ON THE DURRMEYER-KANTOROVICH TYPE OPERATOR

Ion Gabriel STAN ${ }^{1}$

Abstract

The purpose of this article is to give a Kantorovich generalization of Durrmeyer operators. We obtain convergence properties of our operators in the continous function space and Lebesque spaces.

2000 Mathematics Subject Classification:41A36, 41A35, 41A10, 41A25. Key words: Kantorovich type operators, Durrmeyer operators, rate of convergence, shape-preserving property

1 Introduction

For any given $n \in \mathbb{N}$ and $f \in C[0,1]$ Durrmeyer operators are defined by:

$$
\begin{equation*}
D_{n}(f, x)=(n+1) \sum_{k=0}^{n} p_{n, k}(x) \int_{0}^{1} p_{n, k}(t) f(t) d t, x \in[0,1] \tag{1}
\end{equation*}
$$

where

$$
p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}
$$

Durrmeyer operators were introduced by J.L.Durrmeyer in 1967 [6] and studied intensively by M.M. Derriennic in 1981[4].

The Kantorovich operators are Bernstein operators modified given by [10]:

$$
\begin{equation*}
K_{n}(f, x)=(n+1) \sum_{k=0}^{n} p_{n, k}(x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) d t, n \in \mathbb{N}, f \in L_{1}[0,1], x \in[0,1] . \tag{2}
\end{equation*}
$$

Similar Kantorovich type operators are obtain and studied by modification of other operators [1], [3], [5], [7], [8], [9], [11], [13], [14], [15], [16], [17].

In our paper we study new aspects of Durrmeyer-Kantorovich operators.

[^0]
2 Definition. Basic results.

In this article, we study the Durrmeyer-Kantorovich operators.
Definition 1. For any $n \in \mathbb{N}$ we define the operator $\widetilde{K}_{n}: L_{p}[0,1] \rightarrow C[0,1]$, given by

$$
\begin{equation*}
\widetilde{K}_{n}(f, x)=(n+3) \sum_{k=0}^{n} p_{n, k}(x) \int_{0}^{1} p_{n+2, k+1}(t) f(t) d t \tag{3}
\end{equation*}
$$

for $f \in L_{p}[0,1], x \in[0,1]$. We will refer to them as Durrmeyer-Kantorovich operators.

Lemma 1. Durrmeyer-Kantorovich operators are linear and positive, for $n \in \mathbb{N}$. Proof. It is clear. The assertions follow from definition.

Further note $e_{k}(t)=t^{k}, t \in[0,1], k \in \mathbb{N}$.
Lemma 2. For $x \in[0,1]$ and $n \in \mathbb{N}$ the Durrmeyer-Kantorovich operators (3) has the following property:

$$
\begin{equation*}
\widetilde{K}_{n}\left(e_{r+1}, x\right)=\frac{n x+r+2}{n+r+4} \widetilde{K}_{n}\left(e_{r}, x\right)+\frac{x(1-x)}{n+r+4}\left(\widetilde{K}_{n}\left(e_{r}, x\right)\right)^{\prime} . \tag{4}
\end{equation*}
$$

Proof. Using the definition (3) it follows directly:

$$
\begin{aligned}
& \widetilde{K}_{n}\left(e_{r}, x\right)=(n+3) \sum_{k=0}^{n} p_{n, k}(x) \int_{0}^{1} p_{n+2, k+1}(t) t^{r} d t= \\
= & (n+3) \sum_{k=0}^{n} p_{n, k}(x)\binom{n+2}{k+1} B(k+r+2, n-k+2) .
\end{aligned}
$$

Whence

$$
\begin{gathered}
\left(\widetilde{K}_{n}\left(e_{r}, x\right)\right)^{\prime}=(n+3) \sum_{k=0}^{n} \frac{k-n x}{x(1-x)} p_{n, k}(x)\binom{n+2}{k+1} B(k+r+2, n-k+2)= \\
=\frac{(n+3)}{x(1-x)} \sum_{k=0}^{n} p_{n, k}(x)\binom{n+2}{k+1}[(k-n x) B(k+r+2, n-k+2)]= \\
=\frac{(n+3)}{x(1-x)} \sum_{k=0}^{n} p_{n, k}(x)\binom{n+2}{k+1}[(n+r+4) B(k+r+3, n-k+2)- \\
\quad-(n x+r+2) B(k+r+2, n-k+2)]= \\
=\frac{1}{x(1-x)}\left[(n+r+4) \widetilde{K}_{n}\left(e_{r+1}, x\right)-(n x+r+2) \widetilde{K}_{n}\left(e_{r}, x\right)\right]
\end{gathered}
$$

From which we obtain the lemma immediately.

On the Durrmeyer-Kantorovich type operator

Corollary 1. For $x \in[0,1]$ and $n \in \mathbb{N}$ the Durrmeyer-Kantorovich operators (3) have the following properties:

$$
\begin{gather*}
\widetilde{K}_{n}\left(e_{0}, x\right)=1 \tag{5}\\
\widetilde{K}_{n}\left(e_{1}, x\right)=\frac{n x+2}{n+4} \tag{6}\\
\widetilde{K}_{n}\left(e_{2}, x\right)=\frac{n(n-1) x^{2}+6 n x+6}{(n+4)(n+5)} . \tag{7}
\end{gather*}
$$

Proof. Using the definition (3) it follows directly

$$
\begin{gathered}
\widetilde{K}_{n}\left(e_{0}, x\right)=(n+3) \sum_{k=0}^{n} p_{n, k}(x) \int_{0}^{1}\binom{n+2}{k+1} t^{k+1}(1-t)^{n+1-k} d t= \\
=(n+3) \sum_{k=0}^{n} p_{n, k}(x)\binom{n+2}{k+1} \beta(k+2, n+2-k)= \\
=(n+3) \sum_{k=0}^{n} p_{n, k}(x) \frac{(n+2)!}{(k+1)!(n+1-k)!} \cdot \frac{(k+1)!(n+1-k)!}{(n+3)!}=\sum_{k=0}^{n} p_{n, k}(x)=1 .
\end{gathered}
$$

Relations (6) and (7) are obtained immediately using (5) and Lemma 2.
Further we use the following notation:
(i) D is the differentiation operator,

$$
D(f, x)=f^{\prime}(x), f \in C_{1}[0,1], x \in[0,1],
$$

(ii) I is the antiderivative operator,

$$
I(f, x)=\int_{0}^{x} f(t) d t, f \in C[0,1], x \in[0,1] .
$$

Lemma 3. Let $n \in \mathbb{N}$. We have
i) $(D \circ I)(f)=f$, for all $f \in C[0,1]$,
ii) $(I \circ D)(f)=f$, for all $f \in C_{1}[0,1]$, such that $f(0)=0$.

Proof. It is clear.
Lemma 4. The operators $\widetilde{K}_{n}(f, x)$, as defined in (3), verify:
i) $\widetilde{K}_{n}((t-x), x)=\frac{2-4 x}{n+4}$,
ii) $\widetilde{K}_{n}\left((t-x)^{2}, x\right)=\frac{(2 n-20) x(1-x)+6}{(n+4)(n+5)}$.

Proof. Taking into account the linearity of \widetilde{K}_{n} and Corollary 1, we have
i) $\widetilde{K}_{n}((t-x), x)=\widetilde{K}_{n}\left(e_{1}, x\right)-x \widetilde{K}_{n}\left(e_{0}, x\right)=\frac{n x+2}{n+4}-x=\frac{2-4 x}{n+4}$.
ii) $\widetilde{K}_{n}\left((t-x)^{2}, x\right)=\widetilde{K}_{n}\left(e_{2}, x\right)-2 x \widetilde{K}_{n}\left(e_{1}, x\right)+x^{2} \widetilde{K}_{n}\left(e_{0}, x\right)=\frac{n(n-1) x^{2}+6 n x+6}{(n+4)(n+5)}-$ $2 x \frac{n x+2}{n+4}+x^{2}=\frac{(2 n-20) x(1-x)+6}{(n+4)(n+5)}$.

Theorem 1. For any $n \in \mathbb{N}$ we have:

$$
\begin{equation*}
\widetilde{K}_{n}(f, x)=\frac{n+3}{n+1}\left(D \circ D_{n+1} \circ I\right)(f, x) . \tag{8}
\end{equation*}
$$

Proof. We have

$$
\begin{gathered}
\left(D_{n+1} \circ I\right)(f, x)=D_{n+1}(I(f, x))=D_{n+1}\left(\int_{0}^{x} f(u) d u\right)= \\
=(n+2) \sum_{k=0}^{n+1} p_{n+1, k}(x) \int_{0}^{1} p_{n+1, k}(t) \int_{0}^{t} f(u) d u d t= \\
\quad=(n+2) \sum_{k=0}^{n+1} p_{n+1, k}(x) \int_{0}^{1} f(u) \int_{u}^{1} p_{n+1, k}(t) d t d u
\end{gathered}
$$

In the last equality we have changed the order of integration, $\left\{\begin{array}{l}t \in[0,1] \\ u \in[0, t]\end{array} \Longleftrightarrow\right.$ $\left\{\begin{array}{l}u \in[0,1] \\ t \in[u, 1]\end{array}\right.$.Taking into account that

$$
\left(p_{n+1, k}(x)\right)^{\prime}=(n+1)\left(p_{n, k-1}(x)-p_{n, k}(x)\right)
$$

and considering $p_{n, k}(x)=0$, then $k<0$ or $k>n$, we obtain

$$
\begin{gathered}
\left(D \circ D_{n+1} \circ I\right)(f, x)=D\left(D_{n+1} \circ I\right)(f, x)= \\
=(n+2) \sum_{k=0}^{n+1}\left(p_{n+1, k}(x)\right)^{\prime} \int_{0}^{1} f(u) \int_{u}^{1} p_{n+1, k}(t) d t d u= \\
=(n+2) \sum_{k=0}^{n+1}(n+1)\left(p_{n, k-1}(x)-p_{n, k}(x)\right) \int_{0}^{1} f(u) \int_{u}^{1} p_{n+1, k}(t) d t d u= \\
=(n+1)(n+2) \sum_{k=0}^{n+1} p_{n, k}(x) \int_{0}^{1} f(u) \int_{u}^{1}\left(p_{n+1, k+1}(t)-p_{n+1, k}(t)\right) d t d u= \\
=(n+1)(n+2) \sum_{k=0}^{n+1} p_{n, k}(x) \int_{0}^{1} f(u) \int_{u}^{1}-\frac{1}{n+2}\left(p_{n+2, k+1}(t)\right)^{\prime} d t d u= \\
=(n+1) \sum_{k=0}^{n+1} p_{n, k}(x) \int_{0}^{1} f(u) p_{n+2, k+1}(u) d u,
\end{gathered}
$$

from where we obtain the relation (8).Thus, the proof is completed.

3 Convergence properties

Remind now, a theorem obtained by Shisha and Mond [13].
Theorem A. Let L be a linear positive operator such that $L: C[a, b] \rightarrow C[a, b]$ i) If $f \in C[a, b]$ and $x \in[a, b]$, then we have

$$
\begin{aligned}
|L(f, x)-f(x)| \leq & |f(x)| \cdot\left|L\left(e_{0}, x\right)-1\right|+ \\
& +\left\{L\left(e_{0}, x\right)+\frac{1}{\delta} \sqrt{L\left(e_{0}, x\right) L\left((t-x)^{2}, x\right)}\right\} \cdot \omega(f ; \delta)
\end{aligned}
$$

ii) If $f^{\prime} \in C[a, b]$ and $x \in[a, b]$, then we have

$$
\begin{aligned}
|L(f, x)-f(x)| \leq & |f(x)| \cdot\left|L\left(e_{0}, x\right)-1\right|+ \\
& +\left|f^{\prime}(x)\right| \cdot|L((t-x), x)|+\sqrt{L\left((t-x)^{2}, x\right)} \times \\
& \times\left\{\sqrt{L\left(e_{0}, x\right)}+\frac{1}{\delta} \sqrt{L\left((t-x)^{2}, x\right)}\right\} \cdot \omega\left(f^{\prime} ; \delta\right) .
\end{aligned}
$$

Further, we will give a theorem on the degree of approximation of a continuous function f by the sequence of $\widetilde{K}_{n}(f, x)$. To this end, we will use the modulus of continuity of function f given by

$$
\begin{equation*}
\omega(f ; \delta)=\sup \{|f(x)-f(y)|: x, y \in[0,1],|x-y| \leq \delta\} \tag{9}
\end{equation*}
$$

for any positive number $\delta[2]$.
Theorem 2. For any $f \in C[0,1]$ and each $x \in[0,1]$ Durrmeyer-Kantorovich type operators (3) have the properties:
i)

$$
\begin{equation*}
\left|\widetilde{K}_{n}(f, x)-f(x)\right| \leq 2 \omega\left(f ; \sqrt{\frac{(2 n-20) x(1-x)+6}{(n+4)(n+5)}}\right) . \tag{10}
\end{equation*}
$$

ii)

$$
\begin{equation*}
\left\|\widetilde{K}_{n}(f)-f\right\| \leq 2 \omega\left(f ; \frac{1}{2} \sqrt{\frac{4+2 n}{(n+4)(n+5)}}\right) \tag{11}
\end{equation*}
$$

Proof. i) Considering Theorem A, we can write

$$
\begin{aligned}
\left|\widetilde{K}_{n}(f, x)-f(x)\right| \leq & |f(x)| \cdot\left|\widetilde{K}_{n}\left(e_{0}, x\right)-1\right|+ \\
& +\left\{\widetilde{K}_{n}\left(e_{0}, x\right)+\frac{1}{\delta} \sqrt{\widetilde{K}_{n}\left(e_{0}, x\right) \widetilde{K}_{n}\left((t-x)^{2}, x\right)}\right\} \cdot \omega(f ; \delta)
\end{aligned}
$$

Using Corollary 1 and Lemma 4, it follows

$$
\begin{equation*}
\left|\widetilde{K}_{n}(f, x)-f(x)\right| \leq\left(1+\frac{1}{\delta} \sqrt{\frac{(2 n-20) x(1-x)+6}{(n+4)(n+5)}}\right) \cdot \omega(f ; \delta) \tag{12}
\end{equation*}
$$

Choosing

$$
\delta=\sqrt{\frac{(2 n-20) x(1-x)+6}{(n+4)(n+5)}}
$$

we have

$$
\left|\widetilde{K}_{n}(f, x)-f(x)\right| \leq 2 \omega\left(f ; \sqrt{\frac{(2 n-20) x(1-x)+6}{(n+4)(n+5)}}\right)
$$

ii) Taking into account that for $x \in[0,1]$ we have $x(1-x) \leq \frac{1}{4}$, from (10) it results

$$
\left\|\widetilde{K}_{n}(f)-f\right\| \leq\left|\widetilde{K}_{n}(f, x)-f(x)\right| \leq\left(1+\frac{1}{\delta} \sqrt{\frac{4+2 n}{4(n+4)(n+5)}}\right) \cdot \omega(f ; \delta)
$$

Choosing

$$
\delta=\frac{1}{2} \sqrt{\frac{2 n+4}{(n+4)(n+5)}}
$$

we obtain (11).
The theorem is proved.

Theorem 3. For any $f \in C^{1}[0,1]$ and each $x \in[0,1]$ Durrmeyer-Kantorovich type operators (3) verify
i)

$$
\begin{align*}
\left|\widetilde{K}_{n}(f, x)-f(x)\right| \leq & \left|f^{\prime}(x)\right| \cdot\left|\frac{2-4 x}{n+4}\right|+2 \sqrt{\frac{(2 n-20) x(1-x)+6}{(n+4)(n+5)}} \tag{13}\\
& \cdot \omega\left(f^{\prime} ; \sqrt{\frac{(2 n-20) x(1-x)+6}{(n+4)(n+5)}}\right)
\end{align*}
$$

ii)

$$
\begin{align*}
\left\|\widetilde{K}_{n}(f)-f\right\| \leq & \frac{2}{n+4}\left\|f^{\prime}\right\|+\sqrt{\frac{2 n+4}{(n+4)(n+5)}} \tag{14}\\
& \cdot \omega\left(f^{\prime} ; \frac{1}{2} \sqrt{\frac{2 n+4}{(n+4)(n+5)}}\right)
\end{align*}
$$

Proof. i) Considering Theorem A and using Corollary 1 and Lemma 4 the proof is completed, with $\delta=\sqrt{\frac{(2 n-20) x(1-x)+6}{(n+4)(n+5)}}$.
ii) Considering Theorem A, we can write

$$
\begin{aligned}
\left|\widetilde{K}_{n}(f, x)-f(x)\right| \leq & |f(x)| \cdot\left|\widetilde{K}_{n}\left(e_{0}, x\right)-1\right|+ \\
& +\left|f^{\prime}(x)\right| \cdot\left|\widetilde{K}_{n}((t-x), x)\right|+\sqrt{\widetilde{K}_{n}\left((t-x)^{2}, x\right)} \times \\
& \times\left\{\sqrt{\widetilde{K}_{n}\left(e_{0}, x\right)}+\frac{1}{\delta} \sqrt{\widetilde{K}_{n}\left((t-x)^{2}, x\right)}\right\} \cdot \omega\left(f^{\prime} ; \delta\right) .
\end{aligned}
$$

Using Corollary 1 and Lemma 4, it follows

$$
\begin{aligned}
\left|\widetilde{K}_{n}(f, x)-f(x)\right| \leq & \left|f^{\prime}(x)\right| \cdot\left|\frac{2-4 x}{n+4}\right|+\sqrt{\frac{(2 n-20) x(1-x)+6}{(n+4)(n+5)}} \times \\
& \times\left\{1+\frac{1}{\delta} \sqrt{\frac{(2 n-20) x(1-x)+6}{(n+4)(n+5)}}\right\} \cdot \omega\left(f^{\prime} ; \delta\right) .
\end{aligned}
$$

Taking into account that for $x \in[0,1]$ we have $x(1-x) \leq \frac{1}{4}$ and $\left|\frac{2-4 x}{n+4}\right| \leq \frac{2}{n+4}$, we obtain

$$
\begin{aligned}
\left\|\widetilde{K}_{n}(f)-f(x)\right\| \leq & \left|\widetilde{K}_{n}(f, x)-f(x)\right| \leq \frac{2}{n+4}\left|f^{\prime}(x)\right|+\frac{1}{2} \sqrt{\frac{2 n+4}{(n+4)(n+5)}} \times \\
& \times\left\{1+\frac{1}{\delta} \cdot \frac{1}{2} \sqrt{\frac{2 n+4}{(n+4)(n+5)}}\right\} \cdot \omega\left(f^{\prime} ; \delta\right)
\end{aligned}
$$

Choosing $\delta=\frac{1}{2} \sqrt{\frac{2 n+4}{(n+4)(n+5)}}$, we have (14).
Corollary 2. Let $f \in C[0,1]$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\widetilde{K}_{n}(f)-f\right\|_{C[0,1]}=0 \tag{15}
\end{equation*}
$$

Theorem 4. Let $f \in L_{p}[0,1]$, for $1 \leq p<\infty$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\widetilde{K}_{n}(f)-f\right\|_{L_{p}[0,1]}=0 \tag{16}
\end{equation*}
$$

Proof. From the Luzin theorem for a given $\epsilon>0$, there is $g \in C[0,1]$ such that

$$
\|f-g\|_{L_{p}[0,1]}<\epsilon
$$

On the other hand, by using theorem 2 for a given $\epsilon>0$ there is $n_{0} \in \mathbb{N}$ such that

$$
\left\|\widetilde{K}_{n}(g, x)-g(x)\right\|_{C[0,1]}<\epsilon, \text { for } n \in \mathbb{N}, n>n_{0} .
$$

We have

$$
\begin{align*}
\left\|\widetilde{K}_{n}(f, x)-f(x)\right\|_{L_{p}[0,1]} \leq & \left\|\widetilde{K}_{n}(f, x)-\widetilde{K}_{n}(g, x)\right\|_{L_{p}[0,1]}+ \tag{17}\\
& +\left\|\widetilde{K}_{n}(g, x)-g(x)\right\|_{C[0,1]}+\|f-g\|_{L_{p}[0,1]}
\end{align*}
$$

Now, we show that there is a $C>0$ such that $\left\|\widetilde{K}_{n}\right\|_{L_{p}[0,1]} \leq C$, for any $n \in \mathbb{N}$. For this purpose, we have

$$
\begin{aligned}
\left|\widetilde{K}_{n}(f, x)\right|^{p} & =\left|(n+3) \sum_{k=0}^{n} p_{n, k}(x) \int_{0}^{1} p_{n+2, k+1}(t) f(t) d t\right|^{p} \leq \\
& \leq\left\{(n+3) \sum_{k=0}^{n} p_{n, k}(x) \int_{0}^{1} p_{n+2, k+1}(t)|f(t)| d t\right\}^{p} \leq \\
& \leq \sum_{k=0}^{n} p_{n, k}(x)\left\{(n+3) \int_{0}^{1} p_{n+2, k+1}(t)|f(t)| d t\right\}^{p} \leq \\
& \leq \sum_{k=0}^{n} p_{n, k}(x)\left[(n+3) \int_{0}^{1} p_{n+2, k+1}(t)|f(t)|^{p} d t\right]
\end{aligned}
$$

I used Jensen's inequality in these relations. Now we have

$$
\begin{aligned}
\int_{0}^{1}\left|\widetilde{K}_{n}(f, x)\right|^{p} d x & \leq \int_{0}^{1} \sum_{k=0}^{n} p_{n, k}(x)\left[(n+3) \int_{0}^{1} p_{n+2, k+1}(t)|f(t)|^{p} d t\right] d x \leq \\
& \leq \sum_{k=0}^{n}(n+3) \int_{0}^{1} p_{n, k}(x) d x \int_{0}^{1} p_{n+2, k+1}(t)|f(t)|^{p} d t
\end{aligned}
$$

Since $\int_{0}^{1} p_{n, k}(x) d x=\frac{1}{n+1}$, it follows

$$
\int_{0}^{1}\left|\widetilde{K}_{n}(f, x)\right|^{p} d x \leq \frac{n+3}{n+1} \sum_{k=0}^{n} \int_{0}^{1} p_{n+2, k+1}(t)|f(t)|^{p} d t \leq \frac{n+3}{n+1} \int_{0}^{1}|f(t)|^{p} d t
$$

Hence

$$
\left\|\widetilde{K}_{n}(f, x)\right\|_{L_{p}[0,1]} \leq \sqrt[p]{\frac{n+3}{n+1}}\|f\|_{L_{p}[0,1]} \leq \sqrt{3}\|f\|_{L_{p}[0,1]}
$$

From this fact it results $\left\|\widetilde{K}_{n}\right\|_{L_{p}[0,1]} \leq \sqrt{3}$.
As

$$
\left\|\widetilde{K}_{n}(f, x)-\widetilde{K}_{n}(g, x)\right\|_{L_{p}[0,1]}=\left\|\widetilde{K}_{n}(f-g, x)\right\|_{L_{p}[0,1]} \leq\left\|\widetilde{K}_{n}\right\|_{L_{p}[0,1]}\|f-g\|_{L_{p}[0,1]}
$$

we obtain, taking into account (17),

$$
\begin{aligned}
\left\|\widetilde{K}_{n}(f, x)-f(x)\right\|_{L_{p}[0,1]} & \leq \sqrt{3}\|f-g\|_{L_{p}[0,1]}+\epsilon+\|f-g\|_{L_{p}[0,1]} \leq \\
& \leq(\sqrt{3}+2) \epsilon .
\end{aligned}
$$

With the help of this expression, we find (16).

References

[1] Adell, J.A. and J. de la Cal, Bernstein-Durrmeyer operators, Comput. Math. Appl. 30 (1995), 1-14.
[2] Altomare, F. and Campiti, M., Korovkin-Type Approximation Theory and Its Applications, De Gruyter Studies in Mathematics, vol. 17, Walter de Gruyter and Co., Berlin.
[3] Barbosu, D., Kantorovich-Stancu type operators, J. Inequal.Pure Appl. Math. 5 (2004) no. 3, article 53.
[4] Derriennic, M. M., Sur l'approximation des fonctions integrables sur [0, 1] par des polynomes de Bernstein modifies, J. Approx. Theory 31 (1981), 325-343.
[5] Ditzian, Z. and Zhou, X., Kantorovich-Bernstein polynomials, Constr. Approx. 6 (1990), 421-435.
[6] Durrmeyer, J. L., Une Formule d'inversion de la transformee de Laplace: Application a la theorie des moments, Faculte des Sciences de l'Universite de Paris (1967).
[7] Gonska H., Heilmannb M., Raşa,I., Kantorovich Operators of Order k, Numerical Functional Analysis and Optimization 32 (2011), 717-738.
[8] Heilmann, M, Rasa, I., K-th order Kantorovich type modification of the operators U_{n}^{ρ}, to appear in J. Applied Functional Analysis, 9 (2014), no. 3-4, 320-334.
[9] Kacso, D., Quantitative statements for the Bernstein-Durrmeyer operators with Jacobi-weights, Mathematical Analysis and Approximation Theory (2002), Burg Verlag, 135-144.
[10] Kantorovich, L. V., Sur certains developpements suivant les polynomes de la forme de S. Bernstein, I, II, C. R. Acad. URSS (1930), 563-568, 595-600.
[11] Knoop,H.B. and Pottinger P., Ein Satz vom Korovkin-Typ fur C^{k}-Raume, Math. Z. 148 (1976), 23-32 .
[12] Li,C., Shi,N. and Huo,X.,Some approximate properties for a kind of generalized Bernstein-Kantorovich operators, (Chinese), J. Fujian Norm. Univ., Nat. Sci. 24 (2008), no.4, 1-4
[13] Shisha, O. and Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60 (1968), 1196-1200.
[14] Sucu, S., Ibikli, E., Approximation by means of Kantorovich-Stancu type operators, Numerical Functional Analysis and Optimization, 34 (5), 2013, 557-575.
[15] Totik, V., Approximation in L_{1} by Kantorovich polynomials, Acta Sci. Math. 46, Szeged, (1983), 211-222.
[16] Totik, V., Problems and solutions concerning Kantorovich operators, J. Approx. Theory 37 (1983), 51-68.
[17] Zenke, W. and Junfang, A generalization of the Bernstein operators, (Chinese), J. Baoji Coll. Arts Sci., Nat. Sci. 20 (2000), no. 4, 248-250.

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: gabriel.stan@unitbv.ro

