Bulletin of the *Transilvania* University of Braşov • Vol 6(55), No. 1 - 2013 Series III: Mathematics, Informatics, Physics, 63-76

THE EQUATIONS OF THE INDICATRIX OF A COMPLEX FINSLER SPACE

Elena POPOVICI¹

Abstract

In this paper we extend the study of the indicatrix of a complex Finsler space initiated in [10, 11]. The equations that can be introduced on the indicatrix, which is studied as a hypersurface of a complex Finsler space, are investigated. In this manner, using the equations of Gauss-Weingarten, the link between the intrinsic and induced connection is deduced. The equations of Gauss, *H*-and *A*-Codazzi, and Ricci equations of the indicatrix are considered. Also, conditions for totally umbilical indicatrix are obtained.

2000 Mathematics Subject Classification: 53B40, 53C60, 53C40, 53B25. Key words: complex Finsler space, indicatrix, induced connection, Gauss equations, Ricci equations, H-and A -Codazzi equations.

1 Introduction

The study of the indicatrix of a real Finsler space is one of interest, mainly because it is a compact and strictly convex set surrounding the origin. The geometry of (real) indicatrix as a hypersurface of a total space has been studied by Akbar-Zadeh in [2], where it is proved that it plays a special role in obtaining necessary and sufficient conditions for an isotropic Finsler manifold to be of constant sectional curvature. A comprehensive study of the indicatrix hypersurface could be found in [7]. In [5], a smooth compact and connected manifold with the properties of a indicatrix was called by Bryant with generalized Finsler structure.

The study of the indicatrix of a complex Finsler space was discussed in [10, 11], in which the general framework of the indicatrix bundle is established.

In the present paper, in Section 2, some preliminary properties of the n- dimensional complex Finsler space are recalled. The main relations of the intrinsic geometry of its indicatrix bundle are considered in Section 3. Since the approach of the indicatrix is as a complex hypersurface of T'M, it is natural to consider in Section 4 the equations of a subspace in this case and to analyse the link between the main induced and intrinsic connections considered. Some conditions for the indicatrix to be a totally umbilical submanifold of a complex Finsler space are obtained in Section 4.

¹Faculty of Mathematics and Informatics, *Transilvania* University of Braşov, Romania, e-mail: elena.c.popovici@gmail.com

2 Complex Finsler spaces: settings

Firstly, we will make a short overview of the concepts and terminology used in complex Finsler geometry, for more see [1, 8]. Let M be a complex manifold and (z^k) the complex coordinates on a local chart.

The complexified of the real tangent bundle $T_{\rm C}M$ splits into the sum of holomorphic tangent bundle T'M and its conjugate T''M, i.e. $T_{\rm C}M = T'M \oplus T''M$. The bundle T'M is in its turn a complex manifold and the local coordinates in a local chart are (z^k, η^k) .

Definition 1. A complex Finsler space is a pair (M, F), where $F : T'M \to \mathbb{R}^+$ is a continuous function that satisfies the following conditions:

- i. $L := F^2$ is a smooth function on $T'M := T'M \setminus \{0\}$;
- ii. $F(z,\eta) \ge 0$, , the equality holds iff $\eta = 0$;
- iii. $F(z, \lambda \eta) = |\lambda| F(z, \eta), \forall \lambda \in \mathbb{C}$, is the homogeneity condition of the Finsler function F;
- iv. the Hermitian matrix $(g_{i\bar{j}}(z,\eta))$, with $g_{i\bar{j}} = \frac{\partial^2 L}{\partial \eta^i \partial \bar{\eta}^j}$ the fundamental metric tensor is positive definite. This means that the indicatrix $I_z = \{\eta \mid g_{i\bar{j}}(z,\eta)\eta^i\bar{\eta}^j = 1\}$ is strongly pseudoconvex, for any $z \in M$.

By applying Euler's formula for homogeneous functions, from iii. we get that:

$$\frac{\partial L}{\partial \eta^k} \eta^k = \frac{\partial L}{\partial \bar{\eta}^k} \bar{\eta}^k = L; \quad \frac{\partial g_{i\bar{j}}}{\partial \eta^k} \eta^k = \frac{\partial g_{i\bar{j}}}{\partial \bar{\eta}^k} \bar{\eta}^k = 0 \quad \text{and} \quad L = g_{i\bar{j}} \eta^i \bar{\eta}^j. \tag{1}$$

Thus, the aim of the geometry of a complex Finsler space is to study the geometric objects of the complex manifold T'M endowed with a Hermitian metric structure defined by $g_{i\bar{j}}$. Regarding this, the first step is the study of the sections of the complexified tangent bundle of T'M which splits into the direct sum $T_{\rm C}(T'M) = T'(T'M) \oplus T''(T'M)$. Let $V(T'M) \subset T'(T'M)$ be the vertical bundle, locally spanned by $\left\{\frac{\partial}{\partial \eta^k}\right\}$ and let V(T''M) be its conjugate.

The idea of complex nonlinear connection, briefly (c.n.c.), is fundamental in "linearization" of this geometry. A (c.n.c.) is a supplementary complex subbundle to V(T'M) in T'(T'M), i.e. $T'(T'M) = H(T'M) \oplus V(T'M)$. The horizontal distribution $H_u(T'M)$ is locally spanned by $\left\{\frac{\delta}{\delta z^k} = \frac{\partial}{\partial z^k} - N_k^j \frac{\partial}{\partial \eta^j}\right\}$, where $N_k^j(z,\eta)$ are the coefficients of the (c.n.c.), which follow the local maps rule change, so that $\frac{\delta}{\delta z^k} = \frac{\partial z^{\prime j}}{\partial z^k} \frac{\delta}{\delta z^{\prime j}}$ is fulfilled. Obviously, we also have $\frac{\partial}{\partial \eta^k} = \frac{\partial z^{\prime j}}{\partial z^k} \frac{\partial}{\partial \eta^{\prime j}}$.

The pair $\left\{ \delta_k := \frac{\delta}{\delta z^k}, \dot{\partial}_k := \frac{\partial}{\partial \eta^k} \right\}$ will be called the adapted frame of the (c.n.c.). By conjugation everywhere we get an adapted frame $\{\delta_{\bar{k}}, \dot{\partial}_{\bar{k}}\}$ on $T''_u(T'M)$. The dual adapted bases are $\left\{ \mathrm{d}z^k, \, \delta\eta^k := \mathrm{d}\eta^k + N^k_j \mathrm{d}z^j \right\}$, respectively $\{\mathrm{d}\bar{z}^k, \, \delta\bar{\eta}^k\}$, where $\delta\bar{\eta}^k = \mathrm{d}\bar{\eta}^k + N^{\bar{k}}_j \mathrm{d}\bar{z}^j$. Let us consider the Sasaki type lift of the metric tensor $g_{i\bar{j}}$, as

$$G = g_{i\bar{j}} \mathrm{d}z^i \otimes \mathrm{d}\bar{z}^k + g_{i\bar{j}} \delta\eta^i \otimes \delta\bar{\eta}^j.$$
⁽²⁾

One main problem of this geometry is to determine a (c.n.c) related only by the fundamental function of a complex Finsler space (M, L); one almost classical now is the Chern-Finsler (c.n.c) ([1],[8]):

$$N_j^{CF} = g^{\bar{m}k} \frac{\partial g_{l\bar{m}}}{\partial z^j} \eta^l.$$
(3)

The next step is to specify the derivation law D on sections of $T_{\rm C}(T'M)$. A Hermitian connection D, of (1,0)-type, which satisfies $D_{JX}Y = JD_XY$, for all horizontal vectors X and the natural complex structure J on the manifold, will be the Chern-Finsler linear connection, in brief C-F, locally given by the next set of coefficients (notations from [8]):

$$L^{i}_{jk} = g^{\bar{l}i} \delta_k(g_{j\bar{l}}), \quad C^{i}_{jk} = g^{\bar{l}i} \dot{\partial}_k(g_{j\bar{l}}), \quad L^{\bar{i}}_{\bar{j}k} = 0, \quad C^{\bar{i}}_{\bar{j}k} = 0,$$
(4)

where $D_{\delta_k}\delta_j = L^i_{jk}\delta_i$, $D_{\delta_k}\dot{\partial}_j = L^i_{jk}\dot{\partial}_i$, $D_{\dot{\partial}_k}\dot{\partial}_j = C^i_{jk}\dot{\partial}_i$, $D_{\dot{\partial}_k}\delta_j = C^i_{jk}\delta_i$. Of course, there is also $\overline{D_XY} = D_{\bar{X}}\bar{Y}$. From the homogeneity conditions (1) it takes: $C^i_{jk}\eta^j = C^i_{jk}\eta^k = 0$. On the other hand, from $g^{\bar{m}i}g_{k\bar{m}} = \delta^i_k$ it follows that $\frac{\partial g^{\bar{m}i}}{\partial \eta^j} = -g^{\bar{m}p}g^{\bar{q}i}\frac{\partial g_{p\bar{q}}}{\partial \eta^j}$ and it is obtained that L^i_{jk} is of Berwald type, i.e.

$$C_{jk}^{F} = \frac{\partial N_k^i}{\partial \eta^j}.$$
(5)

Another (c.n.c.) with a special importance in the study of geodesics on a complex Finsler space, is the canonic (c.n.c.), given by:

$$\overset{c}{N_{j}^{i}} = \frac{1}{2}\dot{\partial}_{j} \begin{pmatrix} CF\\N_{k}^{i}\eta^{k} \end{pmatrix} = \frac{1}{2} \begin{bmatrix} CF\\\dot{\partial}_{j}(N_{k}^{i})\eta^{k} + N_{k}^{i}\delta_{j}^{k} \end{bmatrix} = \frac{1}{2} \begin{pmatrix} CF\\L_{jk}^{i}\eta^{k} + N_{j}^{i} \end{pmatrix}$$
(6)

It comes from a spray and using it the Berwald (c.l.c) can be introduced:

$${}_{D}^{B}\Gamma = \left({}_{N_{k}^{i}}^{c}, {}_{jk}^{i} = \frac{\partial N_{j}^{i}}{\partial \eta^{k}}, {}_{jk}^{B} = \frac{\partial N_{j}^{\overline{i}}}{\partial \eta^{k}}, {}_{jk}^{C} = 0, {}_{jk}^{C} = 0 \right)$$

The Berwald (c.l.c) is defined on the vertical bundle V(T'M) and it is easy to check that:

$$N_{k}^{c} = \frac{1}{2} \begin{pmatrix} CF & CF \\ L_{k0}^{i} + N_{k}^{i} \end{pmatrix}, \quad L_{jk}^{i} = \frac{1}{2} \begin{pmatrix} CF & CF \\ L_{jk}^{i} + L_{kj}^{i} \end{pmatrix} + \frac{1}{2} \dot{\partial}_{j} (L_{km}^{i}) \eta^{m}, \text{ and } L_{jk}^{i} = L_{kj}^{i} \quad (7)$$

$$\text{where } L_{k0}^{CF} := L_{kj}^{i} \eta^{j}.$$

On $T_{\rm C}(T'M)$ the following 1-form: $\omega = \omega' + \omega'' := \eta_k \mathrm{d} z^k + \bar{\eta}_k \mathrm{d} \bar{z}^k$ is well-defined, where $\eta_k := g_{k\bar{j}} \bar{\eta}^j = \frac{\partial L}{\partial n^k}$.

Further we will use the following notation $\bar{\eta}^j =: \eta^{\bar{j}}$ to denote a conjugate object.

3 The intrinsic geometry of complex indicatrix

Let M be a complex manifold, $\dim_{\mathbb{C}} M = n + 1$, $\pi : T'M \to M$ be its holomorphic bundle and consider $(z^k, \eta^k)_{k=\overline{1,n+1}}$ the complex coordinates on the manifold T'M, $\dim_{\mathbb{C}} T'M = 2n + 2$.

Consider $I_z = \{\eta \mid g_{i\bar{j}}(z,\eta)\eta^i\eta^j = 1\}$ the indicatrix at z of a complex Finsler space (M,L) and $\pi_I : I \to M$ the indicatrix bundle, where $I = \bigcup_{z \in M} I_z$. $I \subset T'M$ is a holomorphic subbundle and a complex and strictly connected in the 0 origin hypersurface of T'M, $\dim_{\mathbb{C}}I = 2n + 1$. Let $i : I \to T'M$ be the inclusion map and $i_* : T_{\mathcal{C}}I \to T_{\mathcal{C}}(T'M)$ be the extension of the tangent inclusion map to the complexified bundles.

Further on, we will study the geometry of the complex hypersurface I of the complex manifold T'M. If we consider $(\tilde{z}, \theta^{\alpha})_{\alpha=\overline{1,n}; k=\overline{1,n+1}}$ a parametric representation of the indicatrix hypersurface then we have the following local representation:

$$\tilde{z}^k = z^k$$
 and $\eta^k = B^k_{\alpha}(z)\theta^{\alpha}$, where $\operatorname{rang}(B^k_{\alpha}) = n$, $B^k_{\alpha}(z) = \frac{\partial \eta^k}{\partial \theta^{\alpha}}$. (8)

The involved immersion and holomorphy implies that $B_{\bar{\alpha}}^k(z) = \frac{\partial \eta^k}{\partial \theta^{\alpha}} = 0$ and $B_{\alpha}^{\bar{k}}(z) = \frac{\partial \bar{\eta}^k}{\partial \theta^{\alpha}}$. Computing the Jacobi matrix in a point of the complexified tangent space $T_C I$, tangent vectors are obtained:

$$\frac{\partial}{\partial \tilde{z}^k} = \frac{\partial}{\partial z^k} + B^j_{\alpha k} \theta^\alpha \frac{\partial}{\partial \eta^j}, \quad \frac{\partial}{\partial \theta^\alpha} = B^k_\alpha \frac{\partial}{\partial \eta^k}, \quad \text{where } B^j_{\alpha k} = \frac{\partial B^j_\alpha}{\partial z^k}. \tag{9}$$

The vertical distribution VI, spanned by $\left\{ \dot{\partial}_{\alpha} = \frac{\partial}{\partial \theta^{\alpha}} \right\}$, is a subdistribution of V(T'M). We will note the tangent vectors $\frac{\partial}{\partial z^k}, \frac{\partial}{\partial \theta^{\alpha}}$ obtained by conjugation everywhere in the above relations. The dual bases are (by differentiation in (8)):

 $d\tilde{z}^k = dz^k$ and $d\eta^k = B^k_{\alpha j} \theta^{\alpha} d\tilde{z}^j + B^k_{\alpha} d\theta^{\alpha}$. (10)

The abbreviated formula $B_{0k}^j = B_{\alpha k}^j \theta^{\alpha}$ can be used above.

On the indicatrix I we have $L(z^k, \eta^k(\theta)) = g_{i\bar{j}}(z, \eta(\theta))\eta^i(\theta)\bar{\eta}^j(\bar{\theta}) = 1$ and by differentiation with respect to $\dot{\partial}_{\alpha}$ we obtain $\frac{\partial g_{i\bar{j}}}{\partial \eta^k} B^k_{\alpha} \eta^i \bar{\eta}^j + g_{i\bar{j}} B^i_{\alpha} \bar{\eta}^j = 0$. In terms of homogeneity conditions (1), it follows $g_{i\bar{j}} B^i_{\alpha} \bar{\eta}^j = 0$, i.e. the Liouville vector $N := \eta^k \frac{\partial}{\partial \eta^k}$ is normal to the vertical distribution VI spanned by the tangent vectors $\dot{\partial}_{\alpha}$ to the hypersurface I. Moreover, N is a unit vector, because $\eta_k \eta^k = 1$, where $\eta_k = g_{k\bar{j}} \bar{\eta}^j$.

Along VT'M the frame $\mathcal{R} = \left\{ \dot{\partial}_{\alpha} = B^k_{\alpha} \frac{\partial}{\partial \eta^k}, N = \eta^k \frac{\partial}{\partial \eta^k} \right\}$ can be considered and be $\mathcal{R}^{-1} = \{B^{\alpha}_k \eta_k\}^t$ the inverse matrices of this base, i.e.:

$$B_k^{\alpha} B_{\beta}^k = \delta_{\beta}^{\alpha}, \quad B_k^{\alpha} \eta^k = 0, \quad B_{\alpha}^k \eta_k = 0, \quad B_{\alpha}^k B_j^{\alpha} + \eta^k \eta_j = \delta_j^k, \quad \eta_k \eta^k = 1.$$
(11)

The fundamental function $\tilde{L}(\tilde{z},\theta) = L(z,\eta(\theta))$ of the complex Finsler space defines a metric tensor $g_{\alpha\bar{\beta}}$ on the indicatrix I, $g_{\alpha\bar{\beta}} = B^{j}_{\alpha}B^{\bar{k}}_{\bar{\beta}}g_{i\bar{j}}$, where $B^{\bar{k}}_{\bar{\beta}} = \overline{B^{k}_{\beta}}$. It is easy to verify that $g^{\bar{\beta}\alpha} = g^{\bar{j}i}B^{\alpha}_{i}B^{\bar{\beta}}_{\bar{j}}$ is the inverse of $g_{\alpha\bar{\beta}}$ and $g^{\bar{j}i} = B^{i}_{\alpha}B^{\bar{j}}_{\bar{\beta}}g^{\bar{\beta}\alpha} + \eta^{i}\eta^{\bar{j}}$. Moreover, along (I,\tilde{L}) subspace $g_{k\bar{h}} = \tilde{g}_{k\bar{h}} + \eta_k\eta_{\bar{h}}$ takes place, where $\tilde{g}_{k\bar{h}} = B^{\alpha}_{k}B^{\bar{\beta}}_{\bar{h}}g_{\alpha\bar{\beta}}$. Also on the indicatrix I_z from $\eta^k\eta_k = 1$ it follows that $\theta_{\alpha}\theta^{\alpha} = 1$, where $\theta_{\alpha} = g_{\alpha\bar{\beta}}\theta^{\bar{\beta}}$.

On T'I the local frame $\left\{\tilde{\delta}_k = \frac{\partial}{\partial \tilde{z}^k} - \tilde{N}_k^{\alpha} \frac{\partial}{\partial \theta^{\alpha}}, \dot{\partial}_{\alpha} = \frac{\partial}{\partial \theta^{\alpha}}\right\}$ can be considered and its dual base is given by $\{\mathrm{d}\tilde{z}^k, \ \delta\theta^{\alpha} = \mathrm{d}\theta^{\alpha} + \tilde{N}_j^{\alpha}\mathrm{d}\tilde{z}^j\}$, where \tilde{N}_k^{α} will be called the coefficients of the induced (c.n.c) iff $\delta\theta^{\alpha} = B_k^{\alpha}\delta\eta^k$, i.e. $\mathrm{d}\theta^{\alpha} + \tilde{N}_j^{\alpha}\mathrm{d}\tilde{z}^j = B_k^{\alpha}(\mathrm{d}\eta^k + N_j^k\mathrm{d}z^j)$, and using (10), we have ([10])

$$\tilde{N}_{k}^{\alpha} = B_{k}^{\alpha} \left(B_{\beta j}^{k} \theta^{\beta} + N_{j}^{k} \right).$$
(12)

Let $N_j^{CF} = g^{m\bar{k}} \frac{\partial g_{l\bar{m}}}{\partial z^j} \eta^l$ be the Chern-Finsler (c.n.c) from (3), and

$$\stackrel{CF}{N_{j}^{\alpha}} = g^{\bar{\beta}\alpha} \frac{\partial g_{\gamma\bar{\beta}}}{\partial \tilde{z}^{j}} \theta^{\gamma} = g^{\bar{\beta}\alpha} \frac{\partial^{2} \tilde{L}}{\partial \tilde{z}^{j} \partial \bar{\theta}^{\beta}} \theta^{\gamma},$$

the intrinsic (c.n.c.) coefficients. Then it takes place (with complete demonstration in [11]):

Proposition 1. The induced (c.n.c.) $\overset{CF}{\tilde{N}_{k}^{\alpha}}$ by the Chern-Finsler (c.n.c) $\overset{CF}{N_{j}^{k}}$ coincides with the intrinsic (c.n.c.) $\overset{CF}{N_{j}^{\alpha}}$.

Further on, the problem of the induced canonical (c.n.c.) is being studied and CF = CF = CFusing (12), from which $B_k^{\alpha} N_j^k = \tilde{N}_j^{\alpha} - B_k^{\alpha} B_{\beta j}^k \theta^{\beta}$, and (6) the link between this and the induced Chern-Finsler (c.n.c.) is obtained:

$$\tilde{\tilde{N}}_{j}^{\alpha} = \frac{1}{2} B_{k}^{\alpha} \left(B_{\beta j}^{k} + B_{\beta}^{i} L_{ji}^{k} \right) \theta^{\beta} + \frac{1}{2} \tilde{N}_{j}^{\alpha}$$

$$(13)$$

We note that in general $\left\{ \tilde{\delta}_k := \frac{\delta}{\delta \tilde{z}^k} = \frac{\partial}{\partial \tilde{z}^k} - \tilde{N}_k^{\alpha} \frac{\partial}{\partial \theta^{\alpha}} \right\}$ are not d-tensor fields on T'M, i.e. they cannot change as vectors on the manifold. Also, by the inclusion tangent map, $i_*(\tilde{\delta}_k)$, which for convenience will be often identified with $\tilde{\delta}_k$ on T'M, using (9), (11) and (12), we have:

Elena Popovici

$$\tilde{\delta}_k = \delta_k + H_k^0 N$$
 and $\dot{\partial}_k = B_k^{\alpha} \dot{\partial}_{\alpha} + \eta_k N$; where $H_k^0 = (B_{\alpha k}^j \theta^{\alpha} + N_k^j) \eta_j$. (14)

The dual induced coframe $\tilde{d}z^k = d\tilde{z}^k$ and $\delta\theta^{\alpha} = d\theta^{\alpha} + N_j^{\alpha}d\tilde{z}^j$ may be also considered. The dual coframe from T'M can be expressed by the elements of the induced dual coframe as:

$$\mathrm{d}z^k = \mathrm{d}\tilde{z}^k \quad \mathrm{si} \quad \delta\eta^k = B^k_\alpha \delta\theta^\alpha + \eta^k H^0_j \mathrm{d}\tilde{z}^j,$$

The induced frame and co-frame on the whole $T_{\rm C}I$ and the induced metric structure are obtained by conjugation everywhere:

$$\tilde{G} = g_{i\bar{j}}\tilde{d}z^i \otimes \tilde{d}\bar{z}^j + g_{\alpha\bar{\beta}}\delta\theta^\alpha \otimes \delta\bar{\theta}^\beta,$$
(15)

where $g_{i\bar{j}}(\tilde{z},\eta(\theta))$ is the metric tensor of the space along the indicatrix points.

4 The equations of the indicatrix as hypersurface

In this section first will deduce the Gauss-Weingarten equations relative to the induced (c.n.c.) on the hypersurface space of the indicatrix, followed then by the equations of Gauss, H- and A-Codazzi, and Ricci equations.

To find the induced C-F or Berwald linear connections the Gauss-Weingarten equations of the hypersurface I will be considered, with respect to the Chern-Finsler complex linear connection, briefly C-F (c.l.c.), respectively Berwald (c.l.c.), of the space T'M.

Considering \tilde{N} o fixed (c.n.c.) on I (let it be the one induced by (c.n.c.) N from T'M, by (12)), so that $T_C(I) = HI \oplus VI \oplus \overline{HI} \oplus \overline{VI}$ takes place. Following the steps to define a d-(c.l.c.) on a complex space from [8], a linear connection on T_CI can be defined as a map

$$D: \Gamma(T_C \mathbf{I}) \to \Gamma(T_C \mathbf{I} \otimes T_C \mathbf{I}^*),$$

such that $\tilde{D}(fu) = u\tilde{d}f + f\tilde{D}u$, $\forall f \in \mathcal{A}^0(I)$ and $u \in \Gamma(T_C I)$. Assuming \tilde{D} conserves the above distributions, in the local frame $\{\tilde{\delta}_k, \dot{\partial}_\alpha, \tilde{\delta}_{\bar{k}}, \dot{\partial}_{\bar{k}}\}$ a d-(c.l.c.) is well defined by the next set of coefficients:

$$\begin{split} \tilde{D}_{\tilde{\delta}_{k}}\tilde{\delta}_{j} &= \tilde{L}_{jk}^{i}\tilde{\delta}_{i}, \quad \tilde{D}_{\dot{\partial}_{\gamma}}\tilde{\delta}_{j} = \tilde{C}_{j\gamma}^{i}\tilde{\delta}_{i}, \quad \tilde{D}_{\tilde{\delta}_{\bar{k}}}\tilde{\delta}_{j} = \tilde{L}_{j\bar{k}}^{i}\tilde{\delta}_{i}, \quad \tilde{D}_{\dot{\partial}_{\bar{\gamma}}}\tilde{\delta}_{j} = \tilde{C}_{j\bar{\gamma}}^{i}\tilde{\delta}_{i}, \\ \tilde{D}_{\tilde{\delta}_{k}}\dot{\partial}_{\beta} &= \tilde{L}_{\beta k}^{\alpha}\dot{\partial}_{\alpha}, \quad \tilde{D}_{\dot{\partial}_{\gamma}}\dot{\partial}_{\beta} = \tilde{C}_{\beta \gamma}^{\alpha}\dot{\partial}_{\alpha}, \quad \tilde{D}_{\tilde{\delta}_{\bar{k}}}\dot{\partial}_{\beta} = \tilde{L}_{\beta \bar{k}}^{\alpha}\dot{\partial}_{\alpha}, \quad \tilde{D}_{\dot{\partial}_{\bar{\gamma}}}\dot{\partial}_{\beta} = \tilde{C}_{\beta \bar{\gamma}}^{\alpha}\dot{\partial}_{\alpha}, \\ \tilde{D}_{\tilde{\delta}_{k}}\tilde{\delta}_{\bar{j}} &= \tilde{L}_{\bar{j}k}^{\bar{k}}\tilde{\delta}_{\bar{\imath}}, \quad \tilde{D}_{\dot{\partial}_{\gamma}}\tilde{\delta}_{\bar{j}} = \tilde{C}_{\bar{j}\gamma}^{\bar{i}}\tilde{\delta}_{\bar{\imath}}, \quad \tilde{D}_{\tilde{\delta}_{\bar{k}}}\tilde{\delta}_{\bar{j}} = \tilde{L}_{\bar{j}\bar{k}}^{\bar{k}}\tilde{\delta}_{\bar{\imath}}, \quad \tilde{D}_{\dot{\partial}_{\bar{\gamma}}}\tilde{\delta}_{\bar{j}} = \tilde{C}_{\bar{j}\bar{\gamma}}^{\bar{\alpha}}\tilde{\delta}_{\bar{\imath}}, \\ \tilde{D}_{\tilde{\delta}_{k}}\dot{\partial}_{\bar{\beta}} &= \tilde{L}_{\bar{\beta}k}^{\bar{\alpha}}\dot{\partial}_{\bar{\alpha}}, \quad \tilde{D}_{\dot{\partial}_{\bar{\gamma}}}\dot{\partial}_{\bar{\beta}} = \tilde{C}_{\bar{\beta}\bar{\gamma}}^{\bar{\alpha}}\dot{\partial}_{\bar{\alpha}}. \end{split}$$

It can be noticed that on the indicatrix space an N - (c.l.c.) cannot be introduced, because the necessary condition is not fulfilled.

Let \tilde{N}_{k}^{α} be the induced (c.n.c.) on the indicatrix I. Then the tangent connection $D\tilde{\Gamma}$ induced by d-(c.l.c.) $D\Gamma = \left(N_{j}^{i}, L_{jk}^{i}, C_{jk}^{i}, L_{j\bar{k}}^{i}, C_{j\bar{k}}^{i}, L_{j\bar{k}}^{i}, L_{j\bar$

be a (c.l.c.) with respect to the induced connection and therefore the following decomposition occurs:

$$D_X Y = D_X Y + H(X, Y), \qquad \forall X, Y \in \Gamma(T_{\rm C} {\rm I}), \tag{16}$$

known as *Gauss's formula*, in which $\tilde{D}_X Y \in \Gamma(T_C \mathbf{I})$ is the induced tangent connection and $H(X,Y) \in \Gamma(T_C \mathbf{I}^{\perp})$ is the normal part of $D_X Y$. The map $H : \Gamma(T_C \mathbf{I}) \times \Gamma(T_C \mathbf{I}) \to \Gamma(T_C \mathbf{I}^{\perp})$ is $\mathcal{F}(I)$ -bilinear and is called *the second fundamental form* of the indicatrix subspace.

On the adapted frame of (c.n.c.) on I and the normal frame formed only by N, the second fundamental form H is well-defined by the next set of coefficients:

$$\begin{array}{ll} H(\tilde{\delta}_{j},\tilde{\delta}_{i}) = H_{ij}\mathrm{N}, & H(\tilde{\delta}_{j},\tilde{\delta}_{\bar{\imath}}) = H_{\bar{\imath}j}\bar{\mathrm{N}}, & H(\dot{\partial}_{\beta},\dot{\partial}_{\alpha}) = H_{\alpha\beta}\mathrm{N}, & H(\dot{\partial}_{\beta},\dot{\partial}_{\bar{\alpha}}) = H_{\bar{\alpha}\beta}\bar{\mathrm{N}}, \\ H(\tilde{\delta}_{j},\dot{\partial}_{\alpha}) = H_{\alpha j}\mathrm{N}, & H(\tilde{\delta}_{j},\dot{\partial}_{\bar{\alpha}}) = H_{\bar{\alpha}j}\bar{\mathrm{N}}, & H(\dot{\partial}_{\beta},\tilde{\delta}_{i}) = H_{i\beta}\mathrm{N}, & H(\dot{\partial}_{\beta},\tilde{\delta}_{\bar{\imath}}) = H_{\bar{\imath}\beta}\bar{\mathrm{N}}. \end{array}$$

These coefficients are Hermitian $(\overline{H_{\alpha\beta}} = H_{\bar{\alpha}\bar{\beta}})$ and by a direct computation, taking into account that for the normal component occurs $G(D_XY,\bar{N}) = G(H(X,Y),\bar{N})$, it takes:

$$\begin{split} H_{ij} &= \delta_{j}(H_{i}^{0}) + H_{j}^{0}N(H_{i}^{0}) + H_{i}^{0}H_{j}^{0} - H_{i}^{0}\eta_{l}(N_{j}^{l} - \eta^{k}L_{kj}^{2}) + H_{i}^{0}H_{j}^{0}\eta_{k}\eta^{n}\eta^{l}C_{nl}^{k}, \\ H_{\bar{\imath}j} &= \delta_{j}(H_{\bar{\imath}}^{0}) + H_{\bar{\imath}}^{0}L_{\bar{l}j}^{\bar{k}}\eta^{\bar{\imath}}\eta_{\bar{k}} + H_{j}^{0}N(H_{\bar{\imath}}^{0}) + H_{\bar{\imath}}^{0}H_{j}^{0}\eta_{\bar{k}}\eta^{l}\eta^{\bar{n}}C_{\bar{n}l}^{\bar{k}}, \\ H_{\alpha\beta} &= B_{\alpha}^{j}B_{\beta}^{k}C_{jk}^{i}\eta_{i}, \qquad H_{\bar{\alpha}\beta} = B_{\bar{\alpha}}^{\bar{j}}B_{\beta}^{k}C_{\bar{j}k}^{4}\eta_{\bar{\imath}}, \\ H_{\alpha j} &= \left(B_{\alpha j}^{i} + B_{\alpha}^{k}L_{kj}^{2}\right)\eta_{i} + H_{j}^{0}B_{\alpha}^{i}\eta^{l}\eta_{k}C_{il}^{k}, \\ H_{\bar{\alpha}j} &= B_{\bar{\alpha}}^{\bar{\imath}}L_{\bar{\imath}j}^{\bar{k}}\eta_{\bar{k}} + H_{j}^{0}B_{\bar{\alpha}}^{\bar{\imath}}\eta^{l}\eta_{k}C_{il}^{k}, \\ H_{\bar{\alpha}j} &= B_{\bar{\beta}}^{\bar{\imath}}\dot{\partial}_{j}(H_{i}^{0}) + B_{\beta}^{j}H_{i}^{0}\eta^{l}\eta_{k}C_{lj}^{k}, \qquad H_{\bar{\imath}\beta} = B_{\beta}^{j}\dot{\partial}_{j}(H_{\bar{\imath}}^{0}) + B_{\beta}^{j}H_{\bar{\imath}}^{0}\eta_{\bar{\imath}}\eta_{k}C_{lj}^{\bar{k}}. \end{split}$$

$$(17)$$

Next, using the Gauss's formula (16), the coefficients of the induced d-(c.l.c.) are obtained:

$$\begin{split} \tilde{L}_{jk}^{i} &= L_{jk}^{1} + H_{k}^{0} \eta^{l} C_{jl}^{1}; \\ \tilde{L}_{jk}^{\bar{i}} &= L_{jk}^{\bar{i}} + H_{k}^{0} \eta^{l} C_{jl}^{\bar{i}}; \\ \tilde{C}_{j\gamma}^{i} &= B_{\gamma}^{k} C_{jk}^{i}; \\ \tilde{L}_{\beta k}^{\alpha} &= \left(B_{\beta k}^{i} + B_{\beta}^{l} L_{lk}^{2} \right) B_{i}^{\alpha} + H_{k}^{0} B_{\beta}^{i} B_{p}^{\alpha} \eta^{l} C_{il}^{2}; \\ \tilde{L}_{\bar{\beta} k}^{\bar{\alpha}} &= B_{\bar{p}}^{\bar{\alpha}} B_{\bar{\beta}}^{\bar{i}} L_{\bar{i}k}^{\bar{p}} + H_{k}^{0} B_{\bar{p}}^{\bar{\alpha}} B_{\bar{\beta}}^{\bar{i}} \eta^{l} C_{il}^{\bar{p}}; \\ \tilde{L}_{\bar{\beta} \gamma}^{\alpha} &= B_{i}^{\alpha} B_{\beta}^{j} B_{\gamma}^{k} C_{jk}^{i}; \\ \tilde{C}_{\beta \gamma}^{\alpha} &= B_{i}^{\alpha} B_{\beta}^{j} B_{\gamma}^{k} C_{jk}^{i}; \\ \end{split}$$

$$(18)$$

Similarly, following the settings of the general geometry of subspaces, a linear connection $D\Gamma(T'M)$ induces a normal connection $D^{\perp}\Gamma(I)$. For $X \in \Gamma(T_C I)$ and $W \in \Gamma(T_C I^{\perp})$, we have

$$D_X W = -A_W X + D_X^{\perp} W, \tag{19}$$

where $A_W X \in \Gamma(T_C I)$ and $D_X^{\perp} W \in \Gamma(T_C I^{\perp})$. This formula is called *Weingarten's* formula.

The map $A: \Gamma(T_C \mathrm{I}^{\perp}) \times \Gamma(T_C \mathrm{I}) \to \Gamma(T_C \mathrm{I})$ is $\mathcal{F}(\mathrm{I})$ -bilinear, $A_W X = A(W, X)$, and A_W is called the *shape operator* (or Weingarten operator). Also $T_C \mathrm{I}^{\perp}$ is spanned by N, $\overline{\mathrm{N}}$, namely it has only the vertical component and thus it can be concluded that $D_X^{\perp} W \in \Gamma(V_C \mathrm{I}^{\perp})$ and $A: \Gamma(V_C \mathrm{I}^{\perp}) \times \Gamma(T_C \mathrm{I}) \to \Gamma(V_C \mathrm{I})$. Thus, as before, the action of the shape operator may be expressed $A_{\mathrm{N}}(X) := A(X) \in V\mathrm{I}$ on $\tilde{\delta}_k$ and $\dot{\partial}_{\alpha}$ as:

$$\begin{aligned} A_{\rm N}(\tilde{\delta}_k) &= A_k^{\alpha} \dot{\partial}_{\alpha}; \qquad A_{\rm N}(\dot{\partial}_{\beta}) = A_{\beta}^{\alpha} \dot{\partial}_{\alpha}; \\ A_{\rm N}(\tilde{\delta}_{\bar{k}}) &= A_{\bar{k}}^{\alpha} \dot{\partial}_{\alpha}; \qquad A_{\rm N}(\dot{\partial}_{\bar{\beta}}) = A_{\bar{\beta}}^{\alpha} \dot{\partial}_{\alpha}, \end{aligned}$$

these coefficients being Hermitian, i.e. $\overline{A_k^{\alpha}} = A_{\bar{k}}^{\bar{\alpha}}$. Thus, considering $G(D_X N, \dot{\partial}_{\bar{\beta}}) = -G(A(X), \dot{\partial}_{\bar{\beta}}), \dot{\partial}_{\bar{\beta}} = B_{\bar{\beta}}^{\bar{k}} \dot{\partial}_{\bar{k}}$ and bilinear G, we obtain the following relation $G(D_X N, \dot{\partial}_{\bar{k}}) = -G(A(X), \dot{\partial}_{\bar{k}})$. Thereby

$$\begin{aligned}
A_{k}^{\alpha} &= B_{i}^{\alpha} \left(N_{k}^{i} - \eta^{j} L_{jk}^{i} - H_{k}^{0} \eta^{l} \eta^{j} C_{jl}^{i} \right); & A_{\beta}^{\alpha} = -B_{i}^{\alpha} \left(B_{\beta}^{i} + B_{\beta}^{k} \eta^{j} C_{jk}^{i} \right); \\
A_{\bar{k}}^{\alpha} &= -B_{i}^{\alpha} \left(\eta^{j} L_{j\bar{k}}^{i} + H_{\bar{k}}^{0} \eta^{\bar{l}} \eta^{j} C_{j\bar{l}}^{i} \right); & A_{\beta}^{\alpha} = -B_{i}^{\alpha} B_{\beta}^{\bar{k}} \eta^{j} C_{j\bar{k}}^{i}. \quad (20)
\end{aligned}$$

Next, using these, a relation between the induced and intrinsic particular connections introduced on the indicatrix bundle will be obtained.

On T'M a Hermitian N-(c.l.c.) D of (1,0)-type can be introduced, known as Chern-Finsler (c.l.c), locally given by the following set of coefficients:

$${}^{CF}_{D}\Gamma = \begin{pmatrix} CF\\N^{i}_{j} = g^{\bar{m}i}\frac{\partial g_{l\bar{m}}}{\partial z^{j}}\eta^{l}, \ L^{i}_{jk} = g^{\bar{m}i}\frac{\delta g_{j\bar{m}}}{\delta z^{k}}, \ C^{F}_{jk} = g^{\bar{m}i}\frac{\partial g_{j\bar{m}}}{\partial \eta^{k}}, \ L^{\bar{i}}_{\bar{j}k} = 0, \ C^{F}_{\bar{j}k} = 0 \end{pmatrix}.$$

Considering (12), Proposition 1, the tangent connection $\stackrel{CF}{D}\tilde{\Gamma}$ induced by $\stackrel{CF}{D}\Gamma$ will be a complex linear connection, so the Gauss formula (16) can be applied and from (18) and homogeneity conditions $\stackrel{CF}{C_{jk}}\eta^j = \stackrel{CF}{C_{jk}}\eta^k = 0$, the induced d-(c.l.c.) coefficients may be calculated:

The equations of the indicatrix of a complex Finsler space

On a complex Finsler space relation (5) takes place, that is $L_{jk}^{CF} = \dot{\partial}_j \begin{pmatrix} N_k^F \\ N_k^i \end{pmatrix}$. For the induced connection, using (12), this is preserved:

$$\dot{\partial}_{\beta}\tilde{N_{k}^{\alpha}} = \dot{\partial}_{\beta}\left\{B_{j}^{\alpha}(z)\left(B_{\gamma k}^{j}\theta^{\gamma} + N_{k}^{j}\right)\right\} = B_{j}^{\alpha}\left(B_{\beta k}^{j} + B_{\beta}^{i}L_{ik}^{j}\right) = \tilde{L}_{\beta k}^{\alpha}$$

Using (17), the homogeneity condition $\begin{array}{c} CF\\ C_{jk}^{F}\eta^{j} = \begin{array}{c} CF\\ C_{jk}^{i}\eta^{k} = 0 \end{array}$ and $\eta^{j}L_{jk}^{i} = N_{k}^{i}$, obtained from $\begin{array}{c} CF\\ L_{jk}^{i} = \frac{\partial N_{k}^{i}}{\partial \eta^{j}} \end{array}$ and 1-homogeneity of $\begin{array}{c} N_{k}^{i} \\ N_{k}^{i} \end{array}$, the coefficients of the second fundamental form H for the induced C-F d-(c.l.c.):

$$\begin{split} H_{ij} &= \delta_j (H_i^0) + H_j^0 \mathcal{N} (H_i^0) + H_i^0 H_j^0, \qquad H_{\bar{\imath}j} = \delta_j (H_{\bar{\imath}}^0) + H_j^0 \mathcal{N} (H_{\bar{\imath}}^0), \\ H_{\alpha\beta} &= B_{\alpha}^j B_{\beta}^k C_{jk}^i \eta_i, \qquad \qquad H_{\bar{\alpha}\beta} = 0, \\ H_{\alpha j} &= B_{\alpha j}^i \eta_i + B_{\alpha}^k L_{kj}^i \eta_i, \qquad \qquad H_{\bar{\alpha}j} = 0, \\ H_{i\beta} &= B_{\beta}^j \dot{\partial}_j (H_{\bar{\imath}}^0), \qquad \qquad H_{\bar{\imath}\beta} = B_{\beta}^j \dot{\partial}_j (H_{\bar{\imath}}^0). \end{split}$$

Similar, using these conditions and Weingarten formula (19), the coefficients of the shape operator can be expressed:

$$\begin{aligned}
A_k^{\alpha} &= 0; & A_{\beta}^{\alpha} = -\delta_{\beta}^{\alpha}; \\
A_k^{\alpha} &= 0; & A_{\beta}^{\alpha} = 0.
\end{aligned}$$
(22)

Using the good vertical connection technique, an intrinsic (c.n.c.) N_k^{α} can be determined on I and some of the d-(c.l.c.) coefficients, defined on the vertical bundle $D: T_C \mathbf{I} \times V_C \mathbf{I} \to V_C \mathbf{I}, \ D\Gamma(N) = (L_{\beta k}^{\alpha}, L_{\bar{\beta} k}^{\bar{\alpha}}, C_{\beta \gamma}^{\alpha}, C_{\bar{\beta} \gamma}^{\bar{\alpha}})$. For example, in the C-F (c.n.c.) $\sum_{j=1}^{CF} g^{\bar{\beta}\alpha} \frac{\partial g_{\gamma\bar{\beta}}}{\partial \bar{z}^j} \theta^{\gamma} = g^{\bar{\beta}\alpha} \frac{\partial^2 L}{\partial \bar{z}^j \partial \theta^{\beta}}$, we can introduce on the vertical fibers $\sum_{j=1}^{CF} C_{j}^{CF} C_{j}^{CF} = C_{\beta k}^{F} = g^{\bar{\sigma}\alpha} \frac{\partial g_{\beta \bar{\sigma}}}{\partial \bar{z}^{\bar{z}}}, C_{\beta \gamma}^{CF} = g^{\bar{\sigma}\alpha} \frac{\partial g_{\beta \bar{\sigma}}}{\partial \bar{z}^{\bar{z}}}, C_{\beta \gamma}^{CF} = g^{\bar{\sigma}\alpha} \frac{\partial g_{\beta \bar{\sigma}}}{\partial \bar{z}^{\bar{z}}} = 0$

Considering that the C-F intrinsic and induced (c.n.c.) coincide according to Proposition 1, using (14), the homogeneity condition $\frac{\partial g_{j\bar{m}}}{\partial \eta^l}\eta^l = 0$ and $g^{\bar{n}i}\eta_{\bar{n}}B_i^{\alpha} =$

 $g^{\bar{n}i}g_{j\bar{n}}\eta^{j}B_{i}^{\alpha} = \delta_{j}^{i}\eta^{j}B_{i}^{\alpha} = \eta^{i}B_{i}^{\alpha} = 0$, we obtained that the corresponding coefficients coincide too: $L_{\beta k}^{CF} = \tilde{L}_{\beta k}^{CF}$ and $C_{\beta \gamma}^{CF} = \tilde{C}_{\beta \gamma}^{CF}$. Similarly, the coefficients on the horizontal fibers can be defined:

$$\begin{bmatrix} CF\\ L_{jk}^i\\ I \end{bmatrix} = g^{\bar{m}i} \frac{\delta g_{j\bar{m}}}{\delta \tilde{z}^k}, \ \begin{bmatrix} CF\\ C_{j\gamma}^i \end{bmatrix} = g^{\bar{m}i} \frac{\partial g_{j\bar{m}}}{\partial \theta^{\gamma}}, \ \begin{bmatrix} CF\\ L_{jk}^{\bar{i}}\\ I \end{bmatrix} = \begin{bmatrix} CF\\ C_{\bar{j}\gamma}^{\bar{i}} \end{bmatrix} = 0$$

Proposition 2. On the indicatrix bundle, the induced and the intrinsic C-F d-(c.l.c.) coincide, i.e. the (21) relation concur with

$$\begin{split} \begin{bmatrix} CF\\ D\Gamma \end{bmatrix}_{\mathbf{I}} &= & \left(\begin{bmatrix} CF\\ N_{j}^{C} = g^{\bar{\beta}\alpha} \frac{\partial g_{\gamma\bar{\beta}}}{\partial \bar{z}^{j}} \theta^{\gamma}; \begin{bmatrix} CF\\ L_{jk}^{i} \end{bmatrix}_{\mathbf{I}} = g^{\bar{m}i} \frac{\delta g_{j\bar{m}}}{\delta \bar{z}^{k}}, \begin{bmatrix} CF\\ C_{j\gamma}^{i} = g^{\bar{m}i} \frac{\partial g_{j\bar{m}}}{\partial \theta^{\gamma}}, \begin{bmatrix} CF\\ L_{jk}^{\bar{i}} \end{bmatrix}_{\mathbf{I}} = C_{\bar{j}\gamma}^{\bar{i}} = 0, \\ & L_{\beta k}^{C} = g^{\bar{\sigma}\alpha} \frac{\delta g_{\beta\bar{\sigma}}}{\delta \bar{z}^{k}}, \begin{bmatrix} CF\\ C_{\beta\gamma}^{\alpha} = g^{\bar{\sigma}\alpha} \frac{\partial g_{\beta\bar{\sigma}}}{\partial \theta^{\gamma}}, \begin{bmatrix} CF\\ L_{\bar{\beta}k}^{\bar{\alpha}} = C_{\bar{\beta}\gamma}^{\bar{\alpha}} = 0 \end{bmatrix}. \end{split}$$

From the general theory of sprays on a manifold M (see [8]) from the coefficients of a spray $\overset{c}{G} := \frac{1}{2} N_k^i \eta^k = \frac{1}{2} N_0^i$ a (c.n.c.) can determined $N_k^i = \frac{\partial G^i}{\partial \eta^k}$, called the canonical (c.n.c.). Correspondingly, a complex linear connection can be associated known as Berwald type complex connection, locally given by the set of coefficients:

$$B\Gamma = \left(N_{j}^{i} = \frac{1}{2} \dot{\partial}_{j} \left(N_{k}^{i} \eta^{k} \right), \ L_{jk}^{i} = \dot{\partial}_{k} N_{j}^{i} = L_{kj}^{i}, \ L_{j\bar{k}}^{i} = \dot{\partial}_{\bar{k}} N_{j}^{i}, \ C_{jk}^{i} = 0, \ C_{j\bar{k}}^{i} = 0 \right).$$

with (6), (7) properties and, moreover, $L^B_{j\bar{k}}\eta^{\bar{k}} = 0$ takes place (see [3], Lemma 2.2.a.).

Considering (12), $\tilde{N}_{j}^{c} = B_{k}^{\alpha} \left(B_{\beta j}^{k} \theta^{\beta} + N_{j}^{c} \right)$, the tangent connection $B\tilde{\Gamma}$ induced by $B\Gamma$ is a (c.l.c), therefore the Gauss formula (16) can be applied and from (18) the induced d-(c.l.c.) coefficients can be estimated:

$$B\tilde{\Gamma} = \begin{pmatrix} \tilde{C}_{j}^{\alpha} = B_{k}^{\alpha} \left(B_{\beta j}^{k} \theta^{\beta} + N_{j}^{k} \right); \quad \tilde{L}_{jk}^{B} = L_{jk}^{B}; \quad \tilde{L}_{j\bar{k}}^{i} = B_{j\bar{k}}^{B}; \quad \tilde{C}_{j\gamma}^{i} = 0; \quad \tilde{C}_{j\bar{\gamma}}^{i} = 0; \\ \tilde{L}_{\beta k}^{\alpha} = B_{i}^{\alpha} \left(B_{\beta k}^{i} + B_{\beta}^{j} L_{jk}^{i} \right); \quad \tilde{L}_{\beta \bar{k}}^{\alpha} = B_{i}^{\alpha} B_{\beta}^{j} L_{j\bar{k}}^{i}; \quad \tilde{C}_{\beta \gamma}^{\alpha} = 0; \quad \tilde{C}_{\beta \bar{\gamma}}^{\alpha} = 0 \end{pmatrix}.$$

$$(23)$$

From (17) and (20), using $\eta^j L_{jk}^i = N_k^i$, the coefficients of the second fundamental form H and the coefficients of the shape operator can be obtained for the induced Berwald d-(c.l.c.):

$$\begin{split} H_{ij} &= \delta_j (H_i^0) + H_j^0 \mathcal{N}(H_i^0) + H_i^0 H_j^0, & H_{\bar{\imath}j} = \delta_j (H_{\bar{\imath}}^0) + H_j^0 \mathcal{N}(H_{\bar{\imath}}^0) + H_{\bar{\imath}}^0 L_{\bar{l}j}^{B} \eta^{\bar{\imath}} \eta_{\bar{k}}, \\ H_{\alpha\beta} &= 0, & H_{\bar{\alpha}\beta} = 0, \\ H_{\alpha j} &= B_{\alpha j}^{i} \eta_i + B_{\alpha}^{k} L_{kj}^{B} \eta_i, & H_{\bar{\alpha}j} = B_{\bar{\alpha}}^{\bar{\imath}} L_{\bar{\imath}j}^{\bar{k}} \eta_{\bar{k}}, \\ H_{i\beta} &= B_{\beta}^{j} \dot{\partial}_j (H_i^0), & H_{\bar{\imath}\beta} = B_{\beta}^{j} \dot{\partial}_j (H_{\bar{\imath}}^0). \\ & A_k^{\alpha} &= 0; & A_{\beta}^{\alpha} = -\delta_{\beta}^{\alpha}; \\ A_{\bar{k}}^{\alpha} &= -B_i^{\alpha} \eta^j L_{j\bar{k}}^{\bar{i}}; & A_{\bar{\beta}}^{\alpha} = 0. \end{split}$$

Similarly as in the intrinsic C-F d-(c.l.c.) case, first we introduce the coefficients of the intrinsic Berwald d-(c.l.c.) on the vertical fibers

$$B\Gamma\left(\overset{c}{N_{j}^{\alpha}}\right) = \left(\overset{B}{L_{\beta k}^{\alpha}} = \frac{\partial \overset{c}{N_{k}^{\alpha}}}{\partial \theta^{\beta}}, \overset{B}{L_{\beta \bar{k}}^{\alpha}} = \frac{\partial \left(B_{\beta}^{j} \overset{c}{N_{j}^{\alpha}}\right)}{\partial \eta^{\bar{k}}}, \overset{B}{C_{\beta \gamma}^{\alpha}} = 0, \overset{B}{C_{\beta \bar{\gamma}}^{\alpha}} = 0\right)$$
(24)

where $N_j^{\alpha} = \frac{1}{2} \frac{\partial \left(N_i^{\alpha} \eta^i \right)}{\partial \eta^j}$ is the intrinsic canonical (c.n.c.) on the indicatrix bundle. Then it can be proved:

Proposition 3. The canonical (c.n.c.) \tilde{N}_{j}^{α} induced on I from the canonical (c.n.c.) $\overset{c}{N_{j}^{\alpha}}$ of the base manifold T'M coincides with the intrinsic canonical (c.n.c.) $\overset{c}{N_{j}^{\alpha}}$ of the indicatrix bundle.

So, it can be easily verified that the coefficients of the vertical fields of the intrinsic and induced Berwald d-(c.l.c.) coincide. Using (24) and (13) it can be checked that the induced Berwald connection is of Berwald type, i.e.

Proposition 4. The induced Berwald connection coincides with the intrinsic Berwald connection of the indicatrix bundle, namely:

$$\tilde{L}^{B}_{\beta j} = \frac{\partial \tilde{\tilde{N}^{\alpha}_{j}}}{\partial \theta^{\beta}}.$$

On the horizontal fibers can be introduced:

$$\left. L^B_{jk} \right|_{\mathbf{I}} = \frac{\partial N^i_k}{\partial \eta^j} = \dot{\partial}_k N^i_j, \quad L^G_{j\bar{k}} \right|_{\mathbf{I}} = \dot{\partial}_{\bar{k}} N^i_j, \quad C^F_{j\gamma} = 0, \quad C^F_{\bar{j}\gamma} = 0$$

and we can state:

Proposition 5. On the indicatrix bundle, the induced and the intrinsic Berwald type d-(c.l.c.) coincide, i.e. the (23) relation concur with

$$B\Gamma|_{\mathbf{I}} = \begin{pmatrix} \sum_{j=1}^{c} \frac{\partial \begin{pmatrix} CF_{i} \\ N_{i}^{\alpha} \eta^{i} \end{pmatrix}}{\partial \eta^{j}}; & L_{jk}^{i} \\ L_{jk}^{i} \end{pmatrix}|_{\mathbf{I}} = \dot{\partial}_{j} N_{k}^{i}, & L_{j\bar{k}}^{i} \\ L_{j\bar{k}}^{i} + \frac{\partial}{\partial k} N_{j}^{i}, & L_{j\gamma}^{i} = 0, \\ L_{\beta k}^{\alpha} = \dot{\partial}_{\beta} N_{k}^{\alpha}, & L_{\beta \bar{k}}^{\alpha} = \dot{\partial}_{\bar{k}} \begin{pmatrix} B_{\beta}^{j} N_{j}^{\alpha} \end{pmatrix}, & B_{\beta \gamma}^{\alpha} = 0, \\ C_{\beta \gamma}^{i} = 0, \\$$

In order to introduce Gauss, Codazzi and Ricci equations on the indicatrix hypersurface let us consider D a N-(c.l.c.) on T'M and \tilde{D} , D^{\perp} \tilde{N} - the induced tangent and normal connection on I, as above. Let \tilde{v} and \tilde{h} denote the projectors on VI and HI distributions, respectively, and through $\bar{\tilde{v}}$ and $\bar{\tilde{h}}$ the projectors on conjugate distributions will be denoted. Without the tilde the same projectors on $T_CT'M$ will be noted.

To get a link between curvatures R(X,Y)Z of D connection and R(X,Y)Z of \tilde{D} connection, for $X, Y, Z \in \Gamma(T_C I)$ we act similar steps as in [4] for real Finsler manifolds and in [9] for complex Finsler space. First, the covariant derivative of the second fundamental form is defined:

$$(D_XH)(Y,Z) = D_X^{\perp}(H(Y,Z)) - H\left(\tilde{D}_XY,Z\right) - H\left(Y,\tilde{D}_XZ\right)$$

Now, using the curvature definition $R(X, Y) Z = D_X D_Y Z - D_Y D_X Z - D_{[X,Y]}$, the torsion definition $T(X, Y) = D_X Y - D_Y X - [X, Y]$, for $X, Y, Z \in \Gamma(T_C I)$ and applying the Gauss-Weingarten formulae (16) and (19), we get:

$$R(X,Y)Z = \tilde{R}(X,Y)Z + A(H(X,Z),Y) - A(H(Y,Z),X) + (D_XH)(Y,Z) - (D_YH)(X,Z) + H(\tilde{T}(X,Y),Z)$$

Equating the components from $T_C I$ and $T_C^{\perp} I$ with the help of the metric structures **G** and $\tilde{\mathbf{G}}$ introduced in previous sections, we obtain

$$\mathbf{G}\left(R(X,Y)Z,U\right) = \tilde{\mathbf{G}}\left(\tilde{R}(X,Y)Z,U\right) + \tilde{\mathbf{G}}\left(A_{H(X,Z)}Y - A_{H(Y,Z)}X,U\right)$$

where $U \in \Gamma(\overline{T'I})$, and respectively, using that $T_C I^{\perp}$ is spanned only by N, \overline{N} ,

$$\mathbf{G}\left(R(X,Y)Z,\bar{\mathbf{N}}\right) = \mathbf{G}\left(\left(D_XH\right)(Y,Z) - \left(D_YH\right)(Y,Z),\bar{\mathbf{N}}\right) + \mathbf{G}\left(H\left(\tilde{T}(X,Y),Z\right),\bar{\mathbf{N}}\right)$$

called the Gauss equations, respectively H-Codazzi equations of (I, \tilde{L}) subspace.

Analogously, for normal curvatures R(X,Y)N and $\tilde{R}(X,Y)N$, defining the covariant derivative of the shape operator

The equations of the indicatrix of a complex Finsler space

$$(D_X A)(\mathbf{N}, Y) = \tilde{D}_X(A_\mathbf{N} Y) - A\left(D_X^{\perp} \mathbf{N}, Y\right) - A\left(\mathbf{N}, \tilde{D}_X Y\right),$$

and the curvature form R^{\perp} of the normal Finsler connection, $R^{\perp}(X, Y)N = D_X^{\perp}(D_Y^{\perp}N) - D_Y^{\perp}(D_X^{\perp}N) - D_{[X,Y]}^{\perp}N$, using the Gauss-Weingarten equations (16) and (19) it is obtained that:

$$R(X,Y)N = R^{\perp}(X,Y)N + H(Y,A_{N}X) - H(X,A_{N}Y) + (D_{Y}A)(N,X) - (D_{X}A)(N,Y) - A_{N}\left(\tilde{T}(X,Y)\right).$$

Equating their components from T_C I and T_C^{\perp} I, we have

$$\mathbf{G}\left(R(X,Y)\mathbf{N},Z\right) = \tilde{\mathbf{G}}\left(\left(D_{Y}A\right)\left(\mathbf{N},X\right) - \left(D_{X}A\right)\left(\mathbf{N},Y\right),Z\right) - \tilde{\mathbf{G}}\left(A_{\mathbf{N}}\left(\tilde{T}\left(X,Y\right)\right),Z\right)$$

where $X,Y \in \Gamma\left(T_{C}T'\mathbf{I}\right), \ Z \in \Gamma\left(\overline{T'\mathbf{I}}\right)$, and

$$\mathbf{G}\left(R(X,Y)\mathbf{N},\bar{\mathbf{N}}\right) = \mathbf{G}\left(R^{\perp}(X,Y)\mathbf{N},\bar{\mathbf{N}}\right) + \mathbf{G}\left(H\left(Y,A_{\mathbf{N}}X\right) - H\left(X,A_{\mathbf{N}}Y\right),\bar{\mathbf{N}}\right)$$

called the A-Codazzi equations, respectively Ricci equations of (I, \tilde{L}) subspace.

Further on, we will try to give some conditions when the indicatrix hypersurface is an umbilical submanifold.

Roughly speaking, a submanifold of a Riemannian manifold is *totally umbilical*, or simply umbilical, if it is equally curved in all tangent directions. A point $x \in M$ is called an umbilical point of the indicatrix if the shape operator A is proportional to the identity transformation for all vector fields from $T_C I^{\perp}$, i.e. for $W \in T^{\perp} I$, the Weingarten operator satisfies:

$$A_W X = \lambda X$$
, where $\lambda \in \mathbb{R}, \ \forall W \in T_C \mathrm{I}^{\perp}$.

The submanifold is said to be totally umbilical if every point of the submanifold is an umbilical point.

Considering that $T_C I^{\perp}$ is spanned only by N, \overline{N} , and given the fact that

$$\begin{aligned} A_{\rm N}(\tilde{\delta}_k) &= A_k^{\alpha} \dot{\partial}_{\alpha}; \qquad A_{\rm N}(\dot{\partial}_{\beta}) = A_{\beta}^{\alpha} \dot{\partial}_{\alpha}; \\ A_{\rm N}(\tilde{\delta}_{\bar{k}}) &= A_{\bar{k}}^{\alpha} \dot{\partial}_{\alpha}; \qquad A_{\rm N}(\dot{\partial}_{\bar{\beta}}) = A_{\bar{\beta}}^{\alpha} \dot{\partial}_{\alpha}, \end{aligned}$$

where the shape operator coefficients are given by (20), for the indicatrix to be an umbilical manifold we must have $A_k^{\alpha} = A_k^{\alpha} = A_{\beta}^{\alpha} = 0$ and $A_{\beta}^{\alpha} = \lambda \delta_{\beta}^{\alpha}$, where $\lambda \in \mathbb{R}$. It can be noticed that if the induced C-F d-(c.l.c.) is considered, relation (22) confirms that the indicatrix is umbilical with $\lambda = -1$, and we may conclude that in this case the indicatrix is a totally umbilical hypersurface of constant mean curvature. In [6], the definition of an extrinsic sphere is given as a submanifold of a Riemannian manifold that is a totally umbilical submanifold with a nonzero parallel mean curvature vector. So, in the case of the C-F N-(c.l.c.) connection considered on the complex Finsler space (M, L), the indicatrix I_x is an extrinsic sphere of T'M.

References

- Abate, M., Patrizio, G., Finsler Metrics A global Approach, Lecture Notes in Math., Springer-Verlag, 1994.
- [2] Akbar-Zadeh, H., Initiation to global Finlser geometry, North-Holland Math. Library, 68, Elsevier, 2006.
- [3] Aldea, N., Munteanu, G., On complex Landsberg and Berwald spaces, Journal of Geometry and Physics 62 (2012), 368–380.
- [4] Bejancu, A, Farran, H.R., The geometry of pseudo-Finsler submanifolds, Kluwer Acad. Publ., 2000.
- [5] Bryant, R., Some remarks on Finlser manifolds with constant flag curvature, Houston J. of Math., 2002.
- [6] Dragomir, S., Grimaldi, R., On Rund's connection, Note di Matematica 15, no. 1, (1995), 85-98.
- [7] Gheorghe, M., On the indicatrix in Finsler geometry, Aanlele St. Univ. A.I. Cuza Iasi, Tomul LIII, (2007), Supliment, p. 163–180.
- [8] Munteanu, G., Complex Spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Acad. Publ., 2004.
- [9] Munteanu, G., The equations of a holomorphic subspace in a complex Finsler space, Periodica Mathematica Hungarica, 55(1) (2007), p. 81-95.
- [10] Munteanu, G., On the geometry of indicatrix of a complex Finsler space, Bull. Transilvania Univ. of Brasov, 1(50) (2008), Serie III, p. 253-262.
- [11] Munteanu, G., Geodesics on the indicatrix of a complex Finsler manifold, Bull. Transilvania Univ. of Brasov, 3(52) (2010), Serie III, p. 53-66.
- [12] Zhong C., On the fundamental formulas of complex Finsler submanifolds, Journal of Geometry and Physics, 58, no. 4, (2008), p. 423-449.