖Y },

where γ = min{γ1, γ2} and γ1, γ2 are defined in Section 2.
First, for fs

0 , gs
0, f i

∞, gi
∞ ∈ (0,∞) and positive numbers α1, α2 > 0 such that α1+α2 =

1, we define the positive numbers L1, L2, L3 and L4 by

L1 = α1

(
γξn−1

p−2

d(n− 1)!

∫ T

θ0

(T − s)n−1c(s)f i
∞ ds

)−1

,

L2 = α1

(
Tn−1

d(n− 1)!

∫ T

0
(T − s)n−1c(s)fs

0 ds

)−1

,

L3 = α2

(
γηm−1

q−2

e(m− 1)!

∫ T

θ0

(T − s)m−1d(s)gi
∞ ds

)−1

,

L4 = α2

(
Tm−1

e(m− 1)!

∫ T

0
(T − s)m−1d(s)gs

0 ds

)−1

.

Theorem 2. Assume that (H1), (H2) and (H3) hold and α1, α2 > 0 are positive numbers
such that α1 + α2 = 1.

a) If fs
0 , gs

0, f i
∞, gi

∞ ∈ (0,∞), L1 < L2 and L3 < L4, then for each λ ∈ (L1, L2) and
µ ∈ (L3, L4) there exists a positive solution (u(t), v(t)), t ∈ [0, T ] for (S)− (BC).

b) If fs
0 = gs

0 = 0, f i
∞, gi

∞ ∈ (0,∞), then for each λ ∈ (L1,∞) and µ ∈ (L3,∞) there
exists a positive solution (u(t), v(t)), t ∈ [0, T ] for (S)− (BC).

c) If fs
0 , gs

0 ∈ (0,∞), f i
∞ = gi

∞ = ∞, then for each λ ∈ (0, L2) and µ ∈ (0, L4) there
exists a positive solution (u(t), v(t)), t ∈ [0, T ] for (S)− (BC).

d) If fs
0 = gs

0 = 0, f i
∞ = gi

∞ = ∞, then for each λ ∈ (0,∞) and µ ∈ (0,∞) there exists
a positive solution (u(t), v(t)), t ∈ [0, T ] for (S)− (BC).

Sketch of proof. a) We suppose fs
0 , gs

0, f i
∞, gi

∞ ∈ (0,∞), L1 < L2 and L3 < L4. Let
P1, P2 : Y → X and Q : Y → Y be the operators defined by

P1(u, v)(t) = λ

∫ T

0
G1(t, s)c(s)f(u(s), v(s)) ds, t ∈ [0, T ],

P2(u, v)(t) = µ

∫ T

0
G2(t, s)d(s)g(u(s), v(s)) ds, t ∈ [0, T ],
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and Q(u, v) = (P1(u, v), P2(u, v)), (u, v) ∈ Y , where G1, G2 are the Green’s functions
defined in Section 2.

The solutions of problem (S)− (BC) are the fixed points of the operator Q.
We consider an arbitrary element (u, v) ∈ C. Because P1(u, v) and P2(u, v) satisfy

the problem (1)-(2) for y(t) = λc(t)f(u(t), v(t)), t ∈ [0, T ], and the problem (3)-(4) for
h(t) = µd(t)g(u(t), v(t)), t ∈ [0, T ], respectively, then by Lemma 5, we obtain

inf
t∈[θ0,T ]

P1(u, v)(t) ≥ γ1‖P1(u, v)‖, inf
t∈[θ0,T ]

P2(u, v)(t) ≥ γ2‖P2(u, v)‖.

Therefore we deduce

inf
t∈[θ0,T ]

[P1(u, v)(t) + P2(u, v)(t)] ≥ γ1‖P1(u, v)‖+ γ2‖P2(u, v)‖ ≥ γ‖Q(u, v)‖Y .

By using Lemma 3, (H2) and (H3), we obtain that P1(u, v)(t) ≥ 0, P2(u, v)(t) ≥ 0,
for all t ∈ [0, T ], and so we deduce that Q(u, v) ∈ C. Hence we get Q(C) ⊂ C.

By using standard arguments, we can easily show that P1 and P2 are completely
continuous, and then Q is a completely continuous operator.

Now let λ ∈ (L1, L2), µ ∈ (L3, L4), and let ε > 0 be a positive number such that
ε < f i

∞, ε < gi
∞ and

α1

(
γξn−1

p−2

d(n− 1)!

∫ T

θ0

(T − s)n−1c(s)(f i
∞ − ε) ds

)−1

≤ λ,

α1

(
Tn−1

d(n− 1)!

∫ T

0
(T − s)n−1c(s)(fs

0 + ε) ds

)−1

≥ λ,

α2

(
γηm−1

q−2

e(m− 1)!

∫ T

θ0

(T − s)m−1d(s)(gi
∞ − ε) ds

)−1

≤ µ,

α2

(
Tm−1

e(m− 1)!

∫ T

0
(T − s)m−1d(s)(gs

0 + ε) ds

)−1

≥ µ.

By (H3), we deduce that there exists K1 > 0 such that for all u, v ∈ R+, with
0 ≤ u + v ≤ K1, we have f(u, v) ≤ (fs

0 + ε)(u + v) and g(u, v) ≤ (gs
0 + ε)(u + v).

We define the ball Ω1 = {(u, v) ∈ Y, ‖(u, v)‖Y < K1}. Now let (u, v) ∈ C ∩ ∂Ω1, that
is (u, v) ∈ C with ‖(u, v)‖Y = K1 or, equivalently, ‖u‖+‖v‖ = K1. Then u(t)+v(t) ≤ K1

for all t ∈ [0, T ]. By Lemma 4, after some computations, we deduce that P1(u, v)(t) ≤
α1‖(u, v)‖Y for all t ∈ [0, T ]. Therefore ‖P1(u, v)‖ ≤ α1‖(u, v)‖Y . In a similar manner, we
obtain ‖P2(u, v)‖ ≤ α2‖(u, v)‖Y .

Then for (u, v) ∈ C ∩ ∂Ω1 we deduce

‖Q(u, v)‖Y = ‖(P1(u, v), P2(u, v))‖Y ≤ α1‖(u, v)‖Y + α2‖(u, v)‖Y = ‖(u, v)‖Y .

By the definitions of f i
∞ and gi

∞, there exists K̄2 > 0 such that f(u, v) ≥ (f i
∞−ε)(u+v)

and g(u, v) ≥ (gi
∞ − ε)(u + v) for all u, v ≥ 0, with u + v ≥ K̄2. We consider K2 =
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max{2K1, K̄2/r}, and we define Ω2 = {(u, v) ∈ Y, ‖(u, v)‖Y < K2}. Then for (u, v) ∈ C
with ‖(u, v)‖Y = K2, we obtain

u(t) + v(t) ≥ γ1‖u‖+ γ2‖v‖ ≥ γ(‖u‖+ ‖v‖) = γ‖(u, v)‖Y = γK2 ≥ K̄2, ∀ t ∈ [θ0, T ].

Then by Lemma 4, after some computations, we deduce that P1(u, v)(ξp−2) ≥ α1‖(u, v)‖Y .
So ‖P1(u, v)‖ ≥ P1(u, v)(ξp−2) ≥ α1‖(u, v)‖Y . In a similar manner, we obtain ‖P2(u, v)‖ ≥
P2(u, v)(ηq−2) ≥ α2‖(u, v)‖Y .

Hence for (u, v) ∈ C ∩ ∂Ω2 we obtain

‖Q(u, v)‖Y = ‖P1(u, v)‖+ ‖P2(u, v)‖ ≥ (α1 + α2)‖(u, v)‖Y = ‖(u, v)‖Y .

By using Theorem 1 i) with T = Q, K = C, a = K1, b = K2, K(a, b) = C ∩ (Ω̄2 \Ω1),
Ka = C ∩ ∂Ω1, Kb = C ∩ ∂Ω2, we deduce that Q has a fixed point (u, v) ∈ C ∩ (Ω̄2 \ Ω1)
such that K1 ≤ ‖(u, v)‖Y ≤ K2 or K1 ≤ ‖u‖+ ‖v‖ ≤ K2.

The proofs of cases b)-d) are similar to that of case a) and we shall omit them (see
also the paper [1]). �

Remark 1. The condition L1 < L2 from Theorem 2 is equivalent to

fs
0Tn−1

∫ T

0
(T − s)n−1c(s) ds < f i

∞γξn−1
p−2

∫ T

θ0

(T − s)n−1c(s) ds

and L3 < L4 is equivalent to

gs
0T

m−1

∫ T

0
(T − s)m−1d(s) ds < gi

∞γηm−1
q−2

∫ T

θ0

(T − s)m−1d(s) ds.

In what follows, for f i
0, gi

0, fs
∞, gs

∞ ∈ (0,∞) and positive numbers α1, α2 > 0 such
that α1 + α2 = 1, we define the positive numbers L̃1, L̃2, L̃3 and L̃4 by

L̃1 = α1

(
γξn−1

p−2

d(n− 1)!

∫ T

ξp−2

(T − s)n−1c(s)f i
0 ds

)−1

,

L̃2 = α1

(
Tn−1

d(n− 1)!

∫ T

0
(T − s)n−1c(s)fs

∞ ds

)−1

,

L̃3 = α2

(
γηm−1

q−2

e(m− 1)!

∫ T

ηq−2

(T − s)m−1d(s)gi
0 ds

)−1

,

L̃4 = α2

(
Tm−1

e(m− 1)!

∫ T

0
(T − s)m−1d(s)gs

∞ ds

)−1

.

Theorem 3. Assume that (H1), (H2’) and (H3) hold and α1, α2 > 0 are positive numbers
such that α1 + α2 = 1.

a) If f i
0, gi

0, fs
∞, gs

∞ ∈ (0,∞), L̃1 < L̃2 and L̃3 < L̃4, then for each λ ∈ (L̃1, L̃2) and
µ ∈ (L̃3, L̃4) there exists a positive solution (u(t), v(t)), t ∈ [0, T ] for (S)− (BC).

b) If fs
∞ = gs

∞ = 0, f i
0, gi

0 ∈ (0,∞), then for each λ ∈ (L̃1,∞) and µ ∈ (L̃3,∞) there
exists a positive solution (u(t), v(t)), t ∈ [0, T ] for (S)− (BC).
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c) If fs
∞, gs

∞ ∈ (0,∞), f i
0 = gi

0 = ∞, then for each λ ∈ (0, L̃2) and µ ∈ (0, L̃4) there
exists a positive solution (u(t), v(t)), t ∈ [0, T ] for (S)− (BC).

d) If fs
∞ = gs

∞ = 0, f i
0 = gi

0 = ∞, then for each λ ∈ (0,∞) and µ ∈ (0,∞) there exists
a positive solution (u(t), v(t)), t ∈ [0, T ] for (S)− (BC).

Sketch of proof. a) Let λ ∈ (L̃1, L̃2) and µ ∈ (L̃3, L̃4). We select a positive number ε
such that ε < f i

0, ε < gi
0 and

α1

(
γξn−1

p−2

d(n− 1)!

∫ T

ξp−2

(T − s)n−1c(s)(f i
0 − ε) ds

)−1

≤ λ,

α1

(
Tn−1

d(n− 1)!

∫ T

0
(T − s)n−1c(s)(fs

∞ + ε) ds

)−1

≥ λ,

α2

(
γηm−1

q−2

e(m− 1)!

∫ T

ηq−2

(T − s)m−1d(s)(gi
0 − ε) ds

)−1

≤ µ,

α2

(
Tm−1

e(m− 1)!

∫ T

0
(T − s)m−1d(s)(gs

∞ + ε) ds

)−1

≥ µ.

We also consider the operators defined in the proof of Theorem 2. By the definitions
of f i

0, gi
0 ∈ (0,∞), we deduce that there exists K3 > 0 such that f(u, v) ≥ (f i

0 − ε)(u +
v), g(u, v) ≥ (gi

0 − ε)(u + v) for all u, v ≥ 0, with 0 ≤ u + v ≤ K3.
We denote by Ω3 = {(u, v) ∈ Y ; ‖(u, v)‖Y < K3}. Let (u, v) ∈ C with ‖(u, v)‖Y = K3,

that is ‖u‖ + ‖v‖ = K3. Because u(t) + v(t) ≤ ‖u‖ + ‖v‖ = K3 for all t ∈ [0, T ], then
by using Lemma 4, we obtain after some computations P1(u, v)(ξp−2) ≥ α1‖(u, v)‖Y .
Therefore, ‖P1(u, v)‖ ≥ (P1(u, v))(ξp−2) ≥ α1‖(u, v)‖Y . In a similar manner, we obtain
‖P2(u, v)‖ ≥ (P2(u, v))(ηq−2) ≥ α2‖(u, v)‖Y .

Thus for an arbitrary element (u, v) ∈ C ∩ ∂Ω3 we obtain

‖Q(u, v)‖Y ≥ (α1 + α2)‖(u, v)‖Y = ‖(u, v)‖Y .

Now we define the functions f∗, g∗ : R+ → R+, f∗(x) = max
0≤u+v≤x

f(u, v), g∗(x) =

max
0≤u+v≤x

g(u, v), x ∈ R+. Then f(u, v) ≤ f∗(x), g(u, v) ≤ g∗(x) for all (u, v), u ≥ 0, v ≥
0 and 0 ≤ u+v ≤ x. The functions f∗, g∗ are nondecreasing and they satisfy the conditions

lim sup
x→∞

f∗(x)
x

≤ fs
∞, lim sup

x→∞

g∗(x)
x

≤ gs
∞.

Therefore, for ε > 0 there exists K̄4 > 0, such that for all x ≥ K̄4, we have

f∗(x)
x

≤ lim sup
x→∞

f∗(x)
x

+ ε ≤ fs
∞ + ε,

g∗(x)
x

≤ lim sup
x→∞

g∗(x)
x

+ ε ≤ gs
∞ + ε,

and so f∗(x) ≤ (fs
∞ + ε)x and g∗(x) ≤ (gs

∞ + ε)x.
We now consider K4 = max{2K3, K̄4}, and we denote by Ω4 = {(u, v) ∈ Y, ‖(u, v)‖Y <

K4}. Let (u, v) ∈ C ∩ ∂Ω4. By definitions of f∗ and g∗ we have

f(u(t), v(t)) ≤ f∗(‖(u, v)‖Y ), g(u(t), v(t)) ≤ g∗(‖(u, v)‖Y ), ∀ t ∈ [0, T ].
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Then for all t ∈ [0, T ], after some computations, we obtain P1(u, v)(t) ≤ α1‖(u, v)‖Y , and
so ‖P1(u, v)‖ ≤ α1‖(u, v)‖Y . In a similar manner, we obtain ‖P2(u, v)‖ ≤ α2‖(u, v)‖Y .

Therefore for (u, v) ∈ C ∩ ∂Ω4 it follows that

‖Q(u, v)‖Y ≤ (α1 + α2)‖(u, v)‖Y = ‖(u, v)‖Y .

By using Theorem 1 ii) with T = Q, K = C, a = K3, b = K4, K(a, b) = C ∩ (Ω4 \Ω3),
Ka = C ∩ ∂Ω3, Kb = C ∩ ∂Ω4, we deduce that Q has a fixed point (u, v) ∈ C ∩ (Ω̄4 \ Ω3)
such that K3 ≤ ‖(u, v)‖Y ≤ K4.

The proofs of cases b)-d) are similar to that of case a) and we shall omit them (see
also the paper [1]. �

Remark 2. The condition L̃1 < L̃2 is equivalent to

fs
∞Tn−1

∫ T

0
(T − s)n−1c(s) ds ≤ f i

0γξn−1
p−2

∫ T

ξp−2

(T − s)n−1c(s) ds

and the condition L̃3 < L̃4 is equivalent to

gs
∞Tm−1

∫ T

0
(T − s)m−1d(s) ds ≤ gi

0γηm−1
q−2

∫ T

ηq−2

(T − s)m−1d(s) ds

4 Examples

Let T = 1, n = 3, m = 4, p = 5, q = 4, c(t) = c0t, d(t) = d0t, for t ∈ [0, 1], with
c0, d0 > 0, ξ1 = 1

4 , ξ2 = 1
2 , ξ3 = 3

4 , η1 = 1
3 , η2 = 2

3 , a1 = 1, a2 = 1
2 , a3 = 1

3 , b1 = 1, b2 = 2.
We have d = 5

8 , e = 10
27 , θ0 = 3

4 , γ1 = 1
16 , γ2 = 1

27 , γ = 1
27 .

We consider the higher-order differential system

(S1)
{

u(3)(t) + λc0tf(u(t), v(t)) = 0, t ∈ (0, 1),
v(4)(t) + µd0tg(u(t), v(t)) = 0, t ∈ (0, 1),

with the boundary conditions

(BC1)
{

u(0) = u′(0) = 0, u(1) = u(1
4) + 1

2u(1
2) + 1

3u(3
4),

v(0) = v′(0) = v′′(0) = 0, v(1) = v(1
3) + 2v(2

3)

1. First we consider the functions

f(u, v) =
(u + v)(p1u + 1)(q1 + sin v)

u + 1
, g(u, v) =

(u + v)(p2v + 1)(q2 + cos u)
v + 1

,

with p1, p2 > 0, q1, q2 > 1.
It follows that fs

0 = f i
0 = q1, gs

0 = gi
0 = q2 + 1, fs

∞ = p1(q1 + 1), f i
∞ = p1(q1 − 1),

gs
∞ = p2(q2 + 1), gi

∞ = p2(q2 − 1).
The constants Li, i = 1, 4 from Section 3 are of the form

L1 =
184320α1

13c0p1(q1 − 1)
, L2 =

15α1

c0q1
, L3 =

259200α2

d0p2(q2 − 1)
, L4 =

400α2

9d0(q2 + 1)
,
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and the conditions L1 < L2 and L3 < L4 are equivalent to

q1

p1(q1 − 1)
<

13
12288

,
q2 + 1

p2(q2 − 1)
<

1
5832

.

We apply Theorem 2 a) for α1, α2 > 0 with α1 + α2 = 1. If the above conditions
are satisfied, then for each λ ∈ (L1, L2) and µ ∈ (L3, L4), there exists a positive solution
(u(t), v(t)), t ∈ [0, T ] for problem (S1)− (BC1).

2. We consider the functions

f(u, v) = (u + v)β1 , g(u, v) = (u + v)β2 , u, v ∈ [0,∞),

with β1, β2 > 1. Then fs
0 = f i

0 = gs
0 = gi

0 = 0 and fs
∞ = f i

∞ = gs
∞ = gi

∞ = ∞. By
Theorem 2 d) we deduce that for each λ ∈ (0,∞) and µ ∈ (0,∞) there exists a positive
solution (u(t), v(t)), t ∈ [0, T ] for problem (S1)− (BC1).

3. We consider the functions

f(u, v) = (u + v)γ1 , g(u, v) = (u + v)γ2 , u, v ∈ [0,∞),

with γ1, γ2 ∈ (0, 1). Then fs
0 = f i

0 = gs
0 = gi

0 = ∞ and fs
∞ = f i

∞ = gs
∞ = gi

∞ = 0. By
Theorem 3 d) we deduce that for each λ ∈ (0,∞) and µ ∈ (0,∞) there exists a positive
solution (u(t), v(t)), t ∈ [0, T ] for problem (S1)− (BC1).
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