Bulletin of the *Transilvania* University of Braşov • Vol 5(54), No. 2 - 2012 Series III: Mathematics, Informatics, Physics, 113-116

SOME CRITERIA FOR UNIVALENT FUNCTIONS Horiana TUDOR¹

Abstract

In this paper we establish some very simple and useful univalence criteria for a class of functions defined by an integral operator.

2000 Mathematics Subject Classification: 30C55. Key words: analytic functions, univalent functions, univalence criteria.

1 Introduction

Let A be the class of analytic functions f in the unit disk $U = \{ z \in \mathbb{C} : |z| < 1 \}$ with f(0) = 0, f'(0) = 1. We denote by $U_r = \{ z \in \mathbb{C} : |z| < r \}$ the disk of z-plane, where $r \in (0, 1], U_1 = U$ and $I = [0, \infty)$.

Our considerations are based on the theory of Löewner chains; we recall the basic results of this theory, from Pommerenke.

A family of functions $\{L(z,t)\}$, $z \in U$, $t \in I$, is a Löewner chain if L(z,t) is analytic and univalent in U for all $t \in I$, and L(z,t) is subordinate to L(z,s) for all $0 \le t \le s$.

Theorem 1. ([3]). Let $L(z,t) = a_1(t)z + a_2(t)z^2 + \ldots$, $a_1(t) \neq 0$ be analytic in U_r , for all $t \in I$, locally absolutely continuous in I and locally uniformly with respect to U_r . For almost all $t \in I$, suppose that

$$z\frac{\partial L(z,t)}{\partial z} = p(z,t)\frac{\partial L(z,t)}{\partial t}, \quad \forall z \in U_r$$

where p(z,t) is analytic in U_r and satisfies the condition $\operatorname{Re} p(z,t) > 0$, for all $z \in U$, $t \in I$. If $|a_1(t)| \to \infty$ for $t \to \infty$ and $\{L(z,t)/a_1(t)\}$ forms a normal family in U_r , then for each $t \in I$, function L(z,t) has an analytic and univalent extension to the whole disk U.

2 Main results

Theorem 2. Let $f \in A$ and let α be a complex number, $\Re \alpha > 0$. If there exists an analytic function g in U, $g(z) = 1 + a_1 z + \ldots$ such that the inequalities

$$\left|\frac{f'(z)}{g(z)} - (\alpha + 1)\right| < |\alpha + 1| \tag{1}$$

¹Faculty of Mathematics and Informatics, *Transilvania* University of Braşov, Romania, e-mail: htudor@unitbv.ro

Horiana Tudor

and

$$\frac{1}{\alpha+1} \left(\frac{f'(z)}{g(z)} - (\alpha+1) \right) |z|^{4\alpha} + \frac{1-|z|^{4\alpha}}{2\alpha} \left(\frac{zg'(z)}{g(z)} - \alpha \right) | \le 1$$
(2)

are true for all $z \in U \setminus \{0\}$, then function

$$F_{\alpha}(z) = \left(\alpha \int_{0}^{z} u^{\alpha-1} f'(u) du\right)^{1/\alpha}$$
(3)

is analytic and univalent in U, where the principal branch is intended.

Proof. Let us consider function $h_1(z,t)$ given by

$$h_1(z,t) = 2\alpha \int_0^{e^{-t_z}} u^{\alpha-1} f'(u) du.$$

We have $h_1(z,t) = z^{\alpha}h_2(z,t)$, where it is easy to see that function h_2 is analytic in U for all $t \in I$ and $h_2(0,t) = 2e^{-\alpha t}$. From the analyticity of g in U it follows that the function

$$h_3(z,t) = h_2(z,t) + (\alpha + 1)(e^{4\alpha t} - 1)e^{-\alpha t}g(e^{-t}z)$$

is also analytic in U and $h_3(0,t) = (\alpha+1)e^{3\alpha t} + (1-\alpha)e^{-\alpha t}$. We will prove that $h_3(0,t) \neq 0$ for all $t \in I$. We have $h_3(0,0) = 2$. Assume that there exists $t_0 > 0$ such that $h_3(0,t_0) = 0$. Then $e^{4\alpha t_0} = (\alpha-1)/(\alpha+1)$. Since $\Re \alpha > 0$ is equivalent to $|(\alpha-1)/(\alpha+1)| < 1$ and for $t_0 > 0$ we have $|e^{4\alpha t_0}| = e^{4\Re \alpha t_0} > 1$, we conclude that $h_3(0,t) \neq 0$ for all $t \in I$. Therefore, there is a disk U_{r_1} , $0 < r_1 \leq 1$, in which $h_3(z,t) \neq 0$ for all $t \in I$. Then we can choose an analytic branch of $[h_3(z,t)]^{1/\alpha}$ denoted by h(z,t) which, at the origin, is equal to

$$a_1(t) = e^{3t} [(\alpha + 1) + (1 - \alpha)e^{-4\alpha t}]^{1/\alpha}.$$
(4)

From these considerations, it follows that the function

$$L(z,t) = z \cdot h(z,t) = a_1(t)z + a_2(t)z^2 + \dots,$$

where $a_1(t)$ is given by (4), is analytic in U_{r_1} for all $t \in I$ and can be written as follows

$$L(z,t) = \left[2\alpha \int_0^{e^{-t_z}} u^{\alpha-1} f'(u) du + (\alpha+1)(e^{4\alpha t} - 1)e^{-\alpha t} z^\alpha g(e^{-t_z})\right]^{1/\alpha}.$$
 (5)

Under the assumption of the theorem we have $a_1(t) \neq 0$ and $\lim_{t\to\infty} |a_1(t)| = \infty$. From the analyticity of L(z,t) in U_{r_1} , it follows that there exists a number r_2 , $0 < r_2 \leq r_1$, and a constant $K = K(r_2)$ such that

$$|L(z,t)/a_1(t)| < K, \qquad \forall z \in U_{r_2}, \quad t \ge 0,$$

and hence $\{L(z,t)/a_1(t)\}$ is a normal family in U_{r_2} . From the analyticity of $\partial L(z,t)/\partial t$, for all fixed numbers T > 0 and r_3 , $0 < r_3 \le r_2$, there exists a constant $K_1 > 0$ (that depends on T and r_3) such that

$$\left| \frac{\partial L(z,t)}{\partial t} \right| < K_1, \quad \forall z \in U_{r_3}, \quad t \in [0,T].$$

114

It follows that function L(z,t) is locally absolutely continuous in I, locally uniform with respect to $z \in \mathcal{U}_{r_3}$.

Let us set

$$p(z,t) = z \frac{\partial L(z,t)}{\partial z} / \frac{\partial L(z,t)}{\partial t}$$
 and $w(z,t) = \frac{p(z,t)-1}{p(z,t)+1}$.

For all $t \in I$, function p(z,t) is analytic in a disk U_r , $0 < r \le r_3$ and so is w(z,t).

Function p(z,t) has an analytic extension with positive real part in U, for all $t \in I$, if function w(z,t) can be continued analytically in U and |w(z,t)| < 1 for all $z \in U$ and $t \in I$.

By simple calculation, we obtain

$$w(z,t) = \frac{1}{\alpha+1} \left(\frac{f'(e^{-t}z)}{g(e^{-t}z)} - (\alpha+1) \right) e^{-4\alpha t} + \frac{1 - e^{-4\alpha t}}{2\alpha} \left(\frac{e^{-t}zg'(e^{-t}z)}{g(e^{-t}z)} - \alpha \right).$$
(6)

From (1) and (2) we deduce that function w(z,t) is analytic in the unit disk U. In view of (1), from (6) we have

$$|w(z,0)| = \left|\frac{1}{\alpha+1}\left(\frac{f'(z)}{g(z)} - (\alpha+1)\right)\right| < 1,$$
(7)

and also

$$|w(0,t)| = \left|\frac{1-\alpha}{2(\alpha+1)}e^{-4\alpha t} - \frac{1}{2}\right| \le \frac{1}{2}\left|\frac{\alpha-1}{\alpha+1}\right|e^{-4\Re\alpha t} + \frac{1}{2} < 1.$$
(8)

Let t be a fixed positive number, $z \in U$, $z \neq 0$. Since $|e^{-t}z| \leq e^{-t} < 1$ for all $z \in \overline{U} = \{z \in \mathbb{C} : |z| \leq 1\}$ we conclude that function w(z,t) is analytic in \overline{U} . Using the maximum modulus principle it follows that for each t > 0, arbitrary fixed, there exists $\theta = \theta(t) \in \mathbb{R}$ such that

$$|w(z,t)| < \max_{|\xi|=1} |w(\xi,t)| = |w(e^{i\theta},t)|.$$
(9)

We denote $u = e^{-t} \cdot e^{i\theta}$. Then $|u| = e^{-t} < 1$ and from (6) we get

$$w(e^{i\theta}, t) = \left| \frac{1}{\alpha + 1} \left(\frac{f'(u)}{g(u)} - (\alpha + 1) \right) |u|^{4\alpha} + \frac{1 - |u|^{4\alpha}}{2\alpha} \left(\frac{ug'(u)}{g(u)} - \alpha \right) \right|.$$

Since $u \in U$, the inequality (2) implies $|w(e^{i\theta}, t)| \leq 1$ and from (7), (8) and (9) we conclude that |w(z, t)| < 1 for all $z \in U$ and $t \geq 0$.

From Theorem 1 it results that function L(z,t) has an analytic and univalent extension to the whole disk U, for each $t \in I$, in particular

$$L(z,0) = \left(2\alpha \int_0^z u^{\alpha-1} f'(u) du\right)^{1/\alpha}$$

Therefore function $F_{\alpha}(z)$ defined by (3) is analytic and univalent in U.

Corollary 1. Let $f \in A$ and let α be a complex number, $\Re \alpha > 0$, $|\alpha + 1| \leq 2\Re \alpha$. If the inequality

$$\left| \frac{zf'(z)}{f(z)} - (\alpha + 1) \right| < |\alpha + 1|$$

$$\tag{10}$$

is true for all $z \in U$, then function F_{α} defined by (3) is analytic and univalent in U.

Proof. In the particular case $g(z) \equiv \frac{f(z)}{z}$, from (1) we get inequality (10). Also we observe that both terms of the sum which appear in inequality (2) contain the same expression $\frac{zf'(z)}{f(z)} - (\alpha + 1)$ and then we try to obtain from Theorem 2 a very simple and useful univalence criterion. It is known (see [2]) that, for all $z \in U$, $z \neq 0$ and $\Re \alpha > 0$, we have

$$\left|\frac{1-|z|^{2\alpha}}{\alpha}\right| \le \frac{1-|z|^{2\Re\alpha}}{\Re\alpha}.$$
(11)

In view of (10) and (11), inequality (2) is satisfied and hence function F_{α} defined by (3) is analytic and univalent in U.

Example. Let α be a real number, $\alpha \geq 1$. For function $f(z) = z \cdot e^z$, the inequality (10) is verified and then function $F_{\alpha}(z) = \left(\alpha \int_0^z u^{\alpha-1}(1+u)e^u du\right)^{1/\alpha}$ is analytic and univalent in U.

Corollary 2. Let $f \in A$ and let α be a complex number, $\Re \alpha > 0$, $|\alpha| \leq 2\Re \alpha$. If the inequality

$$|f'(z) - (\alpha + 1)| < |\alpha + 1|$$
 (12)

is true for all $z \in U$, then function F_{α} defined by (3) is analytic and univalent in U.

Proof. For function $g(z) \equiv 1$, from (1) we get inequality (12). Using (11) and (12), we see that inequality (2) is verified

$$\left| \frac{1}{\alpha+1} \left(f'(z) - (\alpha+1) \right) |z|^{4\alpha} + \frac{1 - |z|^{4\alpha}}{2\alpha} (-\alpha) \right| \le |z|^{4\Re\alpha} + \frac{1 - |z|^{4\Re\alpha}}{2\Re\alpha} |\alpha| \le 1.$$

References

- Ovesea-Tudor, H., On univalence condition, Matematyka Zeszyty Naukowe Rzeszów 27 (2004), 39-42.
- [2] Pascu, N.N., An improvement of Becker's univalence criterion, Ses. com. S. Stoilow, Univ.Braşov, 1987, 43-48.
- [3] Pommerenke, Ch., Univalent Functions, Vandenhoech Ruprecht in Göttingen, 1975.