A GENERALIZATION OF KANTOROVICH OPERATORS AND A SHAPE-PRESERVING PROPERTY OF BERNSTEIN OPERATORS

Radu PĂLTĂNEA ${ }^{1}$

Abstract

We construct a generalization of the Kantorovich operators, depending on a parameter $b \geq 0$ and we prove that if a function $f \in C^{1}[0,1]$ with $f(0)=0$, satisfies the differential inequality $f^{\prime}+b f \geq 0$, then functions $B_{n}(f), n \in \mathbb{N}$ satisfy the same inequality, where B_{n} are the Bernstein operators.

2000 Mathematics Subject Classification: 41A36, 41A35.
Key words: Kantorovich type operators, Bernstein operators, shape-preserving property.

1 Introduction

The Bernstein operators on the space $C[0,1]$ are defined by:

$$
\begin{equation*}
B_{n}(f, x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) p_{n, k}(x), f \in C[a, b], x \in[0,1], n \in \mathbb{N}, \tag{1}
\end{equation*}
$$

where

$$
p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k} .
$$

The Kantorovich modification of the Bernstein operators are given by:

$$
\begin{equation*}
K_{n}(f, x)=(n+1) \sum_{k=0}^{n} p_{n, k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) d t, f \in C[0,1], x \in[0,1], n \in \mathbb{N} . \tag{2}
\end{equation*}
$$

We note that, the Kantorovich operators K_{n} can be obtained by the following formula

$$
\begin{equation*}
K_{n}=D \circ B_{n+1} \circ I, \tag{3}
\end{equation*}
$$

where D is the differentiation operator: $D(f)=f^{\prime}, f \in C_{1}[0,1]$ and I is the antiderivative operator: $I(f, x)=\int_{0}^{x} f(t) d t, f \in C[0,1], x \in[0,1]$. More general, if $L: C[0,1] \rightarrow C^{r}[0,1]$ is an arbitrary linear operator and $r \in \mathbb{N}$, if we denote by D^{r} and I^{r}, the iterates of operators D and I, then the operator $D^{r} \circ L \circ I^{r}$ is named the Kantorovich modification of operator L of order r. These operators play a crucial role in simultaneous approximation. Other types of generalizations or modifications of Kantorovich operators, partially included in References, are also known.

[^0]
2 Definition. Main results

We consider a generalization of the Kantorovich operators in the following sense.
Definition 2.1. Let a parameter $b \geq 0$. For any $n \in \mathbb{N}$ define the operator $K_{n}^{b}: C[0,1] \rightarrow$ $C[0,1]$, defined by

$$
\begin{align*}
K_{n}^{b}(f, x):= & (n+1+b) \sum_{k=0}^{n} p_{n, k}(x) e^{-b \frac{k+1}{n+1}} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} e^{b t} f(t) d t \\
& +\sum_{k=0}^{n} p_{n, k}(x)\left[(n+1+b)-(n+1-b) e^{\frac{b}{n+1}}\right] e^{-b \frac{k+1}{n+1}} \int_{0}^{\frac{k}{n+1}} e^{b t} f(t) d t \tag{4}
\end{align*}
$$

for $f \in C[0,1], x \in[0,1]$.
Remark 2.1. If we take $b=0$ in (4) we obtain the Kantorovich operators given in (2).
Theorem 2.1. Operators K_{n}^{b} are linear and positive, for any $n \in \mathbb{N}$ and $b \geq 0$.
Proof. The linearity is clear. In order to prove the positivity it is enough to show that

$$
(n+1+b)-(n+1-b) e^{\frac{b}{n+1}} \geq 0
$$

Consider function $\varphi(t)=1+t+(t-1) e^{t}, t \in \mathbb{R}$. If we denote $t=\frac{b}{n+1}$ it is sufficient to show that $\varphi(t) \geq 0$, for $t \geq 0$. We have $\varphi^{\prime}(t)=1+t e^{t}$. The minimum of function φ^{\prime} is reached at point $t=-1$ and $\varphi^{\prime}(-1)=1-e^{-1}>0$. Hence $\varphi^{\prime}(t)>0, t \in \mathbb{R}$. Then function φ is increasing on \mathbb{R}. But $\varphi(0)=0$ and hence $\varphi(t) \geq 0$, for $t \geq 0$.

In order to give another description of operators K_{n}^{b} we consider operators D_{b} : $C^{1}[0,1] \rightarrow C[0,1]$ and $I_{b}: C[0,1] \rightarrow C^{1}[0,1]$, given by

$$
\begin{aligned}
D_{b}(f, x) & =f^{\prime}(x)+b f(x), f \in C^{1}[0,1], x \in[0,1] \\
I_{b}(f, x) & =e^{-b x} \int_{0}^{x} e^{b t} f(t) d t, f \in C[0,1], x \in[0,1
\end{aligned}
$$

Lemma 2.1. Let $n \in \mathbb{N}$ and $b \geq 0$. We have
i) $\left(D_{b} \circ I_{b}\right)(f)=f$, for all $f \in C[0,1]$,
ii) $\left(I_{b} \circ D_{b}\right)(f)=f$, for all $f \in C^{1}[0,1]$, such that $f(0)=0$.

Proof. i) If $f \in C[0,1]$, then $I_{b}(f)$ is the solution of the Cauchy problem $y^{\prime}+b y=f$, $y(0)=0$. Then $\left(D_{b} \circ I_{b}\right)(f)=f$.
ii) If $f \in C^{1}[0,1]$ and $f(0)=0$, then integrating by parts we obtain, for $x \in[0,1]$:

$$
\begin{aligned}
\left(I_{b} \circ D_{b}\right)(f, x) & =e^{-b x} \int_{0}^{x} e^{b t}\left(f^{\prime}(t)+b f(t)\right) d t \\
& =e^{-b x}\left[e^{b x} f(x)-f(0)-b \int_{0}^{x} e^{b t} f(t) d t+b \int_{0}^{x} e^{b t} f(t) d t\right. \\
& =f(x)
\end{aligned}
$$

Theorem 2.2. For any $n \in \mathbb{N}$ and $b \geq 0$ we have:

$$
\begin{equation*}
K_{n}^{b}=D_{b} \circ B_{n+1} \circ I_{b} . \tag{5}
\end{equation*}
$$

Proof. Let $f \in C[0,1]$ and $x \in[0,1]$. Using the convention $P_{n, k}(x)=0$, for $k<0$ or $k>n$, we have:

$$
\begin{aligned}
\left(D_{b} \circ B_{n+1} \circ I_{b}\right)(f, x)= & \left(B_{n+1}\left(I_{b}(f), x\right)\right)^{\prime}+b B_{n+1}\left(I_{b}(f), x\right) \\
= & (n+1) \sum_{k=0}^{n+1}\left[p_{n, k-1}(x)-p_{n, k}(x)\right] I_{b}\left(\frac{k}{n+1}\right) \\
& +b \sum_{k=0}^{n+1}\left[p_{n, k-1}(x)+p_{n, k}(x)\right] I_{b}\left(\frac{k}{n+1}\right) \\
= & \sum_{k=0}^{n+1}\left[(n+1+b) p_{n, k-1}(x)-(n+1-b) p_{n, k}(x)\right] I_{b}\left(\frac{k}{n+1}\right) \\
= & \sum_{k=0}^{n} p_{n, k}(x)\left[(n+1+b) I_{b}\left(\frac{k+1}{n+1}\right)-(n+1-b) I_{b}\left(\frac{k}{n+1}\right)\right] .
\end{aligned}
$$

From this it follows immediately (4).
The results above allow us to derive a more general shape-preservation property for Bernstein operators. For this, let $b \geq 0$. Set

$$
\begin{equation*}
\mathcal{D}_{b}:=\left\{f \in C^{1}[0,1]: D_{b}(f) \geq 0, f(0)=0\right\} . \tag{6}
\end{equation*}
$$

We have
Theorem 2.3. For any $n \in \mathbb{N}, n \geq 2$ and $b \geq 0$, we have $B_{n}\left(\mathcal{D}_{b}\right) \subset \mathcal{D}_{b}$.
Proof. Let $f \in \mathcal{D}_{b}$. We have $\left(D_{b} \circ B_{n}\right)(f)=\left(D_{b} \circ B_{n} \circ I_{b}\right)\left(D_{b}(f)\right)=K_{n-1}^{b}\left(D_{b}(f)\right)$. Since $D_{b}(f) \geq 0$ and K_{n-1}^{b} is a positive operator it follows $K_{n-1}^{b}\left(D_{b}(f)\right) \geq 0$, i.e. $\left(D_{b} \circ B_{n}\right)(f) \geq$ 0 . Also $B_{n}(f, 0)=f(0)=0$. Hence $B_{n}(f) \in \mathcal{D}_{b}$.

Theorem 2.4. We have

$$
\begin{equation*}
K_{n}^{b}(f) \rightrightarrows f \tag{7}
\end{equation*}
$$

for all $f \in C[0,1]$.
(The symbol \rightrightarrows means the uniform convergence on the interval $[0,1]$.)
Proof. Since operators K_{n}^{b} are positive it suffices to prove relation (7) for three test functions. Let us denote $e_{k}(t)=t^{k}, t \in[0,1]$, for $k=0,1,2$. Then denote $g_{k}=$ $I_{b}\left(e_{k}\right), k=0,1,2$. From the convergence properties of Bernstein operators we have $B_{n+1}\left(g_{k}\right) \rightrightarrows g_{k}$ and $\left(B_{n+1}\left(g_{k}\right)\right)^{\prime} \rightrightarrows g_{k}$, for $k=0,1,2$. Hence, for the same indices k we have $\left(D_{b} \circ B_{n+1}\right)\left(g_{k}\right) \rightrightarrows D_{b}\left(g_{k}\right)$. But $\left(D_{b} \circ B_{n+1}\right)\left(g_{k}\right)=K_{n}^{b}\left(e_{k}\right)$ and $D_{b}\left(g_{k}\right)=e_{k}$. Hence $K_{n}^{b}\left(e_{k}\right) \rightrightarrows e_{k}$, for $k=0,1,2$. Therefore we can apply the theorem of Popoviciu-Bohmann-Korovkin and we obtain (7).

References

[1] Adell, J. A. and Pérez-Palomares A, Second modulus preservation inequalities for generalized Bernstein-Kantorovich operators, Stancu, Approximation and optimization. Proceedings of ICAOR: international conference, Cluj-Napoca, Romania, July 29-August 1, (D.D. Stancu et al. ed.), 1996. Volume I. Cluj-Napoca: Transilvania Press, 147-156, 1997.
[2] Aniol, G., On the rate of pointwise convergence of the Kantorovich-type operators, Fasc. Math. 29 (1999), 5-15.
[3] Bărbosu, D., Kantorovich-Stancu type operators, JIPAM, 5 (2004), no. 3, article 53.
[4] Cao, J. On the generalized polynomials of L. V. Kantorovich and their asymptotic behaviour, Chin. Ann. Math. 2 (1981) 243-256.
[5] Gupta, V., The Bézier variant of Kantorovitch operators, Comput. Math. Appl. 47 (2004), no. 2-3, 227-232.
[6] Kacsó, D., Simultaneous approximation by almost convex operators, Schriftenreihe des Fachbereichs Mathematik, Univ. Duisburg, Germany, SM-DV-479, (2000).
[7] Kantorovich, L.V., Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. URSS (1930), 563-568, 595-600.
[8] Li, C., Shi, N. and Huo, X., Some approximate properties for a kind of generalized Bernstein-Kantorovich operators (Chinese), J. Fujian Norm. Univ., Nat. Sci. 24 (2008), no. 4, 1-4.
[9] Liu, J. and Chen, G., Locally inverse theorem in the $L_{p}[0,1],(1 \leqq p)$ for generalized Kantorovich polynomial operator, J. Math. Res. Expo. 19 (1999), no. 3, 573-579.
[10] López-Moreno, A.J., Martinez-Moreno y J. and Muñoz-Delgado, F.J., Asymptotic behavior of Kantorovich type operators, Monografías del Semin. Matem. García de Galdeano, 27 (2003), 399404.
[11] Mache, D.H. and Zhou, D.X., Characterization theorems for the approximation by a family of operators, J. Approx. Theory 84 (1996), 145-161.
[12] Ren, Q., Generalized and convergence of the Bernstein type operator, J. Math. Study 31 (1998), no.1, 86-90.
[13] Wei, W. The construction, convergence and asymptotic formula of generalized W -Bernstein-Kantorovich operator (Chinese) Acta Math. Sci. 20, Suppl. (2000), 718722.
[14] Zenke, W. and Junfang, A generalization of the Bernstein operators, (Chinese) J. Baoji Coll. Arts Sci., Nat. Sci. 20 (2000), no. 4, 248-250.

Erratum

Theorem 2.2 contains an error of computation. Consequently the operators given in Definition 1 are not the real Kantorovich operators attached to Bernstein operators and the differential operator D_{b}. The correction is made in the paper: R. Păltănea, A note on generalized Bernstein-Kantorovich operators, Bull. Transilvania Univ Brasov, Ser III, 6(55), No. 2 (2013), 27-32.
The author

[^0]: ${ }^{1}$ "Transilvania" University of Braşov, Faculty of Mathematics and Informatics Iuliu Maniu 50, Braşov 500091, Romania, e-mail: radupaltanea@yahoo.com

