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Abstract
In this paper we give some cohomological obstructions to globalization of the holo-

morphic Liouville vector field, of the totally singular complex Lagrangians and of the
locally complex Lagrange structures defined on a local chart of an affine holomorphic
bundle endowed with the natural holomorphic vertical foliation. We also consider the
transversal distributions, we find the main obstructions to globalization of a complex
nonlinear connection and of the existence of an affine transversal distribution.
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1 Introduction

In the smooth category the cohomological obstructions for the globalization of some
local structures as Liouville vector fields or locally Lagrangians on Lagrangian foliations
were intensively studied in [14, 15, 16]. Also, in [4, 9] some extensions of this results on
holomorphic Lagrangian fibrations and on affine complex foliated manifolds endowed with
a complex tangent structure are given.

The aim of this paper is to obtain similar results in the complex-analytic category
for some local structures on affine holomorphic bundles. Firstly, following some results
concerning affine bundles from the real case [2, 10], we define the affine holomorphic bun-
dle notion and we discuss the holomorphic vector pseudo-fields. Also, the holomorphic
semi-basic 1-forms are defined and a holomorphic transverse Liouville 1-form is obtained.
Next, with respect to the natural holomorphic vertical foliation, we find the cohomological
obstructions to globalization of the holomorphic Liouville vector field, of the totally singu-
lar complex Lagrangians and of the locally complex Lagrange structures defined on a local
chart of an affine holomorphic bundle. Finally, we consider transversal distributions, we
find the cohomological obstruction to globalization of a complex nonlinear connection and
we discuss about the integrability of the horizontal distribution and its holomorphy. We
also obtain the main cohomological obstructions for the existence of an affine transversal
distribution. The notions are introduced here by analogy with the real case intensively
studied by I. Vaisman in several papers.
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2 Affine holomorphic bundles

2.1 Basic definitions and notations

A holomorphic bundle (fibration) is a triplet ξ = (E, π,M), where E and M are
complex manifold which are connected and paracompact and π : E →M is a holomorphic
submersion. We say that E is the total space, M is the base manifold and π is the canonical
projection of the holomorphic bundle ξ. In the sequel we identify the holomorphic bundle
with the total space E. For every z ∈ M , the sets Ez = π−1(z) are closed submanifolds
of E, which are supposed to be connected. Let us denote by n the complex dimension
of M and by m the complex dimension of Ez, for any z ∈ M . Let (Uα, ϕα) be a local
chart on M with the complex coordinates (zk), k = 1, . . . , n and (Vα, ψα) be a local chart
on E with the complex coordinates u = (zk, ηa), k = 1, . . . , n, a = 1, . . . ,m such that
π(Vα) = Uα. Then, at local change maps (Vα, ψα) → (Vβ , ψβ) on E the change rules of
the local complex coordinates on E have the form

z
′j = z

′j(zk) , η
′b = η

′b(zk, ηa), (2.1)

where z
′j are holomorphic functions on zk, and η

′b are holomorphic functions on zk and

ηa and det ∂η
′b

∂ηa 6= 0.

A morphism of the holomorphic bundles π
′

: E
′ → M

′
and π : E → M is a couple

(f0, f1), where f0 : M
′ → M and f1 : E

′ → E such that π ◦ f1 = f0 ◦ π
′
, i.e. f1 sends

fibers to fibers; we also say that f1 is a f0-morphism of holomorphic bundles.

Definition 1. An affine holomorphic bundle is a holomorphic bundle π : E →M in which
the change rules of the local complex coordinates on E have the form

z
′j = z

′j(zk) , η
′b = M b

a(zk)ηa +Bb(zk), (2.2)

where M b
a and Bb are holomorphic functions on zk and detM b

a 6= 0.

Throughout this paper, we assume that E is an affine holomorphic bundle.
Let J be the natural complex structure of manifold E. We also consider T

′
E and

T
′′
E = T ′E to be its holomorphic and antiholomorphic tangent bundles and TCE =

T
′
E ⊕ T

′′
E the complexified tangent bundle of the real tangent bundle TRE. From (2.2)

the following change rules for the natural local frames on T
′
uE result:

∂

∂zk
=
∂z

′j

∂zk

∂

∂z′j
+

(
∂M b

a

∂zk
ηa +

∂Bb

∂zk

)
∂

∂η′b
,

∂

∂ηa
= M b

a

∂

∂η′b
. (2.3)

By conjugation over all in (2.3) we get the change rules of the natural local frames on
T

′′
uE, and then the behaviour of the J complex structure

J

(
∂

∂zk

)
= i

∂

∂zk
, J

(
∂

∂zk

)
= −i ∂

∂zk
, J

(
∂

∂ηa

)
= i

∂

∂ηa
, J

(
∂

∂ηa

)
= −i ∂

∂ηa . (2.4)
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The natural dual bases on T
′∗
u E change according to the rule

dz
′j =

∂z
′j

∂zk
dzk , dη

′b =
(
∂M b

a

∂zk
ηa +

∂Bb

∂zk

)
dzk +M b

adη
a (2.5)

and by conjugation we obtain the change rules of the natural dual bases on T
′′∗
u E.

Thus, the coordinates of the vectors Z = Zk ∂
∂zk + Za ∂

∂ηa ∈ Γ(T
′
E) have the following

change rules

Z
′j =

∂z
′j

∂zk
Zk , Z

′b =
(
∂M b

a

∂zk
ηa +

∂Bb

∂zk

)
Zk +M b

aZ
a (2.6)

and the coordinates of the co-vectors ω = ωkdz
k + ωadη

a ∈ Γ(T
′∗E) change according to

the rules

ω
′
j =

∂zk

∂z′j
ωk +

(
∂Ma

b

∂z′j
η
′b +

∂Ba

∂z′j

)
ωa , ω

′
b = Ma

b ωa. (2.7)

By conjugation over all in (2.6) and (2.7) we get the change rules of the coordinates of the
vectors from Γ(T

′′
E) and of the co-vectors from Γ(T

′′∗E), respectively.

Definition 2. An affine local section in the affine holomorphic bundle E is a holomorphic
map s : Uα → E such that π ◦ s = Id|Uα and its local components change according to the
rule

s
′b(z

′j) = M b
a(zk)sa(zk) +Bb(zk). (2.8)

The set of affine sections on E is denoted by Γ(E) and it is an affine module over
F(M), i.e. for every f1, . . . , fp ∈ F(M) such that f1 + . . .+ fp = 1 and s1, . . . , sp ∈ Γ(E),
then f1s1 + . . .+fpsp ∈ Γ(E), where the affine combination is taken at every point z ∈M .
Using a partition of the unity on the base M , which can be smooth but not holomorphic,
it can be easily proved that every affine holomorphic bundle allows an affine section.

We notice that a holomorphic vector bundle π : E →M can be canonically associated
with an affine holomorphic bundle π : E → M . More precisely, using local coordinates,
an affine holomorphic bundle reduces to a holomorphic vector bundle if in (2.2) we have
Bb = 0. In this case, we say that E is of holomorphic vector type or according to the
terminology from [10], we call E a central affin holomorphic bundle.

Let us consider V
′
uE = kerπ∗|u for every u = (z, η) ∈ E, then we obtain the vertical

distribution or the vertical sub-bundle of T
′
E, denoted by V

′
E which in view of (2.3) is an

integrable and holomorphic one. This distribution is tangent to the holomorphic vertical
foliation V (the foliation by fibers of π). Let Γ(V

′
E) be the module of the holomorphic

vertical sections. The local complex coordinates on V
′
E have the form (zk, ηa, ζa) and

change by the rules

z
′j = z

′j(zk) , η
′b = M b

a(zk)ηa +Bb(zk) , ζ
′b = M b

aζ
a. (2.9)

Definition 3. A Liouville type section is a holomorphic vertical section S ∈ Γ(V
′
E) which

has the local form
Sa(zk, ηa) = ηa + Ca(zk), (2.10)

where Ca are holomorphic functions on (zk) variables.
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Similarly to the real case [10], using (2.2), (2.9) and (2.10) we obtain

Proposition 1. Every Liouville type section in Γ(V
′
E) defines an affine section in Γ(E)

and conversely.

2.2 Holomorphic vector pseudo-fields

In this subsection, by analogy with the real case, [10], we define the holomorphic
vector pseudo-field notion on a holomorphic bundle. We also obtain an inductive method
in obtaining affine holomorphic bundles canonically associated with a holomorphic vector
pseudo-field.

Let Uα = π(Vα). A complex (1, 0)-vector field (or more generally a (p, 0)-vector field)
on M is holomorphic if its local components are holomorphic functions on (zk) variables.

Definition 4. A holomorphic vector pseudo-field on E is an asssociation of a local holo-
morphic vector field Γα ∈ Xhol(Vα) with every domain Vα of the given atlas on E, such
that Γα(ηa) = 0 and for every two domains Vα and Vβ which have the complex co-
ordinates (zk, ηa) and (z

′j , η
′b), respectively, then on the intersection Vα ∩ Vβ we have

Γα(zk) = Γβ(zk) and Γα(z
′j) = Γβ(z

′j).

From the above definition, we obtain the following change rule for Γ:

Γβ = Γα − Γα(η
′b)

∂

∂η′b
. (2.11)

Conversely, it can be proved that the association of a local holomorphic vector field Γα ∈
Xhol(Vα) with the domain Vα, such that condition (2.11) holds on the intersection Vα∩Vβ ,
then a holomorphic vector pseudo-field is obtained.

In the following we present some examples of holomorphic vector pseudo-fields:

1) Let π : E → M be a holomorphic bundle and Z ∈ Xhol(M) be a holomorphic
vector field on the base M . If the holomorphic vector field Z has the local form
Z = Zk(z) ∂

∂zk ∈ Xhol(Uα) then, Γα = Zk(z) ∂
∂zk is a holomorphic vector pseudo-field

on Vα = π−1(Uα).

2) Let π : E →M be a holomorphic bundle and D : V
′
(E) → T

′
M be an π-morphism

of holomorphic vector bundles, where T
′
M is the holmorphic tangent bundle of M

and V ∈ Xhol(V
′
(E)) is a holmorphic vertical vector field on E.

Using the local complex coordinates, if V = V a(z, η) ∂
∂ηa ∈ Xhol(V

′
E) and

V a(z, η)
∂

∂ηa

D→ Dk
a(z, η)V a(z, η)

∂

∂zk

(Zk = Dk
aV

a are holomorphic functions on V
′
(E)) and { ∂

∂zk } are holomorphic vector
fields on M , then Γα = Dk

a(z, η)V a(z, η) ∂
∂zk ∈ Xhol(Vα) defines a holomorphic vector

pseudo-field (here { ∂
∂zk } are local vector fields on E).
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Remark 1. In the second example we can consider the particular case when V = ηa ∂
∂ηa is

the holomorphic Liouville vector field. Then, the associated holomorphic pseudo-field has
the local form Γα = Dk

a(z, η)ηa ∂
∂zk .

We have,

Proposition 2. If π : E → M is an affine holomorphic bundle and Γ is a holomorphic
vector pseudo-field on E, then there is an affine bundle π

′
: E

′ → E and a holomorphic
vector pseudo-field Γ

′
on E

′
which is naturally induced by Γ.

Proof. We assume that the local complex coordinates change on E according to the for-
mulas (2.2) and we define the change rule of the complex coordinates on E

′
on π

′−1(Vα)∩
π
′−1(Vβ) by

ζ
′b(zk, ηa, ζa) = M b

a(zk)ζa + Γα(η
′b). (2.12)

In the sequel we prove that π
′
: E

′ → E is an affine holomorphic bundle over E. Consider
(z

′′l, η
′′c, ζ

′′c) the local complex coordinates in another local chart π
′−1(Vγ) of E

′
which

change according to the rules

z
′′l = z

′′l(zk) , η
′′c = M c

b (zk)η
′b +B

′′c(zk) , ζ
′′c = M c

b (zk)ζ
′b + Γβ(η

′′c). (2.13)

Let us prove that (2.13) is invariant at local charts changes on E
′
. The link between the

local complex coordinates (zk, ηa, ζa) and (z
′′l, η

′′c, ζ
′′c) is

z
′′l = z

′′l(zk);
η
′′c = M c

b (z
′j)η

′b +B
′′c(z

′j)
= M c

b (z
′j)[M b

a(zk)ηa +B
′b(zk)] +B

′′c(z
′j)

= M c
a(zk)ηa +B

′′c(zk),

where B
′′c(zk) = M c

b (z
′j)B

′b(zk) +B
′′c(z

′j(zk)) and

ζ
′′c = M c

b (z
′j)ζ

′b + Γβ(η
′′c)

= M c
b (z

′j)[M b
a(zk)ζa + Γα(η

′b)] + Γβ(η
′′c)

= M c
a(zk)ζa +M c

b (z
′j)Γα(η

′b) + Γβ(η
′′c)

= M c
a(zk)ζa +M c

b (z
′j)Γα(η

′b) + Γα(η
′′c)− Γα(η

′b)
∂η

′′c

∂η′b

= M c
a(zk)ζa + Γα(η

′′c),

where in the last equality we used (2.11). Thus π
′

: E
′ → E is an affine holomorphic

bundle. We define now
Γ
′
α = Γα + ζa ∂

∂ηa

on π
′−1(Vα). We must prove that Γ

′
defines a holomorphic vector pseudo-field on E

′
.

Indeed, it is obvious that Γ
′
α(ζa) = 0 and on the intersection π

′−1(Vα) ∩ π′−1(Vβ) of two
domains of local charts on E

′
, we have

Γ
′
α(zk) = Γα(zk) = Γβ(zk) = Γ

′
β(zk) , Γ

′
α(ηa) = Γα(ηa) + ζa∂η

a

∂ηa
= ζa,
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Γ
′
α(z

′j) = Γα(z
′j) + ζa∂z

′j

∂ηa
= Γα(z

′j) = Γβ(z
′j) = Γ

′
β(z

′j),

and
Γ
′
β(ηa) = Γβ(ηa) + ζ

′b ∂η
a

∂η′b
= Γβ(ηa) + ζ

′bMa
b = ζa = Γ

′
α(ηa),

Γ
′
β(η

′b) = Γβ(η
′b) + ζ

′b∂η
′b

∂η′b
= ζ

′b = Γα(η
′b) +M b

aζ
a = Γα(η

′b) + ζa∂η
′b

∂ηa
= Γ

′
α(η

′b)

which ends the proof.

2.3 Holomorphic semi-basic 1-forms

Let us consider the quotient bundle Q
′
E = T

′
E/V

′
E. Then we obtain the following

holomorphic vector bundles on E exact sequence

0 → V
′
E

i→ T
′
E

p→ Q
′
E = E ×M T

′
M → 0, (2.14)

where i and p are the canonical injection and the canonical projection, respectively. We
have for V

′
E and Q

′
E the local bases

{
∂

∂ηa

}
, a = 1, . . . ,m and

{
[ ∂
∂zk ] = p( ∂

∂zk )
}
, k =

1, . . . , n, respectively. If we put, for every u ∈ E,

V
′⊥
u E = {ϕ ∈ Γ(T

′∗
u E) : ϕ(Z) = 0 , ∀Z ∈ Γ(V

′
uE)},

we obtain a sub-bundle of T
′∗E called the orthogonal dual of V

′
uE. Now, if we consider

Q
′⊥E = T

′∗E/V
′⊥E then we obtain a new exact sequence of vector bundles over E

0 → E ×M T
′∗M = V

′⊥E
j→ T

′∗E
q→ Q

′⊥E → 0, (2.15)

where j and q are the canonical injection and the canonical projection, respectively. For
V

′⊥E and Q
′⊥E we have the local bases {dzk}, k = 1, . . . , n and {[dηa] = q(dηa)}, a =

1, . . . ,m, respectively. If the change rule of the local coordinates is given by (2.1), then we
have the following change rule for the local bases

{
[ ∂
∂zk ]

}
, k = 1, . . . , n and {[dηa]}, a =

1, . . . ,m [
∂

∂zk

]
=
∂z

′j

∂zk

[
∂

∂z′j

]
,

[
dη

′b
]

=
∂η

′b

∂ηa
[dηa] . (2.16)

Thus, it follows that Q
′∗E and V

′∗E are canonically isomorphic with V
′⊥E and Q

′⊥E,
respectively. In a similar way Q

′
E and Q

′∗E are canonically isomorphic with π∗(T
′
M)

and π∗(T
′∗M), respectively.

A complex p-form ϕ on a complex manifold M is called holomorphic if it is of type
(p, 0) and its local coefficients are holomorphic functions on (zk) variables, namely ∂ϕ = 0.

Now, if γ is a holomorphic 1-form on the complex manifold E, then similarly to [5]
Ch. II, we can prove that the following properties are equivalent:

i) For any vertical vector field Z ∈ Γ(V
′
E), iZγ = 0.
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ii) For any u = (z, η) ∈ E, there is a unique form ϕ ∈ T ′∗
π(u)M such that

γu = π∗uϕ. (2.17)

iii) γ is a section of the holomorphic fibration

pr1 : E ×M T
′∗M → E. (2.18)

A holomorphic 1-form γ on E is said to be semi-basic if it has any one of these three
properties. The form γ is basic, namely iZγ = LZγ = 0 for any Z ∈ Γ(V

′
E) if it is the

pull-back π∗µ of a holomorphic 1-form µ on M . To any holomorphic semi-basic 1-form γ,
there is a correspondent fiber morphism f = pr2 ◦γ : E → T

′∗M (pr2 being the projection
E×M T

′∗M → T
′∗M). Conversely, if a fiber morphism f : E → T

′∗M is given, the form γ
such that γu = π∗uf(u) is semi-basic. In particular for the holomorphic cotangent bundle
p : T

′∗M → M , the semi-basic form corresponding to the identity mapping of T
′∗M is

the natural holomorphic Liouville 1-form θM . Also, similarly to [5] Ch. II, we can prove
in our case the relation between γ and f as follows:

Proposition 3. For any holomorphic semi-basic 1-form γ on E, there is a fiber morphism
f : E → T

′∗M such that γ = f∗θM . Conversely if f : E → T
′∗M is a morphism then the

form f∗θM is a holomorphic semi-basic 1-form on E.

Proof. We use the calculus in local complex coordinates. Let (z1, . . . , zn, η1, . . . , ηm) be
the local complex coordinates on π−1(Uα) and (z1, . . . , zn, ζ1, . . . , ζn) be the local complex
coordinates on p−1(Uα), where (Uα, (zk)) is a local chart in M and p : T

′∗M → M . The
forms γ and θM may be locally written by γ = γi(zk, ηα)dzi , θM = ζidz

i. Then the
morphism f is defined by γi = ζi.

Proposition 4. The 1-forms induced on the complex manifold E ×M T
′∗M by the holo-

morphic Liouville 1-forms θE on T
′∗E and θM on T

′∗M coincide. In other words we
have

j∗θE = pr∗2θM . (2.19)

Proof. This can be easily cheeked using local coordinates (z1, . . . , zn, ζ1, . . . , ζn) on T
′∗M

and (z1, . . . , zn, η1, . . . , ηm, ζ1, . . . , ζn, t1, . . . , tm) on T
′∗E. The submanifold E ×M T

′∗M
of T

′∗E is defined locally by t1 = . . . = tm = 0. We have θE = ζidz
i + tαdη

α , θM = ζidz
i,

hence j∗θE = pr∗2θM = ζidz
i.

The form γ = pr∗2θM is by definition basic with respect to the holomorphic projection
E ×M T

′∗M → T
′∗M . It could be called the holomorphic transverse Liouville 1-form.

3 Some global results

Let V be the holomorphic vertical foliation of E with the leaves characterized by
zk = const. As we have already seen, the holomorphic tangent vectors of the leaves define
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the structural subbundle T
′V = V

′
E of T

′
E spanned by { ∂

∂ηa } and with the transition
functions M b

a(z).
For the holomorphic vertical foliation V, we denote by Ω0

pr(E) the sheaf of germs of
holomorphic projectable (foliated) fuctions on E and by A0

pr(E,V) the sheaf of germs of
leafwise holomorphic vertical functions, locally given by

f = αa(zk)ηa + β(zk), (3.1)

where αa(z), β(z) ∈ Ω0
pr(E).

3.1 Holomorphic Liouville vector field

We can construct the following exact sequence

0 → Ω0
pr(E) i→ A0

pr(E,V)
p
′

→ Ω0
pr(E)⊗ V

′∗E → 0 (3.2)

explicitly given by β i→ αaη
a + β

p
′

→ αadη
a.

Now, let us consider the holomorphic Liouville vector field on E, locally given in the
chart (Vα, ψα) by

Γα = ηa ∂

∂ηa
. (3.3)

Then, on the intesection Vα ∩ Vβ 6= φ by (2.2) and (2.3) we have

Γβ − Γα = η
′b ∂

∂η′b
− ηa ∂

∂ηa
= Bb ∂

∂η′b
(3.4)

and we see that the right-hand side of (3.4) defines a holomorphic vector field with co-
efficients in Ω0

pr(E). Thus, the difference Γαβ = Γβ − Γα yields a cocycle (δΓ)αβγ =
Γβγ − Γαγ + Γαβ = 0. This cocycle defines a Cèch cohomology class

[Γα] ∈ H1(E,Ω0
pr(E)) (3.5)

which will be called linear obstruction of V, and its vanish yields Γα is globally defined.
By the same considerations as in [14], we have

Proposition 5. The affine holomorphic bundle π : E →M is of holomorphic vector type
if and only if [Γα] = 0.

Proof. The necessity is obvious. Conversely, if [Γα] = 0, then there is an adapted atlas
where

B
′b ∂

∂η′b
= ψ

′b(z
′j)

∂

∂η′b
− ψa(zk)

∂

∂ηa
(3.6)

with ψa holomorphic functions on (zk) variables. Then, in the new coordinates z̃k = zk

and η̃a = ηa − ψa(zk) we obtain B̃b(z̃k) = 0.

Remark 2. We notice that the obstruction to globalization of the conjugated Liouville
vector field Γ = ηa ∂

∂ηa can be obtained in similar manner.
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3.2 Totally singular complex Lagrangians

In this subsection, as in the real case [11], we can consider the totally singular complex
Lagrangian notion on an affine holomorphic bundle E, that is a real-valued function L :
E → R which is affine in the fibers coordinates, or equivalently it has a null vertical
complex hessian. Such a complex Lagrangian is locally given in the chart (Vα, ψα) by

Lα(zk, ηa) = αa(zk)(ηa + ηa) + β(zk), (3.7)

where α = αa(zk)dηa ∈ Γ(V
′∗E) and αa(zk), β(zk) ∈ ΩR

pr(E), where ΩR
pr(E) is the sheaf

of germs of real-valued projectable functions on E.
If we denote by AR

pr(E,V ⊕ V) the sheaf of germs of functions locally given by (3.7),
then similarly to (3.2) we can construct the following exact sequence

0 → ΩR
pr(E) i→ AR

pr(E,V ⊕ V)
p̃→ ΩR

pr(E)⊗ (V
′∗E ⊕ V

′′∗E) → 0 (3.8)

explicitly given by β i→ αa(ηa + ηa) + β
p̃→ αa(dηa + dηa).

Then, on the intersection Vα ∩ Vβ 6= φ from (2.2) and (3.7) we have

Lαβ := Lβ − Lα = α
′
b(B

b +B
b) (3.9)

which yields a cocycle (δL)αβγ = Lβγ − Lαγ + Lαβ = 0. This cocycle defines a Cèch
cohomology class

[Lα] ∈ H1(E,ΩR
pr(E)). (3.10)

Thus, we obtain

Proposition 6. [Lα] = 0 yields Lα is globally defined.

3.3 Locally complex Lagrange structures

In this subsection we generalize in the case of affine holomorphic bundles some re-
sults from [9] concerning to globalization of some locally complex Lagrange structures on
complex tangent manifolds.

Let Lα : E → R+ be a complex Lagrange function on the affine holomorphic bundle
E, defined on Vα ⊂ E, domain of local chart.

Definition 5. We say that a family {E,Lα} is a locally complex Lagrange structure on
E, if there is an atlas such that gab = ∂2Lα/∂η

a∂ηb glue up to a global hermitian metric
on V

′
E.

If {E,Lα} defines a locally complex Lagrange structure on E, by integration of gab,
we obtain a complex Lagrangian L : E −→ R+ such that Lα = L|Vα + lα, where lα is an

affine real valued form on E, i.e. there is
α
Aa (z) and

α
B (z) ∈ R+ such that

Lα = L|Vα+
α
Aa (ηa + ηa)+

α
B . (3.11)

On the intersection Vα ∩ Vβ we can define a cocycle Lαβ := Lβ −Lα , L being closed with
respect to differential (δL)αβγ = Lβγ − Lαγ + Lαβ = 0. Denoted by [Lα] the cohomology
class defined by cocycle Lαβ . We have
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Proposition 7. [Lα] ∈ H1(E,A0
R(E,V ⊕ V)) and [Lα] = 0 yields L is globally defined.

Let us see when [Lα] = 0. We can construct an exact sequence over affine real valued
functions, without requesting their holomorphy,

0 → Φ0
R(E) i→ A0

R(E,V ⊕ V) π1,0

→ Φ(1,0)
R (E) → 0 (3.12)

explicitly given by the corespondence
α
B→

α
Aa (ηa + ηa)+

α
B→

α
Aa dη

a. This induces the
following exact sequence of cohomology groups

0 → H1(E,Φ0
R(E)) i∗→ H1(E,A0

R(E,V ⊕ V))
(π1,0)∗→ H1(E,Φ(1,0)

R (E)) → . . . .

Let [Lα]1 = (π1,0)∗[Lα] ∈ H1(E,Φ(1,0)
R (E)). If [Lα]1 = 0 then [Lα]1 ∈ ker(π1,0)∗ = Im i∗

and, therefore, there exists [Lα]2 ∈ H1(E,Φ0
R(E)) such that i∗[Lα]2 = [Lα]. Hence, we can

state

Proposition 8. [Lα] = 0 if and only if [Lα]1 = [Lα]2 = 0.

These are the main obstructions to globalization of locally complex Lagrange structure
on an affine holomorphic bundle E.

4 Transversal distributions

As in the real case for vector (affine) bundles [2, 6] or the general case of holomorphic
foliations [13], a normalization of the holomorphic vertical distribution V

′
E is a distribu-

tion H
′
E on E which is supplementary to V

′
E in T

′
E. The distribution H

′
E is called

horizontal distribution (or complex nonlinear connection on E, briefly c.n.c.). Such a nor-
malization can be defined by a right spliting of the exact sequence (2.14), i.e. by a map
σ : Q

′
E → T

′
E which satisfies the conditions that σ is an E-morphism of holomorphic

bundles and p ◦ σ = Id|Q′E .
Denoting as H

′
E = σ(Q

′
E), it is a subbundle of T

′
E which is supplementary to V

′
E,

thus we obtain a normalization of V
′
E with H

′
E suitable horizontal bundle. In local

coordinates, we can consider

δ

δzk
= σ

(
p

(
∂

∂zk

))
=

∂

∂zk
−Na

k

∂

∂ηa
, k = 1, . . . , n (4.1)

and { δ
δzk } is a local basis of the sections of H

′
E, called adapted for the c.n.c. The local

functions Na
k (z, η) on E are called the coefficients of the c.n.c.

The change rule of the adapted basis is

δ

δzk
=
∂z

′j

∂zk

δ

δz′j
(4.2)

and consequently, the change rule for the coefficients Na
k of the c.n.c. is

∂z
′j

∂zk
N

′b
j = M b

aN
a
k −

(
∂M b

a

∂zk
ηa +

∂Bb

∂zk

)
. (4.3)
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Conversely, if we assume that on the domain of every local chart Vα on E, the local
functions Na

k (z, η) are given such that the change rule (4.3) on the intersection of two
domains hold, then the map σ locally given by (4.1) is a normalization of V

′
E. The

normalization σ gives an embedding of Q
′
E in T

′
E and a decomposition of T

′
E in the

direct sum
T

′
E = H

′
E ⊕ V

′
E. (4.4)

By conjugation over all in (4.4) we get a decomposition of the complexified tangent bundle
of E, namely

TCE = H
′
E ⊕ V

′
E ⊕H

′′
E ⊕ V

′′
E, (4.5)

where H
′′
E is spanned by { δ

δzk } and V
′′
E is spanned by { ∂

∂ηa }. The dual adapted bases
are locally given by

{dzk} , {δηa = dηa +Na
k dz

k} , {dzk} , {δηa = dηa +Na
k
dzk}. (4.6)

We notice that as in the case of holomorphic vector bundles [8], a normalization of V
′
E

can be derived from a regular complex Lagrangian on E, that is a real valued function
L : E → R such that gab = ∂2L/∂ηa∂ηb defines a hermitian metric tensor on the fibers of
the vertical bundle V

′
E. If we denote by (gba) the inverse of (gab), then by using (2.3),

we obtain that the following local functions

CL

Na
k = gba ∂2L

∂zk∂ηb
(4.7)

verify the change rule (4.3) and we call this normalization the Chern-Lagrange c.n.c. on
the affine holomorphic bundle E.

We can consider now the complex tensor field locally given in chart Vα by

Nα = Na
k

∂

∂ηa
⊗ dzk ∈ Γ(V

′
E ⊗Q

′∗E).

Then, on the intersection Vα ∩ Vβ 6= φ from (2.3), (2.5) and (4.3) we have

Nβ −Nα = −M c
b

(
∂M b

a

∂zk
ηa +

∂Bb

∂zk

)
∂

∂ηc
⊗ dzk (4.8)

and we see that the right-hand side of (4.8) defines a complex tensor field with coefficients
in A0

pr(E,V). Thus, the difference Nαβ := Nβ − Nα yields a cocycle (δN)αβγ = Nβγ −
Nαγ +Nαβ = 0. This cocycle defines a Cèch cohomology class

[Nα] ∈ H1(E,A0
pr(E,V)) (4.9)

which will be called obstruction to globalization of a c.n.c. on an affine holomorphic bundle
E. Thus, we obtain

Proposition 9. [Nα] = 0 yields Nα is globally defined.
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4.1 Integrability and holomorphy

However, H
′
E is smoothly isomorphic to Q

′
E which is holomorphic as V

′
E, generally

H
′
E is not a holomorphic subbundle of T

′
E. The existence of a holomorphic supplemen-

tary distribution H
′
E is characterized in the general case of holomorphic foliations [13],

by the vanishing of a certain cohomological obstruction, as follows:
By the change rule (4.3), the following 1-form:

Φa
k = ∂Na

k (4.10)

defines a global 1-form Φ on E with values in Hom(Q
′
E, V

′
E) which is d

′′
-closed, hence it

gives a cohomology class [Φ] ∈ H1(E,O(Hom(Q
′
E, V

′
E))) (in view of the Dolbeault-Serre

theorem [12]). Thus, we have

Theorem 1. ([13]). The vertical distribution V
′
E admits a supplementary holomorphic

distribution if and only if [Φ] = 0.

The horizontal distribution HCE = H
′
E ⊕H

′′
E is said to be integrable if it is closed

under the Lie bracket operator, namely [Γ(HCE),Γ(HCE)] ⊂ Γ(HCE).
The obstruction for the integrability of HCE is given by the vanishing of the integra-

bility tensors Ra
jk and Ra

jk
, locally given by

Ra
jk =

δNa
j

δzk
−
δNa

k

δzj
, Ra

jk
=
δNa

j

δzk
. (4.11)

If the horizontal distribution is integrable, then its holomorphy can be studied with the
help of the partial Bott connection on E, that is a connection D of (1, 0)-type on V

′
E

defined by
DXY = v

′
[X,Y ] , ∀X ∈ Γ(H

′
E), ∀Y ∈ Γ(V

′
E), (4.12)

where v
′
is the natural vertical projection.

By similar calculations as in [1], we get that the curvature of the partial Bott connection
D is given by

R = Π− Λ ∧ Λ, (4.13)

where Π = (Πa
b ) and Λ = (Λa

b
) are locally given by

Πa
b = −1

2
∂Ra

jk

∂ηb
dzj ∧ dzk −

∂Ra
jk

∂ηb
dzj ∧ dzk , Λa

b
=
∂Na

k

∂ηb
dzk. (4.14)

Now, from (4.13) and (4.14) we get

Proposition 10. An integrable transversal distribution H
′
E is holomorphic if and only

if the partial Bott connection D is flat.
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4.2 Affine transversal distributions

Definition 6. We say that H
′
E is an affine transversal distribution of V

′
E if the local

functions Na
k are locally given by

Na
k (z, η) = Γa

bk(z)η
b + βa

k(z), (4.15)

where Γa
bk(z) and βa

k(z) are projectable functions on E, not necessarily holomorphic.

Imposing the change rule (4.3) we get the change rules for Γa
bk and βa

k , namely

∂z
′j

∂zk
Md

c Γ
′b
dj = M b

aΓa
ck −

∂M b
c

∂zk
,
∂z

′j

∂zk
Γ
′b
djB

d +
∂z

′j

∂zk
β
′b
j = M b

aβ
a
k −

∂Bb

∂zk
. (4.16)

The relations (4.3) and (2.2) show that θ = dV(∂Na
k /∂η

b) glue up to a global dV -closed
form which yields a cohomology class

[θ] ∈ H1(E, V
′
E ⊗ V

′∗E ⊗H
′∗E), (4.17)

where E denotes the sheaf of germs of foliated sections of a foliated holomorphic bundle
and dV is the exterior derivative along the leaves of holomorphic foliation V.

By the same considerations as in the real case [14], we notice that [θ] does not depend
on the choice of the affine transversal distribution from (4.15). Indeed, if we choose another
affine transversal distribution H̃

′
E with the local coefficients Ña

k , then P a
k = Ña

k − Na
k

defines a global section of V
′
E⊗H ′∗E. Clearly, if an affine transversal distribution exists,

then [θ] = 0. Conversely, if [θ] = 0, we have

dV(∂Na
k /∂η

b) = −dV(γa
bk) ; γa

bk ∈ Γ(V
′
E ⊗ V

′∗E ⊗H
′∗E). (4.18)

The local forms γa
bkδη

b are dV -closed, and provide some

[γ] ∈ H1(E, V
′
E ⊗H

′∗E) (4.19)

which does not depend on the choice of γa
bk. Finally, if [γ] = 0, we shall obtain P a

k ∈
Γ(V

′
E ⊗H

′∗E) such that γa
bk = ∂P a

k /∂η
b, and

δ̃ηa = dηa + (Na
k + P a

k )dzk = 0

defines an affine transversal distribution H̃
′
E. Hence, we have

Proposition 11. The holomorphic vertical distribution V
′
E has an affine transversal

distribution if and only if [θ] = 0 and [γ] = 0.

Example 1. Let E = E be a holomorphic vector bundle endowed with a complex Finsler
structure F , purely hermitian [1, 7], with the fundamental tensor hab(z) = ∂2F 2/∂ηa∂ηb

and Γa
bk(z) = hca∂hbc/∂z

k the local coefficients of the Chern-Finsler linear connection

on E. Then the Chern-Finsler c.n.c.
CF
Na

k = Γa
bk(z)η

b = 0 defines an affine transversal
distribution on E.
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silvania University of Braşov, Ser. III, 2(51) (2009) , 193-198.

[4] Ida, C., Some global results on holomorphic Lagrangian fibrations, Bulletin of Math.
Analysis and Appl., 3 (1), (2011), 35-44.

[5] Libermann, P. and Marle, C.-M., Symplectic Geometry and Analytical Mechanics,
Reidel, Dordrecht, 1987.

[6] Miron, R. and Anastasiei, M., Vector bundles, Lagrange spaces. Applications to the
theory of relativity, Geometry Balkan Press, Bucharest, (1997).

[7] Munteanu, G., Complex spaces in Finsler, Lagrange and Hamilton Geometries,
Kluwer Acad. Publ., 141 FTPH (2004).

[8] Munteanu, G. and Iordachiescu, B., Gauge complex field theory, Balkan J. of Geom.
and its Appl., 11(2) (2006), 67-75.

[9] Munteanu, G. and Ida, C., Affine structure on complex foliated manifolds, Anal. St.
Univ. ” Al. I. Cuza”, Iasi, 51, s.I. Mat. (2005), 147-154.

[10] Popescu, M. and Popescu, P., A general background of higher order geometry and
induced objects on subspaces, Balkan J. of Geom. and its Appl., 7(1) (2002), 79-90.

[11] Popescu, M., Totally singular Lagrangians and affine Hamiltonians, Balkan J. of
Geom. and its Appl., 14(1) (2009), 60-71.

[12] Vaisman, I., Cohomology and differential forms, M. Dekker Publ. House, (1973).

[13] Vaisman, I., A class of complex analytic foliate manifolds with rigid structure, J. Diff.
Geom. 12 (1977), 119-131.

[14] Vaisman, I., df Cohomology of Lagrangian foliations, Monatshefte fur Math., 106
(1988), 221-244.

[15] Vaisman, I., Basics of Lagrangian foliations, Publ. Matemátiques 33, (1989), 559-575.

[16] Vaisman, I., Lagrange geometry on tangent manifolds, Int. J. of Math. and Math.
Sci., 51 (2003), 3241-3266.


