A NOTE ON GENERALIZED BENSTEIN-KANTOROVICH OPERATORS

Radu PĂLTĂNEA ${ }^{1}$

Abstract

We study the convergence property of a sequence of the Bernstein-Kantorovich type operators attached to the differential operator $D_{b}(f)=f^{\prime}+b f, b \in \mathbb{R}$. As consequence we obtain a shape preserving property for the Bernstein operators. In this way we generalize and correct some results given in [2].

2000 Mathematics Subject Classification: 41A36, 41A10
Key words: Bernstein-Kantorovich type operators, shape preserving property

1 Introduction

The Bernstein operators of order $n \in \mathbf{N}$ are given by

$$
\begin{equation*}
B_{n}(f, x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{k}{n}\right), x \in[0,1], f:[0,1] \rightarrow \mathbf{R}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}, 0 \leq k \leq n \tag{2}
\end{equation*}
$$

The Kantorovich modification of the Bernstein operators is given by

$$
\begin{equation*}
K_{n}(f, x)=\sum_{k=0}^{n} p_{n, k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) d t, x \in[0,1], f \in C[0,1] \tag{3}
\end{equation*}
$$

Operators K_{n} can be given also by means of the following equality

$$
\begin{equation*}
K_{n}=D \circ B_{n+1} \circ I \tag{4}
\end{equation*}
$$

where D is the differentiation operator: $D(f)=f^{\prime}$ and I is antiderivative operator: $I(f)(x)=\int_{0}^{x} f(t) d t$.

A generalization of Kantorovich operators, can be given in the following form

$$
\begin{equation*}
K_{n}^{b}=D_{b} \circ B_{n+1} \circ I_{b}, n \in \mathbf{N}, b \in \mathbf{R} \tag{5}
\end{equation*}
$$

where the operators D_{b}, and I_{b} are given by:

[^0]- $D_{b}(f)=f^{\prime}+b f$, for $f \in C^{1}[0,1]$,
- $I_{b}(f)(x)=e^{-b x} \int_{0}^{x} e^{b t} f(t) d t$, for $f \in C[0,1]$ and $x \in[0,1]$.

Note that we have $\left(D_{b} \circ I_{b}\right)(f)=f$, for each $f \in C[0,1]$. Also, integrating by parts we obtain $\left(I_{b} \circ D_{b}\right)(f)=f$, for each $f \in C^{1}[0,1]$, such that $f(0)=0$.

These operators were already considered, for the particular case $b>0$ in [2], but formula (4) given there as definition of these operators has an error and does not represent the operators K_{n}^{b} given in (5). Because operators K_{n}^{b} are not positive, see Remark 2.1 in the next section, the study of the convergence property of the sequence of these operators cannot be obtained by a simple use of the Korovkin theorem.

2 Main results

Let $b \in \mathbf{R}$ be fixed. We start with a more explicit representation of operators K_{n}^{b} :

Lemma 2.1. For $f \in C[0,1], n \in \mathbf{N}, x \in[0,1]$, we have

$$
\begin{align*}
K_{n}^{b}(f)(x)= & (n+1) \sum_{k=0}^{n} p_{n, k}(x)\left(I_{b}(f)\left(\frac{k+1}{n+1}\right)-I_{b}(f)\left(\frac{k}{n+1}\right)\right) \tag{6}\\
& +b B_{n+1}\left(I_{b}(f)\right)(x) . \tag{7}
\end{align*}
$$

Proof. From relation (5) we deduce successively:

$$
\begin{aligned}
K_{n}^{b}(f)(x)= & D\left(B_{n+1}\left(I_{b}(f)\right)\right)(x)+b B_{n+1}\left(I_{b}(f)\right)(x) \\
= & \sum_{k=0}^{n+1}\left(p_{n+1, k}(x)\right)^{\prime} I_{b}(f)\left(\frac{k}{n+1}\right)+b B_{n+1}\left(I_{b}(f)\right)(x) \\
= & \sum_{k=0}^{n+1}(n+1)\left(p_{n, k-1}(x)-p_{n, k}(x)\right) I_{b}\left(\frac{k}{n+1}\right)+b B_{n+1}\left(I_{b}(f)\right)(x) \\
= & (n+1) \sum_{k=0}^{n} p_{n, k}(x)\left(I_{b}(f)\left(\frac{k+1}{n+1}\right)-I_{b}(f)\left(\frac{k}{n+1}\right)\right) \\
& +b B_{n+1}\left(I_{b}(f)\right)(x) .
\end{aligned}
$$

Here we considered that $p_{n,-1}(x)=0$ and $p_{n, n+1}(x)=0$.
The main result is the following
Theorem 2.1. For any $f \in C[0,1]$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} K_{n}^{b}(f)=f, \text { uniformly. } \tag{8}
\end{equation*}
$$

Proof. Let $f \in C[0,1]$ be fixed. For an arbitrary number $\varepsilon>0$ there is $n_{\varepsilon} \in \mathbf{N}$, such that $|f(u)-f(v)|<\varepsilon$, for all $u, v \in[0,1]$, such that $|v-u|<\frac{1}{n}$, if $n \in \mathbf{N}, n \geq n_{\varepsilon}$. Let fix a such number n. For simplicity, we denote: $F=I_{b}(f)$, i.e.

$$
F(x)=e^{-b x} \int_{0}^{x} e^{b t} f(t) d t, x \in[0,1] .
$$

We can write

$$
F\left(\frac{k+1}{n+1}\right)=e^{-\frac{k+1}{n+1} b} \int_{\frac{k}{n}}^{\frac{k+1}{n+1}} e^{b t} f(t) d t+\left(e^{-\frac{k+1}{n+1} b}-e^{-\frac{k}{n} b}\right) \int_{0}^{\frac{k}{n}} e^{b t} f(t) d t+F\left(\frac{k}{n}\right)
$$

and

$$
F\left(\frac{k}{n+1}\right)=-e^{-\frac{k}{n+1} b} \int_{\frac{k}{n+1}}^{\frac{k}{n}} e^{b t} f(t) d t+\left(e^{-\frac{k}{n+1} b}-e^{-\frac{k}{n} b}\right) \int_{0}^{\frac{k}{n}} e^{b t} f(t) d t+F\left(\frac{k}{n}\right) .
$$

From these we deduce

$$
\begin{aligned}
F\left(\frac{k+1}{n+1}\right)-F\left(\frac{k}{n+1}\right)= & \left(e^{-\frac{k+1}{n+1} b}-e^{-\frac{k}{n+1} b}\right) \int_{0}^{\frac{k}{n}} e^{b t} f(t) d t \\
& +e^{-\frac{k+1}{n+1} b} \int_{\frac{k}{n}}^{\frac{k+1}{n+1}} e^{b t} f(t) d t+e^{-\frac{k}{n+1} b} \int_{\frac{k}{n+1}}^{\frac{k}{n}} e^{b t} f(t) d t .(9)
\end{aligned}
$$

Several times we shall use the following inequality:

$$
\begin{equation*}
\left|e^{-t b}-1\right| \leq e^{\frac{|b|}{n+1}}-1, \text { if }|t| \leq \frac{1}{n+1} \tag{10}
\end{equation*}
$$

Indeed, if $t b \leq 0$, then $\left|e^{-t b}-1\right|=e^{b t}-1 \leq e^{\frac{|b|}{n+1}}-1$ and if $t b \geq 0$, then $\left|e^{-t b}-1\right|=$ $1-e^{-t b} \leq 1-e^{-\frac{|b|}{n+1}}=e^{-\frac{|b|}{n+1}}\left(e^{\frac{|b|}{n+1}}-1\right) \leq e^{\frac{|b|}{n+1}}-1$.

In what follows we estimate the terms which appear for an index $0 \leq k \leq n$ on the right side of (9). First, let us notice that we can write

$$
e^{-\frac{k+1}{n+1} b}-e^{-\frac{k}{n+1} b}=e^{-\frac{k}{n} b} \beta_{n}+\gamma_{n, k},
$$

where

$$
\begin{align*}
\beta_{n} & =e^{-\frac{b}{n+1}}-1 \tag{11}\\
\gamma_{n, k} & =\left(e^{-\frac{k}{n+1} b}-e^{-\frac{k}{n} b}\right)\left(e^{-\frac{b}{n+1}}-1\right) \tag{12}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
\left(e^{-\frac{k+1}{n+1} b}-e^{-\frac{k}{n+1} b}\right) \int_{0}^{\frac{k}{n}} e^{b t} f(t) d t=\beta_{n} F\left(\frac{k}{n}\right)+\gamma_{n, k} \int_{0}^{\frac{k}{n}} e^{b t} f(t) d t . \tag{13}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(n+1) \beta_{n}=-b . \tag{14}
\end{equation*}
$$

Using (10 we have

$$
\left|\gamma_{n, k}\right|=e^{-\frac{k}{n} b}\left|e^{\frac{k}{n(n+1)} b}-1\right| \cdot\left|e^{-\frac{b}{n+1}}-1\right| \leq e^{|b|}\left(e^{\frac{|b|}{n+1}}-1\right)^{2} .
$$

Also,

$$
\left|\int_{0}^{\frac{k}{n}} e^{b t} f(t) d t\right| \leq\|f\| \int_{0}^{\frac{k}{n}} e^{|b|} d t \leq e^{|b|}\|f\|
$$

It follows that

$$
\begin{equation*}
\left|\gamma_{n, k} \int_{0}^{\frac{k}{n}} e^{b t} f(t) d t\right| \leq e^{2|b|}\left(e^{\frac{|b|}{n+1}}-1\right)^{2}\|f\| \tag{15}
\end{equation*}
$$

Next, the second term on the right side of (9) can be rewritten in the form:

$$
\begin{align*}
& e^{-\frac{k+1}{n+1} b} \int_{\frac{k}{n}}^{\frac{k+1}{n+1}} e^{b t} f(t) d t=\left(\frac{k+1}{n+1}-\frac{k}{n}\right) f\left(\frac{k}{n}\right) \\
& +\int_{\frac{k}{n}}^{\frac{k+1}{n+1}}\left(f(t)-f\left(\frac{k}{n}\right)\right) e^{\left(t-\frac{k+1}{n+1}\right) b} d t+\int_{\frac{k}{n}}^{\frac{k+1}{n+1}} f\left(\frac{k}{n}\right)\left(e^{\left(t-\frac{k+1}{n+1}\right) b}-1\right) d t \\
& =\left(\frac{k+1}{n+1}-\frac{k}{n}\right) f\left(\frac{k}{n}\right)+J_{n, k}^{1}+J_{n, k}^{2} \text { say. } \tag{16}
\end{align*}
$$

We obtain

$$
\begin{equation*}
\left|J_{n, k}^{1}\right| \leq \varepsilon \int_{\frac{k}{n}}^{\frac{k+1}{n+1}} e^{|b|} d t \leq \frac{\varepsilon}{n+1} e^{|b|} \tag{17}
\end{equation*}
$$

Also, using (10) we obtain

$$
\begin{equation*}
\left|J_{n, k}^{2}\right| \leq\|f\| \int_{\frac{k}{n}}^{\frac{k+1}{n+1}}\left|e^{\left(t-\frac{k+1}{n+1}\right) b}-1\right| d t \leq \frac{\|f\|}{n+1}\left(e^{\frac{|b|}{n+1}}-1\right) \tag{18}
\end{equation*}
$$

The third term on the right side of (9) can be rewritten in the form:

$$
\begin{align*}
& e^{-\frac{k}{n+1} b} \int_{\frac{k}{n+1}}^{\frac{k}{n}} e^{b t} f(t) d t=\left(\frac{k}{n}-\frac{k}{n+1}\right) f\left(\frac{k}{n}\right) \\
& +\int_{\frac{k}{n+1}}^{\frac{k}{n}}\left(f(t)-f\left(\frac{k}{n}\right)\right) e^{\left(t-\frac{k}{n+1}\right) b} d t+\int_{\frac{k}{n+1}}^{\frac{k}{n}} f\left(\frac{k}{n}\right)\left(e^{\left(t-\frac{k}{n+1}\right) b}-1\right) d t \\
& =\left(\frac{k}{n}-\frac{k}{n+1}\right) f\left(\frac{k}{n}\right)+J_{n, k}^{3}+J_{n, k}^{4} \text { say. } \tag{19}
\end{align*}
$$

We obtain

$$
\begin{equation*}
\left|J_{n, k}^{3}\right| \leq \varepsilon \int_{\frac{k}{n+1}}^{\frac{k}{n}} e^{|b|} d t \leq \frac{\varepsilon}{n+1} e^{|b|} \tag{20}
\end{equation*}
$$

Also, using (10) we obtain

$$
\begin{equation*}
\left|J_{n, k}^{4}\right| \leq\|f\| \int_{\frac{k}{n+1}}^{\frac{k}{n}}\left|e^{\left(t-\frac{k}{n+1}\right) b}-1\right| d t \leq \frac{\|f\|}{n+1}\left(e^{\frac{|b|}{n+1}}-1\right) . \tag{21}
\end{equation*}
$$

Let us denote

$$
\begin{equation*}
R_{n}(f)(x)=(n+1) \sum_{k=0}^{n} p_{n, k}(x)\left(\gamma_{n, k} \int_{0}^{\frac{k}{n}} e^{b t} f(t) d t+J_{n, k}^{1}+J_{n, k}^{2}+J_{n, k}^{3}+J_{n, k}^{4}\right) . \tag{22}
\end{equation*}
$$

Starting from relation (6) and taking into account relations (9), (13), (16), (19) and (22) we arrive to

$$
\begin{equation*}
K_{n}^{b}(f)(x)=B_{n}(f)(x)+(n+1) \beta_{n} B_{n}(F)(x)+b B_{n+1}(F)(x)+R_{n}(f)(x) . \tag{23}
\end{equation*}
$$

Using the convergence property of the Bernstein operators, and taking into account relation (14) we obtain the following uniform limits:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} B_{n}(f)(x)=f(x), \\
& \lim _{n \rightarrow \infty}\left((n+1) \beta_{n} B_{n}(F)(x)+b B_{n+1}(F)(x)\right)=0 .
\end{aligned}
$$

Then there is $n_{\varepsilon}^{1} \in \mathbf{N}, n_{\varepsilon}^{1} \geq n_{\varepsilon}$, such that:

$$
\begin{equation*}
\left\|B_{n}(f)+(n+1) \beta_{n} B_{n}(F)+b B_{n+1}(F)-f\right\|<\varepsilon, \text { for } n \geq n_{\varepsilon}^{1} . \tag{24}
\end{equation*}
$$

From relations (22), (15), (17), (18), (20) and (21) we get

$$
\begin{equation*}
\left\|R_{n}\right\| \leq(n+1) e^{2|b|}\left(e^{\frac{|b|}{n+1}}-1\right)^{2}\|f\|+2 e^{|b|} \varepsilon+2\|f\|\left(e^{\frac{|b|}{n+1}}-1\right) \tag{25}
\end{equation*}
$$

Since

$$
\lim _{n \rightarrow \infty}\left[(n+1) e^{2|b|}\left(e^{\frac{|b|}{n+1}}-1\right)^{2}\|f\|+2\|f\|\left(e^{\frac{|b|}{n+1}}-1\right)\right]=0
$$

there is an integer $n_{\varepsilon}^{2} \geq n_{\varepsilon}^{1}$ such that

$$
\begin{equation*}
(n+1) e^{2|b|}\left(e^{\frac{|b|}{n+1}}-1\right)^{2}\|f\|+2\|f\|\left(e^{\frac{|b|}{n+1}}-1\right)<\varepsilon, \text { for } n \geq n_{\varepsilon}^{2} \tag{26}
\end{equation*}
$$

Finally, from relations (23), (24), (25) and (26) we obtain

$$
\begin{equation*}
\left\|K_{n}^{b}(f)-f\right\| \leq \varepsilon\left(2+2 e^{|b|}\right), \text { for } n \geq n_{\varepsilon}^{2} \tag{27}
\end{equation*}
$$

Since $\varepsilon>0$ was chosen arbitrarily we obtain (8).
We have the following immediate
Corollary 2.1. For any $f \in C[0,1], f>0$, there is $n_{0} \in \mathbf{N}$ such that $K_{n}^{b}(f)>0$, for $n \geq n_{0}$.

Define the class of functions

$$
\begin{equation*}
\mathcal{D}_{b}=\left\{f \in C^{1}[0,1] \mid D_{b}(f)>0, f(0)=0\right\} . \tag{28}
\end{equation*}
$$

Theorem 2.2. For any $f \in \mathcal{D}_{b}$ there is $n_{1} \in \mathbf{N}$ for which we have $B_{n}(f) \in \mathcal{D}_{b}$, for $n \geq n_{1}$.

Proof. Let $f \in \mathcal{D}_{b}$. Since $f(0)=0$ it follows that $f=I_{b}\left(D_{b}(f)\right)$. We can write $D_{b} \circ B_{n}(f)=\left(D_{b} \circ B_{n} \circ I_{b} \circ D_{b}\right)(f)=K_{n-1}^{b}\left(D_{b}(f)\right)$. Since $D_{b}(f)>0$, from Corollary 2.1 there is $n_{1} \in \mathbf{N}$, such that $K_{n-1}^{b}\left(D_{b}(f)\right)>0$, for $n \geq n_{1}$. That means that $D_{b}\left(B_{n}(f)\right)>0$. Finally, we have $B_{n}(f)(0)=f(0)=0$. Consequently, $B_{n}(f) \in \mathcal{D}_{b}$, for $n \geq n_{1}$.

Remark 2.1. Operators K_{n}^{b} are not positive as the following example shows. Let f : $[0,1] \rightarrow \mathbf{R}$, given by $f(t)=1$, for $t \in[1 / 3,2 / 3]$ and $f(t)=0$, for $t \in[0,1 / 3) \cup(2 / 3,1]$. We choose $b=1$ and $n=2$. It follows that

$$
\begin{aligned}
K_{2}^{1}(f)(1) & =3 p_{22}(1)\left(I_{1}(f)(1 / 3)-I_{1}(f)(2 / 3)\right)+p_{33}(1) f(1) \\
& =3\left[e^{-1} \int_{0}^{1} e^{t} f(t) d t-e^{-2 / 3} \int_{0}^{2 / 3} e^{t} f(t) d t\right] \\
& =3\left[e^{-1} \int_{1 / 3}^{2 / 3} e^{t} d t-e^{-2 / 3} \int_{1 / 3}^{2 / 3} e^{t} d t\right] \\
& =3\left(e^{2 / 3}-e^{1 / 3}\right)\left(e^{-1}-e^{-2 / 3}\right) \\
& <0
\end{aligned}
$$

Finally we chose a function $g_{\varepsilon} \in C[0,1], g_{\varepsilon} \geq 0$, of the form $g_{\varepsilon}(t)=1$, for $t \in$ $[1 / 3,2 / 3], g_{\varepsilon}(t)=0, t \in[0,1 / 3-\varepsilon] \cup[2 / 3+\varepsilon, 1]$, and linear on each of the intervals $[1 / 3-\varepsilon, 1 / 3]$ and $[2 / 3,2 / 3+\varepsilon]$, with $0<\varepsilon<1 / 3$. Then $\lim _{\varepsilon \rightarrow+0} K_{2}^{1}\left(g_{\varepsilon}\right)(1)=$ $K_{2}^{1}(f)(1)$. Consequently, for sufficiently small $\varepsilon>0$ we have $K_{2}^{1}\left(g_{\varepsilon}\right)(1)<1$.

References

[1] Bărbosu, D. Kantorovich-Stancu type operators, JIPAM, 5 (2004), no. 3, article 53.
[2] Păltănea, R. A generalization of Kantorovich operators and a shape-preserving property of Bernstein operators, Bull. Univ. Transilvania of Braşov, Series III, $5(54)(2012)$, no. 2, 65-68.
[3] Sucu, S. and Ibikli, E Approximation by means of Kantorovich type operators, Numerical Functional Analysis and Optimization, 34(5) (2013), 557-575.
[4] Wei, W. The construction, convergence and asymptotic formula of generalized W-Bernstein-Kantorovich operator (Chinese) Acta Math. Sci. 20, Suppl. (2000), 718-722.

[^0]: ${ }^{1}$ Transilvania University of Braşov, Faculty of Mathematics and Informatics Iuliu Maniu 50, Braşov 500091, Romania, e-mail: radupaltanea@unitbv.com

