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ON A GENERALIZED CASCADING FAILURE MODEL

Eugen PĂLTĂNEA1

Abstract

In this paper we present a new approach of the generalized cascading failure
model due to Lefèvre (2006). We derive some corresponding lower bounds.
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1 Introduction

Cascading failure models are intensely studied in literature, especially due to
their multiple applications in electrical engineering. Dobson et al. (2005) have
proposed a basic model which describes the occurrence of cascading failures for a
system of n components which is subject to a disturbance.

In this model, each component i has an initial load L
(0)
i . Assume that the

loads L
(0)
1 , · · · , L(0)

n are independent uniform on (0, 1) random variables. After the

disturbance, the new load of each i is L
(1)
i = L

(0)
i + d, where d ∈ (0, 1).

If, for j ∈ {1, · · · , n}, L(1)
j > 1, then:

- the component j fails;

- the failure of j increases with p the load L
(1)
i of each i 6= j.

Denote J1 = {j : L
(1)
j > 1} and let n1 = |J1| be the number of (first) failures. If,

for j /∈ J1, L
(2)
j = L

(1)
j + n1p > 1, then:

- the component j fails;

- the failure of j increases with p the load L
(2)
i of each i /∈ J1 ∪ {j}.

Now, for J2 = {j ∈ {1, · · · , n} \ J1 : L
(2)
j > 1}, let n2 = |J2| be the number of

”second” failures, and so on. Then N = n1 +n2 + · · · is the total number of failures.
Assume that d+np < 1 (the non-saturation condition). Dobson et al. (2005) proved
that the distribution of N is quasi-binomial (in the sense of Consul (1974))

P{N = k} =

(
n
k

)
d(d + kp)k−1(1− d− kp)n−k, (1)
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for k = 0, 1, · · · , n.
Mention that, some asymptotic results, in terms of the generalized Poisson dis-

tribution, are also given in Dobson et al. (2005). The branching model for cascading
failure and the approximation of a loading-dependent cascading failure model with
a branching process are discussed, for example, in Dobson et al. (2010) and Kim
and Dobson (2010).

Inspired by an epidemic model - SIR schema (see, e.g., Ball and O’Neill (1999)),
Lefèvre (2006) defines the following generalized model. Since P(Li = Lj) = 0 for
i 6= j, we may consider the sequence j1, j2, · · · of successive failed components,
such that the failure of jk increases with pk+1 ∈ (0, 1) the load of all functioning
components i,

i ∈ {1, · · · , n} \ {j1, · · · , jk}.

Denote: s1 = p1 = d and sk = p1 + · · ·+ pk, for 1 < k ≤ n (assuming that sn < 1),
and Ui = 1− Li, i = 1, · · · , n. Let U1:n < U2:n < · · · < Un:n be the order statistics
from the sample (U1, · · · , Un). Then, for k = 1, · · · , n− 1,

P{N = k} = P (U1:n < s1, · · · , Uk:n < sk, Uk+1:n > sk+1) . (2)

Lefèvre (2006) proves that the probabilities of the events {N = j} are the solutions
of the linear system

k∑
j=0

(
n− j
k − j

)
P{N = j} 1

(1− s1+j)n−k
=

(
n
k

)
, (3)

for k = 0, 1, · · · , n. The same author gives some bounds for the distribution of N .
In this paper we propose an alternative method to obtain these probabilities.

2 An appropriate method for the Lefèvre’s model

The distribution of the random variable N can be obtained by solving the tri-
angular system (3). More precisely, P{N = k} depends on P{N = i}, i < k. We
propose an alternative method to compute P{N = k}. Our method is based on the
recurring construction of an appropriate sequence of polynomials.

Let us consider the sequence of polynomials

g0(x0), g1(x0, x1), · · · , gk(x0, x1, · · · , xk), · · ·

defined by g0(x0) = 1, g1(x0, x1) = x1 − x0, and the recurrence relation

gk+1(x0, x1, · · · , xk+1) =

∫ x1

x0

gk(t, x2, · · · , xk+1)dt, for k = 1, 2, · · · .

Theorem 1. Assume 0 < s1 < · · · < sn < 1. Then, for k = 1, · · · , n− 1, we have

P{N = k} =
n!

(n− k)!
gk(0, s1, · · · , sk)(1− sk+1)

n−k.
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Proof. As above, let U1, U2, · · · , Un be a sequence of independent uniform on (0, 1)
random variables. Suppose 0 ≤ s0 < s1. We will proceed by induction to prove that
the polynomials gk have the following meaning

gk(s0, s1, · · · , sk) = P{s0 < U1 < s1; Ui−1 < Ui < si, 2 ≤ i ≤ k}, (4)

for k = 1, 2, · · · , n. Clearly, for k = 1, P{s0 < U1 < s1} = s1 − s0 = g1(s0, s1).
Assume that (4) holds for k ∈ {1, · · · , n− 1}. Then

P{s0 < U1 < s1; Ui−1 < Ui < si, 2 ≤ i ≤ k + 1}

=

∫ s1

s0

P{t < U2 < s2; Ui−1 < Ui < si, 3 ≤ i ≤ k + 1}d(P{U1 < t})

=

∫ s1

s0

gk(t, s2, · · · , sk+1)dt = gk+1(s0, s1, · · · , sk+1).

From (4) we obtain

gk(s0, s1, · · · , sk) = P{s0 < Uj1 < s1; Uji−1 < Uji < si, 2 ≤ i ≤ k},

for any ordered sequence (j1, · · · , jk) of the set {1, · · · , n}. Therefore, using (2),

P{N = k}

=
∑

(j1,··· ,jk)

P{Uj1 < s1; Uji−1 < Uji < si, 2 ≤ i ≤ k}P{Uj > sk+1, j /∈ {j1, · · · , jk}}

=
n!

(n− k)!
gk(0, s1, · · · , sk)(1− sk+1)

n−k,

for 1 ≤ k ≤ n− 1.

We easily verify

gk(x, d, d + p, · · · , d + (k − 1)p) =
(d− x)(d + kp− x)k−1

k!
,

and we check the well-known result (1).

Finally, we will prove two immediate consequences of the above theorem.

Corollary 1. If 0 ≤ x0 < x1 < · · · < xk ≤ 1 (k ≥ 1) then

gk(x0, x1, · · · , xk) ≥ gj(x0, · · · , xj)gk−j(xj , · · · , xk), j ∈ {0, 1, · · · , k}, (5)

and

gk(x0, x1, · · · , xk) ≥
k∏

i=1

(xi − xi−1) . (6)
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Proof. For j ∈ {0, k}, we have equality in (5). Suppose 0 < j < k (with k > 1). Let
(U1, · · · , Uk) be a sample of size k of independent uniform on (0, 1) random variables.
Let us consider the events A = {x0 < U1 < x1; Ui−1 < Ui < xi, 2 ≤ i ≤ j}, B =
{xj < Uj+1 < xj+1; Ui−1 < Ui < xi, j+2 ≤ i ≤ k} and C = {x0 < U1 < x1; Ui−1 <
Ui < xi, 2 ≤ i ≤ k}. Obviously, {Uj < xj} ∩ {Uj+1 > xj} ⊂ {Uj < Uj+1; Uj < xj}.
Hence A ∩ B ⊂ C. In addition, A and B are independent events. The inequality
(5) is then a consequence of the probabilistic meaning of the polynomials gi. By
induction, we get gk(x0, x1, · · · , xk) ≥

∏k
i=1 g1 (xi−1, xi) =

∏k
i=1 (xi − xi−1) .

Corollary 2. If 0 ≤ x0 < x1 < · · · < xk ≤ 1 (k ≥ 1) then

gk(x0, x1, · · · , xk) ≥ max
1≤j≤k−1

 1

j!(k − j)!

j∏
i=1

(xi − x0)

k∏
i=j+1

(xi − xj)

 .

Proof. For 0 ≤ p ≤ k − 1, 1 ≤ i ≤ k − p and a sample (U1, · · · , Ui) of independent
uniform on (0, 1) random variables, we easily observe that i!gi(xp, xp+1, · · · , xp+i) =
P{Uj:i ∈ (xp, xp+j) , 1 ≤ j ≤ i} ≥ P{Uj ∈ (xp, xp+j) , 1 ≤ j ≤ i} =

∏i
j=1 (xp+j − xp) .

Then we apply the inequality (5).
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