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A GENERALIZATION OF KANTOROVICH OPERATORS AND A
SHAPE-PRESERVING PROPERTY OF BERNSTEIN OPERATORS

Radu PĂLTĂNEA 1

Abstract
We construct a generalization of the Kantorovich operators, depending on a pa-

rameter b ≥ 0 and we prove that if a function f ∈ C1[0, 1] with f(0) = 0, satisfies
the differential inequality f ′ + bf ≥ 0, then functions Bn(f), n ∈ N satisfy the same
inequality, where Bn are the Bernstein operators.
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1 Introduction

The Bernstein operators on the space C[0, 1] are defined by:

Bn(f, x) =
n∑

k=0

f
(k
n

)
pn,k(x), f ∈ C[a, b], x ∈ [0, 1], n ∈ N, (1)

where

pn,k(x) =

(
n

k

)
xk(1− x)n−k.

The Kantorovich modification of the Bernstein operators are given by:

Kn(f, x) = (n + 1)

n∑
k=0

pn,k(x)

∫ k+1
n+1

k
n+1

f(t)dt, f ∈ C[0, 1], x ∈ [0, 1], n ∈ N. (2)

We note that, the Kantorovich operators Kn can be obtained by the following formula

Kn = D ◦Bn+1 ◦ I, (3)

where D is the differentiation operator: D(f) = f ′, f ∈ C1[0, 1] and I is the antiderivative
operator: I(f, x) =

∫ x
0 f(t)dt, f ∈ C[0, 1], x ∈ [0, 1]. More general, if L : C[0, 1]→ Cr[0, 1]

is an arbitrary linear operator and r ∈ N, if we denote by Dr and Ir, the iterates of
operators D and I, then the operator Dr ◦L◦Ir is named the Kantorovich modification of
operator L of order r. These operators play a crucial role in simultaneous approximation.
Other types of generalizations or modifications of Kantorovich operators, partially included
in References, are also known.
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2 Definition. Main results

We consider a generalization of the Kantorovich operators in the following sense.

Definition 2.1. Let a parameter b ≥ 0. For any n ∈ N define the operator Kb
n : C[0, 1]→

C[0, 1], defined by

Kb
n(f, x) := (n + 1 + b)

n∑
k=0

pn,k(x)e−b
k+1
n+1

∫ k+1
n+1

k
n+1

ebtf(t)dt

+
n∑

k=0

pn,k(x)
[
(n + 1 + b)− (n + 1− b)e

b
n+1

]
e−b

k+1
n+1

∫ k
n+1

0
ebtf(t)dt, (4)

for f ∈ C[0, 1], x ∈ [0, 1].

Remark 2.1. If we take b = 0 in (4) we obtain the Kantorovich operators given in (2).

Theorem 2.1. Operators Kb
n are linear and positive, for any n ∈ N and b ≥ 0.

Proof. The linearity is clear. In order to prove the positivity it is enough to show that

(n + 1 + b)− (n + 1− b)e
b

n+1 ≥ 0.

Consider function ϕ(t) = 1 + t + (t − 1)et, t ∈ R. If we denote t = b
n+1 it is sufficient to

show that ϕ(t) ≥ 0, for t ≥ 0. We have ϕ′(t) = 1 + tet. The minimum of function ϕ′ is
reached at point t = −1 and ϕ′(−1) = 1−e−1 > 0. Hence ϕ′(t) > 0, t ∈ R. Then function
ϕ is increasing on R. But ϕ(0) = 0 and hence ϕ(t) ≥ 0, for t ≥ 0.

In order to give another description of operators Kb
n we consider operators Db :

C1[0, 1]→ C[0, 1] and Ib : C[0, 1]→ C1[0, 1], given by

Db(f, x) = f ′(x) + bf(x), f ∈ C1[0, 1], x ∈ [0, 1],

Ib(f, x) = e−bx
∫ x

0
ebtf(t)dt, f ∈ C[0, 1], x ∈ [0, 1.

Lemma 2.1. Let n ∈ N and b ≥ 0. We have

i) (Db ◦ Ib)(f) = f , for all f ∈ C[0, 1],

ii) (Ib ◦Db)(f) = f , for all f ∈ C1[0, 1], such that f(0) = 0.

Proof. i) If f ∈ C[0, 1], then Ib(f) is the solution of the Cauchy problem y′ + by = f ,
y(0) = 0. Then (Db ◦ Ib)(f) = f .

ii) If f ∈ C1[0, 1] and f(0) = 0, then integrating by parts we obtain, for x ∈ [0, 1]:

(Ib ◦Db)(f, x) = e−bx
∫ x

0
ebt(f ′(t) + bf(t))dt

= e−bx
[
ebxf(x)− f(0)− b

∫ x

0
ebtf(t)dt + b

∫ x

0
ebtf(t)dt

= f(x).
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Theorem 2.2. For any n ∈ N and b ≥ 0 we have:

Kb
n = Db ◦Bn+1 ◦ Ib. (5)

Proof. Let f ∈ C[0, 1] and x ∈ [0, 1]. Using the convention Pn,k(x) = 0, for k < 0 or
k > n, we have:

(Db ◦Bn+1 ◦ Ib)(f, x) = (Bn+1(Ib(f), x))′ + bBn+1(Ib(f), x)

= (n + 1)
n+1∑
k=0

[pn,k−1(x)− pn,k(x)]Ib

( k

n + 1

)
+b

n+1∑
k=0

[pn,k−1(x) + pn,k(x)]Ib

( k

n + 1

)
=

n+1∑
k=0

[(n + 1 + b)pn,k−1(x)− (n + 1− b)pn,k(x)]Ib

( k

n + 1

)
=

n∑
k=0

pn,k(x)
[
(n + 1 + b)Ib

(k + 1

n + 1

)
− (n + 1− b)Ib

( k

n + 1

)]
.

From this it follows immediately (4).

The results above allow us to derive a more general shape-preservation property for
Bernstein operators. For this, let b ≥ 0. Set

Db := {f ∈ C1[0, 1] : Db(f) ≥ 0, f(0) = 0}. (6)

We have

Theorem 2.3. For any n ∈ N, n ≥ 2 and b ≥ 0, we have Bn(Db) ⊂ Db.

Proof. Let f ∈ Db. We have (Db ◦Bn)(f) = (Db ◦Bn ◦ Ib)(Db(f)) = Kb
n−1(Db(f)). Since

Db(f) ≥ 0 and Kb
n−1 is a positive operator it follows Kb

n−1(Db(f)) ≥ 0, i.e. (Db ◦Bn)(f) ≥
0. Also Bn(f, 0) = f(0) = 0. Hence Bn(f) ∈ Db.

Theorem 2.4. We have
Kb

n(f)⇒ f (7)

for all f ∈ C[0, 1].

(The symbol ⇒ means the uniform convergence on the interval [0, 1].)

Proof. Since operators Kb
n are positive it suffices to prove relation (7) for three test

functions. Let us denote ek(t) = tk, t ∈ [0, 1], for k = 0, 1, 2. Then denote gk =
Ib(ek), k = 0, 1, 2. From the convergence properties of Bernstein operators we have
Bn+1(gk) ⇒ gk and (Bn+1(gk))′ ⇒ gk, for k = 0, 1, 2. Hence, for the same indices k
we have (Db ◦ Bn+1)(gk) ⇒ Db(gk). But (Db ◦ Bn+1)(gk) = Kb

n(ek) and Db(gk) = ek.
Hence Kb

n(ek) ⇒ ek, for k = 0, 1, 2. Therefore we can apply the theorem of Popoviciu-
Bohmann-Korovkin and we obtain (7).
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Erratum

Theorem 2.2 contains an error of computation. Consequently the operators given in
Definition 1 are not the real Kantorovich operators attached to Bernstein operators and
the differential operator Db. The correction is made in the paper: R. Păltănea, A note
on generalized Bernstein-Kantorovich operators, Bull. Transilvania Univ Brasov, Ser III,
6(55), No. 2 ( 2013), 27-32.
The author


