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DYNAMIC EQUATIONS ON TIME SCALES SEEN AS
GENERALIZED DIFFERENTIAL EQUATIONS

Bianca-Renata SATCO1

Abstract

In the present paper we prove, in the most natural framework, that dynamic equa-
tions on time scales can be treated as generalized differential equations. More precisely,
we use the Henstock-Kurzweil vector integral and impose only a uniform integrability
condition. Our result generalizes the main result of [24], where the embeddability of
dynamic equations on time scales into generalized differential equations was proved
under some assumptions of Lipschitz continuity-type (and consequently involving the
Lebesgue integral).
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1 Introduction

Since the czech mathematician J. Kurzweil introduced the theory of generalized differ-
ential equations in [16], generalized differential equations were considered in many works,
such as [22], [25], [9] or [18]. There are also several monographs treating this subject, e.g.
[21] or [26].
Two decades after the publication of [16], the necessity of considering such a theory was
once again motivated in [1]: in general, the space of ordinary differential equations is not
complete but, by embedding ordinary equations in the space of generalized differential
equations, we get a complete and compact space, where techniques of topological dynam-
ics can be applied.
More recently, this theory was shown to be connected to that of impulsive differential
equations (see [9], [11]), to the theory of retarded functional differential equations (as in
[10]) or to that of discrete systems (e.g. [22]).
What’s more, in [24] the author shows that even dynamic equations on time scale domains
can be seen as generalized differential equations. The analysis on time scale domains, in-
troduced in 1988 in the PhD Thesis of S. Hilger (see [15]), allows a unified treatment of
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continuous and discrete problems, but not exclusively (we refer to [3], [4] and the refer-
ences therein).
While the Kurzweil integration is the most appropriate to the theory of generalized differ-
ential equations, the main result of [24] works with the Lebesgue-Stieltjes integral as the
involved functions are supposed to satisfy some continuity conditions of Lipschitz-type.
In the present paper, we prove that dynamic equations on time scales can be treated
as generalized differential equations under more natural hypotheses: of integrability in
Henstock-Kurzweil sense. It is worthwhile to remind that the Henstock-Kurzweil integral
(see [13], [7], [23] for functions defined on a real interval or [8] on time scales) gives us
the possibility to study more general problems, taking into consideration the fact that
classical theories of integration do not cover the case of highly oscillatory functions.

2 Preliminaries

We recall some basic elements from the theory of generalized Kurzweil integration. We
call a gauge a positive function δ. A partition of the real interval [a, b] is a finite family
([αi−1, αi], τi)

n
i=1 of non-overlapping intervals covering [a, b] with tags τi ∈ [αi−1, αi]; a

partition is said to be δ-fine if for each i ∈ {1, ..., n}, [αi−1, αi] ⊂ [τi − δ(τi), τi + δ(τi)].

Definition 1. A function F : [a, b] × [a, b] → Rn is said to be generalized Kurzweil
integrable if there exists a vector

∫ b
a DF (τ, t) ∈ Rn such that for every ε > 0 there exists a

gauge δε : [a, b] → R+ with the property that for every δε-fine partition of [a, b]:∥∥∥∥∥
n∑

i=1

(F (τi, αi)− F (τi, αi−1))−
∫ b

a
DF (τ, t)

∥∥∥∥∥ < ε.

The vector
∫ b
a DF (τ, t) is called the generalized Kurzweil integral of F .

A particular case is the Henstock-Kurzweil-Stieltjes (shortly, HK-Stieltjes) integral
(HKS)

∫ b
a f(s)dg(s), that can be obtained for the function F (τ, t) = f(τ)g(t), where

f : [a, b] → Rn and g : [a, b] → R. Moreover, when g(t) = t the preceding definition
describes the Henstock-Kurzweil (HK) integral.
For more on the generalized Kurzweil integral and its importance in the theory of differ-
ential equations, we refer to [21].

We now remind of several features from the time scale theory; for a survey on this
subject, see [3] or [4] and the references therein.
A time scale T is a nonempty closed set of real numbers with the subspace topology
inherited from the topology of R (such as, T = R, T = N or T = qZ = {qt : t ∈ Z}, where
q > 1). For two points a, b in T we denote by [a, b]T = {t ∈ T : a ≤ t ≤ b} the time scales
interval.

Definition 2. The forward jump operator σ : T → T and the backward jump operator
ρ : T → T are defined by σ(t) = inf{s ∈ T : s > t}, respectively ρ(t) = sup {s ∈ T : s < t}.
Also, inf ∅ = sup T (i.e. σ(M) = M if T has a maximum M) and sup ∅ = inf T ( i.e.
ρ(m) = m if T has a minimum m).
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A point t ∈ T is called right-dense, right-scattered, left-dense, left-scattered, dense,
respectively isolated if σ(t) = t, σ(t) > t, ρ(t) = t, ρ(t) < t, ρ(t) = t = σ(t) and
ρ(t) < t < σ(t), respectively. Also, we will use the function µ(t) = σ(t) − t that is called
the graininess function.

Definition 3. Let f : T → Rn and t ∈ T. f is called ∆-differentiable at the point t if
there exists an element of Rn (called ∆-derivative f∆(t)) with the property that for any
ε > 0 there exists a neighborhood of t on which∥∥f(σ(t))− f(s)− f∆(t)[σ(t)− s]

∥∥ ≤ ε|σ(t)− s|.

Several simple properties of ∆-derivatives were proved in [4] (Theorem 1.3):
i) f is continuous at the points where it is ∆-differentiable;
ii) if f is continuous at the right-scattered point t, then f is ∆-differentiable at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
;

iii) if t is right-dense, then f is ∆-differentiable at t if and only if the limit

lim
s→t,s>t

f(s)− f(t)
s− t

exists and is finite. In this case, its value equals to f∆(t).

Remark that the time scale calculus gives the possibility to unify (and generalize) the
treatment of differential and difference equations since, in particular,

(i) f∆ = f ′ is the usual derivative if T = R,

(ii) f∆ = ∆f is the usual forward difference operator if T = Z.

The space C([a, b]T, Rn) of continuous functions is endowed with the usual (Banach space)
norm ‖f‖C = sup

t∈[a,b]T

‖f(t)‖.

The symbol µ∆ stands for the Lebesgue measure on T (for its definition and properties
we refer the reader to [6]). For properties of Riemann delta-integral we refer to [14] and
for Lebesgue integral on time scales to [2], [3], [4] or [14].
In order to recall the Henstock-Kurzweil-∆-integral, let δ = (δL, δR) be a ∆-gauge, that
is a pair of positive functions such that δL(t) > 0 on (a, b], δR(t) > 0 and δR(t) ≥ σ(t)− t
on [a, b). A partition D = {[αi−1, αi]T; τi , i = 1, 2, . . . n} of [a, b]T is δ-fine whenever:

τi ∈ [αi−1, αi] ⊂ [τi − δL(τi), τi + δR(τi)],∀1 ≤ i ≤ n

(such a partition exists for arbitrary positive pair of functions, see Lemma 1.9 in [17]).

Definition 4. ([8], see also [7], [23] for the particular case T = R)
i) A function f : [a, b]T → Rn is Henstock-Kurzweil-∆-integrable on [a, b]T if there exists
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an element (HK)
∫ b
a f(s)∆s ∈ Rn satisfying the following property: given ε > 0, there

exists a ∆-gauge δε on [a, b]T such that∥∥∥∥∥
n∑

i=1

f(τi)µ∆([αi−1, αi]T)− (HK)
∫ b

a
f(s)∆s

∥∥∥∥∥ < ε

for every δε-fine division D = {[αi−1, αi]T, τi} of [a, b]T. We call it the Henstock-Kurzweil-
∆-integral of f on [a, b]T.

On the other hand, a family of Henstock-Kurzweil-∆-integrable functions is said to be
uniformly HK-∆-integrable if the ∆-gauge δε can be chosen to be the same for all elements
of the family.
The space of HK-∆-integrable Rn-valued functions will be denoted by HK([a, b]T, Rn) and
we provide it with the Alexiewicz norm:

‖f‖A = sup
t∈[a,b]T

∥∥∥∥(HK)
∫ t

a
f(s)∆s

∥∥∥∥ .

When interested in differential equations, of a great importance are the properties of
the primitives which allow to transfer the differential problem into an integral one. In this
direction, it was proved (in [7], see also [23]) that in the particular case where T = R the
primitive in Henstock-Kurzweil sense (HK)

∫ ·
0 f(s)ds is continuous and a.e. differentiable.

In order to present a similar result on time scales (as it was done in [20]), we refer to
[6], where the integrability of a function on time scales is shown to be equivalent to the
integrability of its extension (defined below) to a real interval. Thus, if the time scale T
is contained in a real interval [a, b], then a function f : T → Rn is integrable if and only if
the function f∗ : T∗ = [a, b] → Rn given by f∗(t) = f(t∗), where t∗ = inf{s ∈ T, s ≥ t}, is
integrable. In fact,

f∗(t) =
{

f(t), if t ∈ T;
f(ti), if t ∈ (ti, σ(ti)) for ti ∈ RT.

(here the set RT is the set of all right-scattered points that is, by Lemma 3.1 in [6], at
most countable). By the same method as in Proposition 2.19 in [12], the next result can
be proved:

Proposition 1. Let g : [a, b]T → Rn be HK-∆-integrable. Then its primitive

G(t) = (HK)
∫ t

a
g(s)∆s

is ∆-a.e. differentiable and G∆ = g, ∆-a.e.

The following convergence result on time scales will be used in the sequel:

Theorem 1. (Theorem 1.10 in [20]) Let (gn)n∈N ⊂ HK([a, b]T, Rn) be a pointwisely
bounded sequence such that:
i) gn(t) → g(t) for t ∈ [a, b]T \ E, where E ⊂ [a, b]T a ∆-null measure set;
ii) (gn)n is uniformly HK-∆-integrable.
Then g ∈ HK([a, b]T, Rn) and ‖gn − g‖A → 0.
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The primitives of Henstock-Kurzweil integrable functions are characterized by the no-
tion of ACG∗ function, that we recall bellow:

Definition 5. ([13]) i) A function F : [a, b]T → R is absolutely continuous in the restricted
sense (shortly, AC∗) on E ⊂ [a, b]T if, for any ε > 0, there exists ηε > 0 such that,
whenever {[ci, di]T, 1 ≤ i ≤ N} is a finite collection of non-overlapping intervals that have
endpoints in E and satisfy

∑N
i=1 µ∆([ci, di]T) < ηε, one has

∑N
i=1 osc(F, [ci, di]T) < ε;

ii) F is said to be generalized absolutely continuous in the restricted sense (shortly, ACG∗)
if it is continuous and the whole interval can be written as a countable union of sets on
each of which F is AC∗.

It is well known that

Proposition 2. A function F : [a, b]T → Rn is ACG∗ if and only if it is ∆-differentiable
almost everywhere, F∆ is HK-∆-integrable and

(HK)
∫ t

a
F∆(s)∆s = F (t)− F (a), ∀t ∈ [a, b]T.

Related to this, a result proved in [5] (Proposition 3.2) asserts that

Proposition 3. If g : [a, b] → R is ACG∗ and f : [a, b] → Rn is HK-Stieltjes integrable
with respect to g, then the HK-Stieltjes primitive (HKS)

∫ ·
a f(s)dg(s) is ACG∗ and its

derivative equals to fg′ almost everywhere.

3 Main results

Let T be a bounded time scale contained in the real interval T∗ = [a, b] and f : Rn×T →
Rn satisfy the following hypotheses:

H1) for every regulated function x : T → Rn, the map f(x(·), ·) is Henstock-Kurzweil-
∆-integrable.

H2) for every R > 0, the collection

{f(x(·), ·), x ∈ C(T, Rn), ‖x‖C ≤ R}

is uniformly Henstock-Kurzweil-∆-integrable.

The main result of the paper will state that, under these assumptions, the dynamic
equation

x∆(t) = f(x(t), t), ∆− a.e. t ∈ T

can be seen as a generalized differential equation. In order to prove it, we need several
auxiliary properties.
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Proposition 4. Let k : T → Rn be a HK-∆-integrable function. Then the function
k∗ : T∗ → Rn is HK-Stieltjes integrable with respect to g : T∗ → R defined by g(s) = s∗.
Moreover, if we denote by

F2 : T∗ → Rn, F2(t) = (HKS)
∫ t

a
k∗(s)dg(s)

and by

F1 : T → Rn, F1(t) = (HK)
∫ t

a
k(s)∆s,

then
F2 = F ∗

1 .

Proof. The HK-Stieltjes integrability of k∗ with respect to g easily follows from the fact
that g(t) equals to t on T and it is constant on any interval (ti, σ(ti)), where ti ∈ RT.
Concerning the requested equality, as in [24], it suffices to prove that F1 = F2 on T and
that F2 is constant on any interval (ti, σ(ti)), where ti ∈ RT. The second assertion is easy
to check since on such intervals g is constant.
As for the first one, by the properties of HK-integral on time scales, the function F1 is
∆-a.e. differentiable and its ∆-derivative equals to k ∆-a.e. Also, by Proposition 3, F2 is
ACG∗ and its derivative a.e. equals to kg′. If t ∈ T is a right-dense point then

g′(t) = lim
h→0,h>0

g(t + h)− g(t)
h

= lim
h→0,h>0

t + h− t

h
= 1

and so, F∆
2 (t) = k(t). If t is right-scattered then in the same way as in the proof of

Theorem 5 in [24], F∆
2 (t) = k(t). So, F∆

1 (t) = F∆
2 (t) ∆-a.e. This and the fact that

F1(a) = F2(a) = 0 imply, thanks to Proposition 2, that

F1(t) = F2(t), ∀ t ∈ T

and so, the equality is proved.

Lemma 1. Under the hypotheses H1), H2), the function F : Rn × [a, b] → Rn given by

F (x, t) = (HKS)
∫ t

a
f∗(x, s)dg(s)

has the property that for every regulated function x : [a, b] → Rn,∫ b

a
DF (x(τ), t) = (HKS)

∫ b

a
f∗(x(s), s)dg(s).

Proof. Case I. The function x is constant: x(t) = c, for every t ∈ [a, b].
The left-hand side of the requested equality is defined as follows: take a partition of
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the interval [a, b], a system of intermediary points and take then the limit of the sum∑n
j=1(F (τj , αj)− F (τj , αj−1)). In our situation,

n∑
j=1

(F (τj , αj)− F (τj , αj−1))

=
n∑

j=1

(
(HKS)

∫ αj

a
f∗(c, s)dg(s)− (HKS)

∫ αj−1

a
f∗(c, s)dg(s)

)

=
n∑

j=1

(HKS)
∫ αj

αj−1

f∗(c, s)dg(s)

= (HKS)
∫ b

a
f∗(x(s), s)dg(s).

Case II. x is a step function. Then there exists a partition of the whole interval such that,
on each interval of the partition, x is constant. On each such interval the two integrals are,
following the previous discussion, equal and, by the additivity of the generalized integral
and of HK-Stieltjes integral, we get the requested equality.
Case III. x is regulated. It is known that any regulated function is a uniform limit
of step functions, so one can find a sequence (xn)n of step functions uniformly con-
vergent to x. Obviously, x is bounded and we are able to choose R > 0 such that
max {‖xn‖C , ‖x‖C , n ∈ N} ≤ R. So, the sequence (xn)n satisfies the hypotheses of Theo-
rem 1 (where the set E is the empty set), whence

(HK)
∫ ·

a
f(xn(s), s)∆s → (HK)

∫ ·

a
f(x(s), s)∆s

uniformly on [a, b]T. This, together with Proposition 4, gives that

(HKS)
∫ b

a
f∗(x(t), t)dg(t) = lim

n→∞
(HKS)

∫ b

a
f∗(xn(t), t)dg(t).

On the other hand, by a convergence result for generalized Kurzweil integral (e.g. Lemma
A.7 in [1]), ∫ b

a
DF (x(τ), t) = lim

n→∞

∫ b

a
DF (xn(τ), t).

As a consequence of Case II, we obtain that∫ b

a
DF (x(τ), t) = (HKS)

∫ b

a
f∗(x(s), s)dg(s).

The notion of solution for a generalized differential equation is presented in the sequel
([24]):
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Definition 6. Let F : Rn × [a, b] → Rn. A function x : [a, b] → Rn is a solution of the
generalized differential equation

dx

dτ
= DF (x, t)

if for any a ≤ t1 ≤ t2 ≤ b:

x(t2)− x(t1) =
∫ t2

t1

DF (x(τ), t).

We proceed now to give the main result of the paper.

Theorem 2. Let f : T× Rn → Rn satisfy the hypotheses H1) and H2).
i) If x : T → Rn is a solution of dynamic equation

x∆(t) = f(x(t), t), ∆− a.e. t ∈ T

then x∗ : T∗ → Rn is a solution of the generalized differential equation

dx

dτ
= DF (x, t), t ∈ T∗,

where F : Rn × T∗ → Rn is defined by

F (x, t) = (HKS)
∫ t

a
f∗(x, s)dg(s).

ii) Reciprocally, every solution y : T∗ → Rn of the above generalized differential equation
is of the form y = x∗, where x : T → Rn is a solution of the preceding dynamic equation.

Proof. i) Let x : T → Rn be a solution of dynamic equation

x∆(t) = f(x(t), t),∆− a.e. t ∈ T.

Then

x(t) = x(a) + (HK)
∫ t

a
f(x(s), s)∆s, ∀t ∈ T,

whence

x(t∗) = x(a) + (HK)
∫ t∗

a
f(x(s), s)∆s

and, by Proposition 4, we get

x∗(t) = x∗(a) + (HKS)
∫ t

a
f∗(x∗(s), s)dg(s), ∀t ∈ T∗.

Using Lemma 1 we can rewrite this equality as

x∗(t) = x∗(a) +
∫ t

a
DF (x∗(τ), s)
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ad so, x∗ is a solution of this generalized differential equation.
ii) Let now y : T∗ → Rn be a solution of the previously mentioned generalized differential
equation. Then

y(t) = y(a) +
∫ t

a
DF (y(τ), s), ∀t ∈ T∗.

In the same way as in the proof of Theorem 12 in [24] it follows that y is regulated and
so Lemma 1 can be applied in order to get

y(t) = y(a) + (HKS)
∫ t

a
f∗(y(s), s)dg(s), ∀t ∈ T∗.

Since the function g is constant on any interval (ti, σ(ti)), where ti ∈ RT, the function y
is constant on any such interval and thus denoting by x : T → Rn the restriction of y to
T we have y = x∗. Consequently

x∗(t) = x∗(a) + (HKS)
∫ t

a
f∗(x∗(s), s)dg(s), ∀t ∈ T∗,

therefore

x(t) = x(a) + (HK)
∫ t

a
f(x(s), s)∆s, ∀t ∈ T,

and, finally,
x∆(t) = f(x(t), t), ∆− a.e. t ∈ T.

Remark 1. Our theorem could be used to obtain new results for dynamic equations on time
scales applying some known results from the theory of generalized differential equations (as
in [24], where stability properties were obtained).

Let us finally notice that the same connection was proved in [24] under more restrictive
assumptions, namely:

(C1) for every continuous x : T → Rn, t → f(x(t), t) is rd-continuous, i.e. it is
continuous at right-dense points and its left-sided limits exist (and it is finite) at all left-
dense points;

(C2) there exists a regulated function m : T → R+ such that ‖f(x, t)‖ ≤ m(t) for all
x ∈ Rn and t ∈ T;

(C3) there exists a regulated function l : T → R+ and a continuous increasing function
ω : [0,∞) → R+ such that ω(0) = 0 and

‖f(x, t)− f(y, t)‖ ≤ l(t)ω(‖x− y‖), ∀x, y ∈ Rn, t ∈ T.

In particular, hypotheses (C1)-(C3) imply that the involved integral is the Lebesgue inte-
gral (more precisely, Lebesgue-∆-integral, resp. Lebesgue-Stieltjes integral).
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Carathéodory functions, Adv. Difference Equ. 2010, Article ID 650827, 20 pag.

[13] Gordon, R.A., The Integrals of Lebesgue, Denjoy, Perron and Henstock, Grad. Stud.
Math. 4, AMS, Providence, 1994.

[14] Guseinov, G.Sh., Integration on time scales, J. Math. Anal. Appl. 285 (2003), 107-
127.

[15] Hilger, S., Analysis on measure chains - a unified approach, Results Math. 18 (1990),
18-56.



Equations on time scales and generalized equations 257

[16] Kurzweil, J., Generalized ordinary differential equations and continuous dependence
on a parameter, Czechoslovak Math. J. 7, No.82 (1957), 418-449.

[17] Peterson, A. and Thompson, B., Henstock-Kurzweil delta and nabla integrals, J.
Math. Anal. Appl. 323 (2006), 162-178.

[18] Prepelita, V., Calculus of the fundamental matrix for generalized linear differential
equations, Ann. Sci. Math. Qubec 23, No.1 (1999), 87-96.

[19] Saks, S., Theory of the integral, 2nd rev. ed., vol. PWN, Monografie Matematyczne,
Warsaw, 1937.

[20] Satco, B. and Turcu, C., First order multivalued problems on time scales, Fixed Point
Theory, to appear.

[21] Schwabik, S., Generalized Ordinary Differential Equations (Real Analysis Series 5),
World Scientific, Singapore, 1992.

[22] Schwabik, S., Generalized Ordinary Differential Equations and discrete systems,
Archivum Mathematicum 36 (2000), 383-393.

[23] Schwabik, S. and Guoju, Y., Topics in Banach space integration, World Scientific,
Singapore, 2005.

[24] Slavik, A., Dynamic equations on time scales and generalized ordinary differential
equations, J. Math. Anal. Appl. 385 (2012), 534-550.

[25] Tvrdy, M., Generalized differential equations in the space of regulated functions
(Boundary value problems and controllability), Math. Bohem. 116 (1991), 225-244.

[26] Tvrdy, M., Differential and Integral Equations in the Space of Regulated Functions.
Mem. Differential Equations Math. Phys. 25 (2002), 1-104.



258 Bianca-Renata Satco


