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DYNAMIC EQUATIONS ON TIME SCALES SEEN AS
GENERALIZED DIFFERENTIAL EQUATIONS

Bianca-Renata SATCO!

Abstract

In the present paper we prove, in the most natural framework, that dynamic equa-
tions on time scales can be treated as generalized differential equations. More precisely,
we use the Henstock-Kurzweil vector integral and impose only a uniform integrability
condition. Our result generalizes the main result of [24], where the embeddability of
dynamic equations on time scales into generalized differential equations was proved
under some assumptions of Lipschitz continuity-type (and consequently involving the
Lebesgue integral).
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1 Introduction

Since the czech mathematician J. Kurzweil introduced the theory of generalized differ-
ential equations in [16], generalized differential equations were considered in many works,
such as [22], [25], [9] or [18]. There are also several monographs treating this subject, e.g.
[21] or [26].

Two decades after the publication of [16], the necessity of considering such a theory was
once again motivated in [1]: in general, the space of ordinary differential equations is not
complete but, by embedding ordinary equations in the space of generalized differential
equations, we get a complete and compact space, where techniques of topological dynam-
ics can be applied.

More recently, this theory was shown to be connected to that of impulsive differential
equations (see [9], [11]), to the theory of retarded functional differential equations (as in
[10]) or to that of discrete systems (e.g. [22]).

What’s more, in [24] the author shows that even dynamic equations on time scale domains
can be seen as generalized differential equations. The analysis on time scale domains, in-
troduced in 1988 in the PhD Thesis of S. Hilger (see [15]), allows a unified treatment of
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continuous and discrete problems, but not exclusively (we refer to [3], [4] and the refer-
ences therein).

While the Kurzweil integration is the most appropriate to the theory of generalized differ-
ential equations, the main result of [24] works with the Lebesgue-Stieltjes integral as the
involved functions are supposed to satisfy some continuity conditions of Lipschitz-type.
In the present paper, we prove that dynamic equations on time scales can be treated
as generalized differential equations under more natural hypotheses: of integrability in
Henstock-Kurzweil sense. It is worthwhile to remind that the Henstock-Kurzweil integral
(see [13], [7], [23] for functions defined on a real interval or [8] on time scales) gives us
the possibility to study more general problems, taking into consideration the fact that
classical theories of integration do not cover the case of highly oscillatory functions.

2 Preliminaries

We recall some basic elements from the theory of generalized Kurzweil integration. We
call a gauge a positive function . A partition of the real interval [a,b] is a finite family
(evi—1, @), 75);— of non-overlapping intervals covering [a,b] with tags 7; € [ai—1,04]; a
partition is said to be d-fine if for each i € {1,...,n}, [ai—1, ;] C [, — (1), 7% + 0(73)].
Definition 1. A function F : [a,b] X [a,b] — R™ is said to be generalized Kurzweil
integrable if there exists a vector f: DF(r,t) € R™ such that for every € > 0 there exists a
gauge ¢ : [a,b] — Ry with the property that for every d-fine partition of [a, b]:

n

b
Z(F(Ti,ai)F(n,ail))/ DF(r,t)

=1

<e.

The vector f; DF(r,t) is called the generalized Kurzweil integral of F'.

A particular case is the Henstock-Kurzweil-Stieltjes (shortly, HK-Stieltjes) integral
(HKS) f; f(s)dg(s), that can be obtained for the function F(1,t) = f(7)g(t), where
f i ]a,b) = R™ and g : [a,b] — R. Moreover, when g(t) = ¢ the preceding definition
describes the Henstock-Kurzweil (HK) integral.

For more on the generalized Kurzweil integral and its importance in the theory of differ-
ential equations, we refer to [21].

We now remind of several features from the time scale theory; for a survey on this
subject, see [3] or [4] and the references therein.
A time scale T is a nonempty closed set of real numbers with the subspace topology
inherited from the topology of R (such as, T=R,T=Nor T = ¢* = {¢' : t € Z}, where
g > 1). For two points a,b in T we denote by [a,b]r = {t € T : a <t < b} the time scales
interval.

Definition 2. The forward jump operator o : T — T and the backward jump operator
p:T — T are defined by o(t) = inf{s € T : s > t}, respectively p(t) =sup{s € T: s < t}.
Also, inf) = supT (i.e. (M) = M if T has a mazimum M) and sup() = inf T ( i.e.
p(m) =m if T has a minimum m).
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A point t € T is called right-dense, right-scattered, left-dense, left-scattered, dense,
respectively isolated if o(t) = t, o(t) > t, p(t) = t, p(t) < t, p(t) =t = o(t) and
p(t) <t < o(t), respectively. Also, we will use the function u(t) = o(t) — ¢ that is called
the graininess function.

Definition 3. Let f : T — R™ and t € T. f is called A-differentiable at the point t if
there exists an element of R™ (called A-derivative f>(t)) with the property that for any
€ > 0 there exists a neighborhood of t on which

[£(o(8)) = () = fADo(t) = s]|| < elo(t) — sl.

Several simple properties of A-derivatives were proved in [4] (Theorem 1.3):
i) f is continuous at the points where it is A-differentiable;
ii) if f is continuous at the right-scattered point ¢, then f is A-differentiable at ¢ and

iii) if ¢ is right-dense, then f is A-differentiable at ¢ if and only if the limit

i 16 =10

s—t,s>t s—t

exists and is finite. In this case, its value equals to f2(t).

Remark that the time scale calculus gives the possibility to unify (and generalize) the
treatment of differential and difference equations since, in particular,

(i) f2 = f' is the usual derivative if T = R,
(ii) f2 = Af is the usual forward difference operator if T = Z.

The space C([a, b|T, R™) of continuous functions is endowed with the usual (Banach space)

norm | fllc = sup | f(t)].
te€la,b]r

The symbol pa stands for the Lebesgue measure on T (for its definition and properties
we refer the reader to [6]). For properties of Riemann delta-integral we refer to [14] and
for Lebesgue integral on time scales to [2], [3], [4] or [14].

In order to recall the Henstock-Kurzweil-A-integral, let 6 = (d,0r) be a A-gauge, that
is a pair of positive functions such that ér,(t) > 0 on (a,b], dr(t) > 0 and or(t) > o(t) —t
on [a,b). A partition D = {[aj—1, 4]1; 7 ,i = 1,2,...n} of [a,b]r is d-fine whenever:

Ti € [a,;_l,ozi] C [Ti — 5[,(7‘1'),7'1' + 5R(TZ')],V1 <i1<n
(such a partition exists for arbitrary positive pair of functions, see Lemma 1.9 in [17]).

Definition 4. ([8], see also [7], [23] for the particular case T = R)
i) A function f : [a,blr — R™ is Henstock-Kurzweil-A-integrable on [a,b]t if there exists
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an element (HK) f; f(s)As € R™ satisfying the following property: given € > 0, there
exists a A-gauge 0 on |a, bt such that

<e€

n b
> fwalaisaik) - (HE) [ f(s)As
i=1 e

for every é.-fine division D = {[a;—1, a1, T} of [a,b]r. We call it the Henstock- Kurzweil-
A-integral of f on |a,b]r.

On the other hand, a family of Henstock-Kurzweil-A-integrable functions is said to be
uniformly HK-A-integrable if the A-gauge d. can be chosen to be the same for all elements
of the family.

The space of HK-A-integrable R"-valued functions will be denoted by HK([a, b]t, R™) and
we provide it with the Alexiewicz norm:

[flla = sup
te€la,br

k) [ 151

When interested in differential equations, of a great importance are the properties of
the primitives which allow to transfer the differential problem into an integral one. In this
direction, it was proved (in [7], see also [23]) that in the particular case where T = R the
primitive in Henstock-Kurzweil sense (HK) [ f(s)ds is continuous and a.e. differentiable.
In order to present a similar result on time scales (as it was done in [20]), we refer to
[6], where the integrability of a function on time scales is shown to be equivalent to the
integrability of its extension (defined below) to a real interval. Thus, if the time scale T
is contained in a real interval [a, b], then a function f: T — R" is integrable if and only if
the function f*: T* = [a,b] — R"™ given by f*(t) = f(t*), where t* = inf{s € T, s > t}, is
integrable. In fact,

£00) :{ f(t), ift €T
f(ti), ifte (ti, O‘(ti)) for t; € Rr.

(here the set Ry is the set of all right-scattered points that is, by Lemma 3.1 in [6], at
most countable). By the same method as in Proposition 2.19 in [12], the next result can
be proved:

Proposition 1. Let g : [a, bl — R"™ be HK-A-integrable. Then its primitive

G(t) = (HK)/ g(s)As

is A-a.e. differentiable and G® = g, A-a.e.
The following convergence result on time scales will be used in the sequel:

Theorem 1. (Theorem 1.10 in [20]) Let (gn)nen C HK([a,b]r,R™) be a pointwisely
bounded sequence such that:

i) gn(t) — g(t) fort € [a,bly \ E, where E C [a,blr a A-null measure set;

i1) (gn)n 1s uniformly HK-A-integrable.

Then g € HK([a,b]T,R™) and ||gn — g|la — O.
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The primitives of Henstock-Kurzweil integrable functions are characterized by the no-
tion of ACG* function, that we recall bellow:

Definition 5. ([135]) i) A function F : [a,blr — R is absolutely continuous in the restricted
sense (shortly, AC*) on E C [a,b]r if, for any € > 0, there exists n. > 0 such that,
whenever {[c;, d;]lT,1 <i < N} is a finite collection of non-overlapping intervals that have
endpoints in E and satisfy Zfil ua([ciy di]T) < e, one has Zi\;1 osc(F, [c;, d;]T) < €;

i) F is said to be generalized absolutely continuous in the restricted sense (shortly, ACG*)
if it is continuous and the whole interval can be written as a countable union of sets on

each of which F is AC*.

It is well known that
Proposition 2. A function F : [a,bly — R™ is ACG* if and only if it is A-differentiable
almost everywhere, F® is HK-A-integrable and

(HK)/¢FA@ﬂ&n:F@)—PK@,Vtehamm

Related to this, a result proved in [5] (Proposition 3.2) asserts that
Proposition 3. If g : [a,b] — R is ACG* and f : [a,b] — R™ is HK-Stieltjes integrable
with respect to g, then the HK-Stieltjes primitive (HKS) [ f(s)dg(s) is ACG* and its
derivative equals to fg' almost everywhere.

3 Main results

Let T be a bounded time scale contained in the real interval T* = [a,b] and f : R"xXT —
R™ satisfy the following hypotheses:

H1) for every regulated function z : T — R"™, the map f(z(-),-) is Henstock-Kurzweil-
A-integrable.

H2) for every R > 0, the collection
{f(z(), ),z € C(T,R"), [[z]lc < R}
is uniformly Henstock-Kurzweil-A-integrable.

The main result of the paper will state that, under these assumptions, the dynamic
equation
22(t) = f(z(t),t), A—ae teT

can be seen as a generalized differential equation. In order to prove it, we need several
auxiliary properties.
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Proposition 4. Let k : T — R™ be a HK-A-integrable function. Then the function
kE* : T* — R™ is HK-Stieltjes integrable with respect to g : T* — R defined by g(s) = s*.
Moreover, if we denote by

Fy: T* = R", Fy(t) = (HKS) /t k*(s)dg(s)

and by
t
F1 T — Rn, Fl(t) = (HK)/ k‘(S)AS,

then
F, = FY.

Proof. The HK-Stieltjes integrability of k* with respect to g easily follows from the fact
that ¢g(t) equals to t on T and it is constant on any interval (¢;,0(t;)), where t; € Ry.
Concerning the requested equality, as in [24], it suffices to prove that F} = F> on T and
that F» is constant on any interval (t;,0(t;)), where t; € Ry. The second assertion is easy
to check since on such intervals g is constant.
As for the first one, by the properties of HK-integral on time scales, the function Fj is
A-a.e. differentiable and its A-derivative equals to k& A-a.e. Also, by Proposition 3, F5 is
ACG* and its derivative a.e. equals to kg’. If t € T is a right-dense point then
g(t+h)—g(t) . t+h—t

Jt)= lim LTV TIN_

= lim 1
h—0,h>0 h h—0,h>0 h

and so, F*(t) = k(t). If t is right-scattered then in the same way as in the proof of
Theorem 5 in [24], F(t) = k(t). So, FA(t) = F£(t) A-a.e. This and the fact that
Fi(a) = Fy(a) = 0 imply, thanks to Proposition 2, that

Fl(t) = FQ(t), VteT
and so, the equality is proved. O

Lemma 1. Under the hypotheses H1), H2), the function F : R"™ X [a,b] — R™ given by
t
F(z,t) = (HKS)/ f(x,s)dg(s)
has the property that for every regulated function x : [a,b] — R™,
b b
| DFG(r). ) = (KS) [ (als), 5)dg().

Proof. Case I. The function x is constant: x(t) = ¢, for every ¢ € [a, b].
The left-hand side of the requested equality is defined as follows: take a partition of
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the interval [a,b], a system of intermediary points and take then the limit of the sum

> j=1(F(7j,aj) = F(7j,a5-1)). In our situation,

> (F(7j,05) = F (1j,051))
j=1

=y <(HKS) /a " F*(c, s)dg(s) — (HKS) /a o f(e, s)dg(S))

Case II. z is a step function. Then there exists a partition of the whole interval such that,
on each interval of the partition, x is constant. On each such interval the two integrals are,
following the previous discussion, equal and, by the additivity of the generalized integral
and of HK-Stieltjes integral, we get the requested equality.

Case IIl. z is regulated. It is known that any regulated function is a uniform limit
of step functions, so one can find a sequence (x,), of step functions uniformly con-
vergent to x. Obviously, x is bounded and we are able to choose R > 0 such that
max {||zn||c, ||z]/c,n € N} < R. So, the sequence (z), satisfies the hypotheses of Theo-
rem 1 (where the set E is the empty set), whence

HK/fa:n As—>HK/f As

uniformly on [a, b]y. This, together with Proposition 4, gives that

(HKS) / F*(x(t),t)dg(t) = lim (HKS) / [ (@n(t), t)dg(t).

On the other hand, by a convergence result for generalized Kurzweil integral (e.g. Lemma

A.7 in [1]), .
/ DF(x = lim DF(xy(7),1).

—
n—oo a

As a consequence of Case II, we obtain that
b b
| DFG(r). ) = (KS) [ (als), 5)da().

The notion of solution for a generalized differential equation is presented in the sequel

([24]):

O
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Definition 6. Let F' : R" x [a,b] — R™. A function z : [a,b] — R" is a solution of the
generalized differential equation

dzx
— =DF(x,t
dT (:U? )
if for any a <t; <ty <b:
to
x(te) — x(t1) = DF(x(7),t).

t1
We proceed now to give the main result of the paper.

Theorem 2. Let f: T x R™ — R™ satisfy the hypotheses H1) and H2).
i) If x : T — R™ is a solution of dynamic equation

z2(t) = f(x(t),t), A—ae teT

then x* : T* — R"™ is a solution of the generalized differential equation

dx
— =DF(z,t),teT*
dT (':C7 )7 S )

where F': R™ x T* — R"™ is defined by

F(z,t) = (HKS)/ [ (z,5)dg(s).

ii) Reciprocally, every solution y : T* — R™ of the above generalized differential equation
is of the form y = x*, where x : T — R™ is a solution of the preceding dynamic equation.

Proof. i) Let z : T — R™ be a solution of dynamic equation
22(t) = f(x(t),t),A —ae. t €T.

Then .
z(t) = z(a) + (HK)/ f(z(s),s)As, Vt € T,

whence
t*

z(t*) = z(a) + (HK) f(x(s),s)As

a

and, by Proposition 4, we get

z*(t) = x*(a) + (HKS)/ fr(x*(s),s)dg(s), Vt € T*.

Using Lemma 1 we can rewrite this equality as

x*(t) = 2" (a) +/ DF(z*(7),s)
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ad so, x* is a solution of this generalized differential equation.
ii) Let now y : T* — R™ be a solution of the previously mentioned generalized differential
equation. Then

y(t) = y(a) +/ DF(y(r),s), Vt € T

In the same way as in the proof of Theorem 12 in [24] it follows that y is regulated and
so Lemma 1 can be applied in order to get

o(0) = yla) + (KS) [ (0(6),9)dgts), Vi € T

Since the function g is constant on any interval (¢;,0(t;)), where t; € Ry, the function y
is constant on any such interval and thus denoting by = : T — R"™ the restriction of y to
T we have y = z*. Consequently

x*(t) = 2%(a) + (HKS)/ fr(x*(s), s)dg(s), Vt € T,

therefore .
2(t) = 2(a) + (HK) / F(@(s), s)As, ¥t €T,

and, finally,
22(t) = flx(t),t), A —ae. teT.

O]

Remark 1. Our theorem could be used to obtain new results for dynamic equations on time
scales applying some known results from the theory of generalized differential equations (as
in [24], where stability properties were obtained).

Let us finally notice that the same connection was proved in [24] under more restrictive
assumptions, namely:

(C1) for every continuous z : T — R", t — f(x(¢),t) is rd-continuous, i.e. it is
continuous at right-dense points and its left-sided limits exist (and it is finite) at all left-
dense points;

(C2) there exists a regulated function m : T — Ry such that || f(z, )| < m(¢) for all
reR"and teT;

(C3) there exists a regulated function / : T — Ry and a continuous increasing function
w : [0,00) — Ry such that w(0) = 0 and

(2, t) = [y, D)l < LBz = yl), Yo,y R, L€ T.

In particular, hypotheses (C1)-(C3) imply that the involved integral is the Lebesgue inte-
gral (more precisely, Lebesgue-A-integral, resp. Lebesgue-Stieltjes integral).
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