
Bulletin of the Transilvania University of Braşov • Vol 6(55), No. 2 - 2013
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Abstract

ARIMA is a popular method to analyze stationary univariate time series
data, and nowadays it is considered the standard method for time series fore-
casting. We experimentally show that two machine learning based approaches
can be used for the forecasting of univariate time series. The experiments are
made on ten public time series datasets and we report the results obtained by
ARIMA, linear regression and multilayer perceptrons networks. The quantita-
tive results show that linear regresion and multi layer perceptrons obtain more
acccurate predictions than the ones produced by ARIMA.
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1 Introduction

A time series is a sequence of observations y1, . . . , yt generated sequentially in
time. Examples of time series include financial time series (stocks, indices, rates,
etc.), physically observed time series (sunspots, weather, etc.), and mathematical
time series (Fibonacci sequence, integrals of differential equations, etc.). The char-
acteristic property of a time series is the fact that the data are not generated in-
dependently, their variance varies in time, they are often governed by a trend, and
they have cyclic components. Statistical procedures that suppose independent and
identically distributed data are, therefore, excluded from the analysis of time series.

Time series forecasting, or time series prediction takes an existing series of data
y1, . . . , yt and forecasts the yt+1, yt+2, . . . data values. The goal is to observe or
model the existing data series to enable future unknown data values to be forecasted
accurately.

In order to better reveal certain non-seasonal features, a seasonal adjustment
(SA) step is applied on the original data, to improve the forecasting accuracy. The
mechanics of seasonal adjustment involve breaking down a series into trend-cycle,
seasonal, and irregular components [11]:

• trend cycle: level estimate for each month (quarter) derived from the sur-
rounding year-or-two of observations.
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• seasonal effects: effects that are reasonably stable in terms of annual timing, di-
rection, and magnitude. Possible causes include natural factors (the weather),
administrative measures (starting and ending dates of the school year), and
social/cultural/religious traditions (fixed holidays such as Christmas). Effects
associated with the dates of moving holidays like Easter are not seasonal in
this sense, because they occur in different calendar months depending on the
date of the holiday.

• irregular components: anything not included in the trend-cycle or the seasonal
effects (or in estimated trading day or holiday effects). Their values are un-
predictable with regard to timing, impact, and duration. They can arise from
sampling error, non-sampling error, unseasonable weather, natural disasters,
strikes, etc.

The non-seasonally adjusted (NSA) time series is a sequence of successive mea-
surements of any miscellaneous news activity obtained at regular time intervals
(such as every month or every quarter). Some of the methods used in time series
forecasting benefit from SA, while others are rather insensitive to it.

While Autoregressive Integrated Moving Average (ARIMA) model is adopted as
de facto standard in time series forecasting applications, one may also consider some
popular models used for regression problems. In machine learning, linear models and
artificial neural networks are popular choices for inferential mechanisms. This paper
quantifies the performance of ARIMA, linear regression and multilayer perceptron
approaches for time series forecasting, on 10 time series datasets [14]–[23]. We
experimentally show that the following conclusion from [10] page 285 is at least
questionable: “In conclusion, one can say with certainty that for the immediate and
short-term prediction, the Box-Jenkins method is the most accurate of all methods
using time series models.”

The ARIMA forecasting is made using the IBM SPSS Statistics analysis package
software [13]. The linear regression and multilayer perceptron implementations are
the ones provided by Weka [5].

The structure of this paper is as follows: section 2 contains a brief description
of the three forecasting models which we compared and the formula used for model
assessment; section 3 presents the datasets used for the experiments and the results
produced by the three models. Section 4 draws the conclusions of the paper and
sketches future work.

2 Time series forecasting models

2.1 ARIMA

ARIMA processes are a class of stochastic processes used in the area of time
series modeling. The application of the ARIMA methodology for the study of time
series analysis is due to Box and Jenkins [3]. Let us consider {yt}t = y1, y2, . . . the
observations at equally spaced times and let {at}t = a1, a2, . . . be a white noise series
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consisting of independent identically distributed random variables whose distribution
is approximately normal with mean zero and variance σ2a. Assume that E(yt) = µy
and for simplicity let us note yt − µy = ỹt. Therefore E(ỹt) = 0.

Consider the general ARMA(p, q) model [4]:

ỹt = φ1ỹt−1 + · · ·+ φpỹt−p + at − θ1at−1 − · · · − θqat−q (1)

or
φ(B)ỹt = θ(B)at (2)

where,
φ(B) = 1− φ1B − φ2B2 − · · · − φpBp

is the autoregression operator of order p, θ(B) is the moving average operator of
order q

θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q

and B is the backward shift operator, Byt = yt−1, B
kyt = yt−k.

The general ARIMA(p, d, q) model is defined as

φ(B)(1−B)dỹt = φ(B)∇dỹt = θ(B)at (3)

where ∇ = 1− B is backward difference and ∇d = (1− B)d is backward difference
of order d.

A common assumption for many time series techniques is that the data are
stationary. A stationary process has the property that the mean, variance and
autocorrelation structure do not change over time. Stationarity can be defined in
precise mathematical terms, but for our purpose we mean a flat looking series,
without trend, constant variance over time, a constant autocorrelation structure
over time and no periodic fluctuations. If the roots of polynomial φ(B) lie outside
the unit circle, it may be shown that an ARMA(p, q) is stationary [10].

Many time series are not stationary. Most often, the series of first differences
is stationary, i.e. yt − yt−1 = (1 − B)yt. If a series {yt}t has to be differenced
once to obtain stationarity, then the model corresponding to the original series
is called an integrated ARMA model of order p, 1, q or an ARIMA(p, 1, q). In
practice, differencing on the first order is necessary, while second order differencing
is rarely needed. If the original series {yt}t is stationary, then it is not necessary to
differentiate it. If the time series manifest a periodic fluctuation (seasonal pattern),
then the general ARIMA model is defined as in [4]:

Φ(Bs)∇D
s yt = Θ(Bs)at (4)

where s is the number of periods in a season. Let us note the seasonal ARIMA
model ARIMA(p, d, q)(P,D,Q)s, where P=number of seasonal autoregressive terms,
D=number of seasonal differences, Q=number of seasonal moving average terms.

The implementation provided by IBM SPSS Statistics analysis package2 version
21 was used for ARIMA. As ARIMA is delivered as an SPSS procedure at least from

2http://www-01.ibm.com/software/analytics/spss/
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version 13 of this product3, one can expect the current version to be quite error–free.
The steps for producing the most appropriate ARIMA model are detailed in [12].

2.2 Weka for time series forecasting

Weka [5], which was initially conceived as a classification and regression tool,
was further extended with forecasting capabilities4. The forecasting plugin allows
the user to choose the model to be used for prediction, as in a regular classification
or regression task. The user is allowed to specify the periodic attribute, or whether
Weka should use lagged variables or overlay data. Through a feature selection step,
Weka decides which of the initial features (in case of multivariate time series) and
which derived features (e.g. lagged data) are to be used for prediction. The version
of Weka used for this paper is 3.7.10, and the forecasting plugin is of version 1.0.14.

2.3 Linear regression

Linear regression is one of the most popular models for regression. The output
provided by this model is computed as:

y(x) = wT · x =
M∑
j=1

wjxj (5)

Sometimes, a normally distributed difference ε between the predicted value y(x)
and the corresponding actual value t is considered for the sum in eq. (5), especially
for further probabilistic treatments [9], [2]. The coefficients {wj}j=1,...,M are sought
through least squares or iterative methods (e.g. gradient descent). The values
{xj}j=1,...,M are called “features” or “attributes” and they are associated with the
data to be processed.

For N data exemplars x(n) = (x
(n)
1 , . . . , x

(n)
M ), 1 ≤ n ≤ N one can consider the

matrix X defined as:

X =


x
(1)
1 . . . x

(1)
M

x
(2)
1 . . . x

(2)
M

...
. . .

...

x
(N)
1 . . . x

(N)
M

 (6)

then the solution for which the least squared error is attained is:

w = (XTX)−1XTy (7)

Here, y is the column vector of the N actual values corresponding to the N data
exemplars, to whom the predicted values y(x) are compared.

3See for example the manual http://brain.mcmaster.ca/SPSS.manual/SPSS%20Trends%2013.0.pdf,
for SPSS 13, published in 2004.

4http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka
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2.4 Multilayer perceptron

The multilayer perceptron are graphical models for function approximation,
based on nonlinear transformations on the input data. They use function com-
position and linear combinations of nonlinear differentiable functions and they are
proved universal approximators [8]. By gradient descent-based methods the coeffi-
cients are adjusted in order to decrease a loss function, which measures the discrep-
ancy between the values produced by the neural network and the actual values [7];
some second order approaches for numerical optimization of loss function were also
developed [7]. During training, some parameters like learning rate and momentum
coefficient determine the magnitude and direction of change for the coefficients. To
avoid large values for the coefficients, one may include the weight decay strategy,
which acts as a regularization mechanism [6].

2.5 Model assessment

The predicted outputs were compared to the actual values by the accuracy func-
tion MAPE:

MAPE =
1

l

l∑
t=1

|Yt − Ŷt|
|Yt|

· 100, (Yt 6= 0), (8)

where Yt is the actual value, Ŷt is the estimated value, and l is the number of
predictions made. Lower values for MAPE means a better fit of the predicted data.

3 Experimental results

To compare the results obtained by ARIMA, linear regression, and multilayer
perceptron, the following 10 publicly available datasets were used: All Employees:
Mining and Logging: Oil and Gas Extraction [14], All Employees: Education and
Health Services: Health Care [15], Civilian Unemployment Rate [16], Total Check-
able Deposits [17], All Employees: Goods-Producing Industries [18], All Employees:
Construction [19], All Employees: Total Private [20], All Employees: Manufacturing
[21], Employment-Population Ratio - Men [22], and Employment-Population Ratio
- Women [23]. We considered the recorded data up to (and including) June 2013.
The enumerated datasets consist of monthly measurements, with both seasonal and
non-seasonal adjustment. The number of values for each time series are given in
Table 1. For the considered datasets, the last 12 values (i.e. the measurements for
July 2012—June 2013) were kept away during developing the predictive models, to
assess the accuracy of the predictions made by each model.

For the ARIMA model, the values for the coefficients p, d, q, P,D, and Q are
automatically determined by the IBM SPSS software, through its internal routines.
For the linear regression-based model, the so–called M5 heuristic method was used
for automatic feature selection. As described on Weka’s documentation page5, “M5

5http://wiki.pentaho.com/display/DATAMINING/LinearRegression
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steps through the features removing the one with the smallest standardised coef-
ficient until no improvement is observed in the estimate of the error given by the
Akaike information criterion [1]”6. Other feature preprocessing options, like greedy
method or preserving all the available features lead to inferior results. For the mul-
tilayer perceptron, we decided for 10 neurons inside the hidden layer, learning rate
0.3, momentum 0.2, at most 500 training epochs; values close to the ones reported
did not significantly change the final results, and the ones mentioned are obtained
through a trial and error approach. We allowed for learning both with and without
weight decay.

MAPE
Series Values ARIMA MLP MLP LR

with weight decay without weight decay

[14] 498 3.2170 1.8943 3.1518 0.5731

[15] 282 0.1973 0.1666 0.3132 0.2573

[16] 786 7.0232 4.4881 12.8869 4.8702

[17] 654 6.4377 4.0230 4.1402 12.1636

[18] 894 0.4098 0.3949 6.5459 0.9609

[19] 894 1.4730 1.2136 3.5296 7.8756

[20] 894 0.7690 0.5034 3.4623 0.8690

[21] 894 1.1420 0.7524 0.7910 2.7882

[22] 786 0.5308 0.5059 1.4459 1.1893

[23] 786 0.5030 0.3369 1.8222 0.7422

Table 1: Time series datasets characteristics and prediction results for ARIMA,
multilayer perceptron network (MLP) with and without weight decay, and linear
regression (LR), quantified by the MAPE score. The “Values” column contains the
number of values for the corresponding series, including the 12 values used for model
assessment. On every line, the lowest and the lowest values are shown in bold and
italic, respectively.

The numerical results from Table 1 are summarized as follows: in 9 datasets
out of 10, the multilayer perceptron network with weight decay produced the most
accurate predictions overall, with 4.6% to 34.5% smaller than the next accurate
values. For the dataset for which the multilayer perceptron network with weight
decay did not obtain the lowest MAPE score, it provided the next best result.
Training the multilayer perceptron network without weight decay led to modest
scores, producing the second best results for two datasets. The ARIMA provided
the next best result for 6 cases out of 10. The linear regression produced the lowest
MAPE score in one case, and the second next best result in another case.

6The citation refers to the bibliography of this paper.
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4 Conclusions

This paper considered ten public time series datasets and reported the results
obtained by ARIMA, linear regression and nonlinear models obtained through mul-
tilayer perceptron networks.

The quantitative results show supringsly accurate predictions obtained by ma-
chine learning based methods, better than the ones produced by ARIMA, which
is extensively used for such tasks. The best results were obtained for multilayer
perceptron with weigth decay, and with a small number of neurons in the hidden
layer.

Although it is hard to extrapolate to other datasets, the presented tests show
that nonlinear models produced by multilayer perceptron network offer a promising
approach for time series forecasting.
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