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Abstract

We study the interfaces stability of immisicble displacement in a Hele-Shaw cell or
porous medium, with applications to secondary oil recovery. A middle-region of con-
stant length L exists between the displacing and displaced fluids (water and oil), filled
by a third fluid with an unknown constant viscosity µ. The linear stability analysis is
performed and the growth constant σ of perturbations is estimated in terms of L, µ and
water and oil viscosities. The new element is a lower-upper estimate of σ in terms of L.
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1 Indroduction

A Hele-Shaw cell is the “gap” between two parallel plates, at a small distance δ. The
Poiseuille solution of the Stokes equation is averaged across the gap and the obtained
equation is similar with the Darcy law for the flow in porous media. The “permeability”
is given in terms of the fluid viscosity and δ. This model is useful for the study of oil
recovery from a horizontal porous medium. The flow can be visualized if the cell plates
are transparent - see Jacob Bear (1972). Saffman and Taylor (1958) proved that if the
displacing fluid is less viscous, the interface with the displaced fluids is unstable and the
“fingering” phenomenon appears. If the oil is displaced from a porous medium by water,
the above instability is giving “fingers” of water penetrating in oil, which remains trapped
in the medium. The “fingering” phenomenon can be minimized by using an intermediate
fluid (between water and oil), whose viscosity is an “a priori” unknown parameter.

In this paper we study the simpler case when the viscosity of the intermediate fluid is
constant. We consider a Hele-Shaw cell in the fixed horizontal plane x1Oy, filled by three
fluids: water (with constant viscosity µ1), an intermediate fluid with constant viscosity
µ, and oil (with constant viscosity µ2). The 0z axis is orthogonal on the plates and the
gravity effects are neglected. The flow is due to the water velocity U far upstream, from
the left part, in the positive direction Ox1. In our model, the middle region between water
an oil region (denoted by MR) is Ut − L < x1 < Ut, where t is the time. We use also
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the assumption µ1 < µ < µ2. In the moving reference x = x1 − Ut, MR is the segment
(−L, 0). Two sharp interfaces exists between the above three immisicble fluids: water-MR
and MR-oil. We study the linear stability of the flow, therefore the linear stability of the
interfaces and get some estimates of the growth constant (in time) σ of the perturbations.
Some upper bounds of σ were obtained, but not depending on the middle-region length L
- see Pasa (2002), Daripa and Pasa (2004) and Daripa (2008). The new element of this
paper is a lower-upper estimate of σ, depending on the middle region length L.

2 The linear stability system

The flow in the Hele-Shaw cell is governed by the equations

ux + vy = 0, px = −µu, py = −µv,

where the indices x, y denote the partial derivatives, (u, v) is the velocity, p is the pressure,
µ is the viscosity (in all three regions). The boundary conditions are given by the Laplace’s
law: the pressure jump on the interfaces is balanced by the surface tension times the
curvature.

In the moving reference system x = x1−Ut, we consider the following basic solution :

u = U, v = 0, Px = −µU, Py = 0, (1)

with the interfaces
x = −L, x = 0. (2)

We insert the perturbations u′, v′, p′ in the flow equations and get

(P + p′)x = −µ(U + u′), (P + p′)y = −µ(v′), (3)

(u + u′)x + (v + v′)y = 0, (4)

therefore the perturbations equations are

u′x + v′y = 0; p′x = −µu′; p′y = −µv′. (5)

We start our analysis with the perturbations of the velocity

u′(x, y, t) = f(x) exp(iky + σt).

From (5)1 and (5)3 we get

v′ = −[fx/ik] exp(iky + σt); p′ = −µ[fx/k2] exp(iky + σt). (6)

Cross derivation of the pressure equations (5)2, (5)3 is giving

(µu′)y = (µv′)x ⇒ −µfxx + k2µf = 0. (7)
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We derive next the boundary conditions for (7). Out of the middle region we need far
decay solutions:

f(x) = exp[(x + L)k], x < −L, f(x) = exp(−kx), x > 0,

therefore the limit values of the derivatives fx at the exterior ends of MR are

f−
x (−L) = kf(−L), f+

x (0) = −kf(0), (8)

where − and + denote the “left” and “right” limits.
The perturbed (material) interface near an arbitrary point x0 is denoted by

x = g(x0, y, t), with gt = u′, (9)

therefore
g(x0, y, t) = [f(x0)/σ] exp(iky + σt). (10)

We estimate the pressure jump by using (6)2 (recall P is the basic pressure) and the
viscosities jumps on the interfaces:

p+(x0) = P (x0, y, t) + P+
x (x0, y, t) · g(x0, y, t) + p

′+(x0, y, t) ⇒

p+(x0) = P (x0)− µ+(x0)
[
Uf(x0)

σ
+

f+
x (x0)
k2

]
exp(iky + σt), (11)

p−(x0) = P (x0)− µ−(x0)
[
Uf(x0)

σ
+

f−
x (x0)
k2

]
exp(iky + σt) (12)

We obtain the corresponding relations for x0 = 0, x0 = −L, where µ+(0) = µ2, µ−(0) =
µ = µ+(−L), µ−(−L) = µ1.

On the interfaces x = 0, x = −L we consider the surface tensions T, S. The Laplace’s
law gives us

p+(0)− p−(0) = Tgyy(0, y, t), (13)

p+(−L)− p−(−L) = Sgyy(0, y, t),

therefore from the equations (11) - (13) we obtain

µ−(0)
[
Uf(0)

σ
+

f−
x (0)
k2

]
− µ+(0)

[
Uf(0)

σ
+

f+
x (0)
k2

]
= −T

f(0)
σ

k2 (14)

µ−(−L)
[
Uf(−L)

σ
+

f−
x (−L)

k2

]
− µ+(−L)

[
Uf(−L)

σ
+

f+
x (−L)

k2

]
= (15)

−S
f(−L)

σ
k2

The above relations are giving us the limit values of fx at the interior ends of the MR:

f−
x (0) =

1
µ

[
k2U(µ2 − µ)− Tk4

σ
f(0)− µ2kf(0)

]
:= (

e

σ
+ q)f(0), (16)

f+
x (−L) =

1
µ

[
k2U(µ1 − µ) + Sk4

σ
f(0) + µ1kf(−L)

]
:= (

r

σ
+ s)f(−L). (17)

Therefore the flow stability is governed by the problem:

(FS) − µfxx + k2µf = 0 + (16) + (17) (18)
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3 Estimates of the growth constant σ

We multiply with f in (18)1, we use the boundary conditions (16), (17) and obtain the
following formula for the growth constant:

σ =
µ[−rf2(−L) + ef2(0)]

µ[f2(−L)s− f2(0)q] + µ
∫ 0
−L f2

x + k2µ
∫ 0
−L f2

(19)

In this paper we consider the condition

k2 ≤ Max{U [µ2 − µ]/T, U [µ− µ1]/S}. (20)

that means e,−r > 0, therefore σ > 0 (the most dangerous case).
The formula (19) of σ is depending on f(0), f(−L). We have the usual inequality

C,D, x, y > 0 ⇒ Min

{
A

C
,
B

D

}
≤ Ax + By

Cx + Dy
≤ Max

{
A

C
,
B

D

}
. (21)

We neglect the positive integrals in the denominator of the growth constant (19), we
use (21) and get the following Basic Upper Estimate (BUP)

(BUP ) σ ≤ MAX

{
e

−q
,

−r

s

}
, (22)

The above estimate (BUP) is not depending on L, but the exact value of σ is given in
terms of L. Our problem is to find an upper estimate depending on L of the growth
constant.

a) Algebraic upper estimates of σ. The solution of the stability equation is

f(x) = Aekx + Be−kx, (23)

where A,B are depending on L, µ, µ1, µ2, k. We use the notations:

a = (e/σ + q), b = (r/σ + s), (24)

therefore the boundary conditions (16), (17) and the condition A,B 6= 0 are giving us

(a− k)e2kL(b + k)− (a + k)(b− k) = 0 (25)

For very large L we get (a− k)(b + k) = 0, then a = k or b = −k, that means

σ =
e

−q + k
or σ =

−r

s + k
, (26)

which is an improvement of the (BUP). For a finite value of L we see that a < 0 and
b > 0 is not possible, because in this case both terms in the left part of (25) are negative.
Therefore we have a ≥ 0 or b ≤ 0, then we obtain again the upper (BUP ) estimate (22):

a = e/σ + q ≥ 0, or b = r/σ + s ≤ 0 ⇒ σ ≤ { e

−q
,
−r

s
}. (27)
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b) Lower - upper estimates depending on L of the growth constant. We have

I =
∫ 0

−L
f2

x + k2

∫ 0

−L
f2 =

k

(e2kL − 1)
D (28)

where f0 := f(0), fL := f(−L) and

D = f2
0 e2kL + f2

L + f2
0 + f2

Le2kL − 4f0fLekL (29)

For this, we use the exact solution (23) of stability equation and get

I = 2k2

∫ 0

−L
[A2e2kx + B2e−2kx] = k[A2(1− e−2kL) + B2(e2kL − 1)] = (30)

k(e2kL − 1)
e2kL

[A2 + e2kLB2]

The boundary conditions are giving f0 = A + B, fL = Ae−kL + BekL, therefore we
obtain

B = f0 −A, A =
f0e

kL − fL

ekL − e−kL
, B =

−f0e
−kL + fL

ekL − e−kL
(31)

We insert the above A,B in (30) and obtain the expression (28). Moreover, we have the
following estimates of D given by (29):

D = (f2
0 + f2

L)(1 + e2kL − 2ekL) + 2(f0 − fL)2ekL ≥ (32)

(f2
0 + f2

L)(1− ekL)2,

D ≤ f2
0 e2kL + f2

L + f2
0 + f2

Le2kL + 2(f2
0 + f2

L)ekL = (f2
0 + f2

L)(1 + ekL)2. (33)

We use (28), (32), (33) and get the lower-upper estimates for I:

k
(ekL − 1)
(ekL + 1)

(f2
0 + f2

L) ≤ I ≤ ekL + 1
e2kL − 1

(f2
0 + f2

L) (34)

The above integral I appears in the formula (19) of σ. We use this formula, the above
estimates (34) of I, the inequalities (21) and get the following upper-lower estimates for
σ, depending on L:

Min

{
e

−q + LE
,

−r

s + LE

}
≤ σ ≤ MAX

{
e

−q + RI
,

−r

s + RI

}
, (35)

LE = k
ekL + 1
ekL − 1

, RI = k
ekL − 1
ekL + 1

(36)

For L →∞ we obtain

Min

{
e

−q + k
,

−r

s + k

}
≤ σ ≤ MAX

{
e

−q + k
,

−r

s + k

}
,

in accord with the algebraic estimates (26).
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4 Conclusions

In this paper we study the linear stability of the Hele-Shaw displacement of two immis-
cible fluids (water and oil) with constant viscosity, when a third constant viscosity fluid
exists in a middle region between water and oil. The main results are following.

1) The middle region length L is a stabilizing element. The quantities LE and RI in
(35) - (36) are increasing in terms of L. Then the upper bound of σ is decreasing in terms
of L. The minimum value of the upper bound of σ is obtained for very large L.

2) If the surface tensions T, S are large enough, we obtain an improvement of stability,
compared with the Saffman-Taylor case, independent of the intermediate viscosity µ. For
this, we recall the Saffman-Taylor formula for the growth constant σST , when the water
(viscosity µ1) is displacing the oil (viscosity µ2) and the surface tension on the water-oil
interface is T0:

σST =
αU(µ2 − µ1)− α3T0

µ2 + µ1
. (37)

As we pointed above, the largest upper bound of our growth constant σ is obtained for
small L, then we use the (BUP ) estimate (22). We compute the maximum values of
(BUP ) and (37) in terms of α and get

MAXα{σ} < MAXα{σST } ⇔ S, T > T0(
µ1 + µ2

µ2
)3/2. (38)
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