
Bulletin of the Transilvania University of Braşov • Vol 6(55), No. 2 - 2013

Series III: Mathematics, Informatics, Physics, 51-60

JAX-WS LOGIN WEB SERVICE AND ANDROID CLIENT

Constantin ALDEA1

Abstract

In this paper the steps made to send requests and receive responses between
an Android client application and a JAX-WS2 login web service which is hosted
on the JBoss application server are presented.

The base architecture for an enterprise application is presented and the
database access mechanism is shown by implementing the authentication mech-
anism for a user connected to the mobile device by using the login web service.
In this paper are presented the steps need to be done to send requests from
an Android client application to a web service which is hosted on the JBoss
application server.

2000 Mathematics Subject Classification: 68N19.
Key words: web service, mobile device, security.

1 Introduction

In this paper a communication strategy between the mobile device and the ap-
plication server is presented. Often it is required that a mobile client application
should access data stored in a database. More than accessing the database tables
the developer wants to use some of the enterprise application modules that have
generated the data.

The following use case is required. An existing application has a web user man-
agement module. By using the user management module users are created, modified,
activated or deactivated. Using an existing user the customer has access to the other
application functionalities (e.g. reports). In the classical way the customer accesses
the web page and uses its username and password, logs into the application and
uses the application functionalities [1]. Some functionality (reports, news, etc) must
be ported to be accessible on the mobile devices. While the web interface of the
enterprise application cannot be customized to be used on the mobile device a new
client application is required on the mobile device.

The architecture for the communication between mobile client device and the
enterprise application is drawn in figure 1. The following components are identified:

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania,
e-mail: costel.aldea@unitbv.ro

2Java API for XML Web Services



52 Constantin Aldea

Figure 1: Application architecture

• application server - in this case JBoss - it runs and publishes the web service.

• web service - JAX-WS login web service - waits for SOAP3 envelopes contain-
ing request and provides answer envelopes.

• JSON4 module that encodes and decodes JSON data (readable texts used for
data exchange between applications).

• model - module used for ORM5 data representation.

• service - module that implements methods for managing interaction with data.

• JPA6 - provides relational persistence of data - in this article the connection
is made with MySQL database server.

• ksoap2 - represents a SOAP client library for the Android platform.

• thread - in this case it represents only a single thread for performing the
network operations (it is mentioned while if the application is extended it is
necessary to control the network flows more generally).

• Login activity - implemented Android application’s lifecycle component.

• Android - mobile device client.

2 Main results

2.1 Prerequisites

To implement the proposed architecture the following prerequisite installation
steps should be done:

3Simple Object Access Protocol - XML based protocol
4JavaScript Object Notation
5Object-relational mapping
6Java Persistence API



JAX-WS login web service and Android client 53

1. java installation - Java Platform (JDK) 7u45 [5].

The environment variables JAV A HOME and JRE HOME must be created
and concatenated to the environment variable PATH.

2. eclipse installation - download and unzip (e.g. Kepler). Maven plugin will be
installed by using ”eclipse marketplace” menu option.

3. android sdk - download and setup [3].

4. installation of the eclipse android plugin [4].

5. apache maven - build automation tool for Java projects [9]. Note that for
maven the local repository must be set otherwise the user profile folder will be
used.

To start the mvn tool the environment variable maven = pathToMaven
must be created and then added to the path variable (PATH = %path%;
%maven%\bin).

6. JBoss installation - application server [7]. After unzip the environment vari-
able JBOSS HOME must be created and concatenated to the environment
variable PATH (e.g. jboss-eap-6.2).

In the standalone.xml configuration file of the server the data source must be
defined. To define the data source the driver module must be installed (in this
case mysql driver). The following lines must be added into the standalone.xml
configuration file of the application server:

<driver name="mysql" module="com.mysql"/>

into the section drivers and the following lines into the section datasources:

<datasource jta="true" jndi-name="java:jboss/datasources/butAndroidDS"

pool-name="my_pool" enabled="true" use-java-context="true" use-ccm="true">

<connection-url>jdbc:mysql://localhost:3306/butAndroid</connection-url>

<driver>mysql</driver>

<security>

<user-name>dbuser</user-name>

<password>dbpassword</password>

</security>

<statement>

<prepared-statement-cache-size>100</prepared-statement-cache-size>

<share-prepared-statements>true</share-prepared-statements>

</statement>

</datasource>

The mysql driver isn’t installed default such that it must be installed as module by
making the following steps [10]:

1. download the mysql connector mysql-connector-java-5.1.28.zip [11].



54 Constantin Aldea

2. create the subdirectory %JBOSS HOME%\modules\com\mysql\main and
unzipp into it the connector.

3. create the module.xml file into the same directory

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns="urn:jboss:module:1.0" name="com.mysql">

<resources>

<resource-root path="mysql-connector-java-5.1.28-bin.jar"/>

</resources>

<dependencies>

<module name="javax.api"/>

</dependencies>

</module>

If the module was installed successfully the application server can be started.

2.2 Login web service

The login web service is a function that receives two parameters (username and
password). The service checks (using JPA) into the database the rights of the user.
If the user is found and the password is ok, a JSON response is created.

The login web service has the general structure of a web service [2]. Besides its
scope this web service accesses the entity manager of the application server through
the CDI7 mechanism.

To create the login web service the follwoing steps need to be done:

1. Create a maven web project using eclipse.

2. Add the dependencies into the maven pom.xml file (org.json for working with
JSON objects, hibernate-jpa-2.0-api for database persistence, javaee-api for
dependencies injection).

<dependency>

<groupId>org.json</groupId>

<artifactId>json</artifactId>

<version>20131018</version>

</dependency>

<dependency>

<groupId>org.hibernate.javax.persistence</groupId>

<artifactId>hibernate-jpa-2.0-api</artifactId>

<version>1.0.1.Final</version>

</dependency>

<dependency>

<groupId>javax</groupId>

<artifactId>javaee-api</artifactId>

<version>7.0</version>

</dependency>

7Contexts and Dependency Injection



JAX-WS login web service and Android client 55

3. Create the database model.

@Entity

public class User implements Serializable{

@Id

@GeneratedValue(strategy=GenerationType.AUTO)

private Integer id;

@Column(unique = true)

private String username;

// ...

With the @Entity annotation, the connected database knows to format that
class into an object and save it to the database. The connection to the valid
database is established through the persistence.xml file where the class is
mapped.

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

<persistence-unit name="myDS">

<jta-data-source>java:jboss/datasources/butAndroidDS</jta-data-source>

<class>acl.but.model.User</class>

<properties>

<property name="eclipselink.jdbc.cache-statements" value="false"/>

<property name="eclipselink.jdbc.native-sql" value="false"/>

<property name="hibernate.hbm2ddl.auto" value="update"/>

</properties>

</persistence-unit>

</persistence>

4. Create the web service interface. The web service is annotated using the
@WebService annotation.

import javax.jws.WebMethod;

import javax.jws.WebService;

@WebService

public interface Login {

@WebMethod String doLogin(String username, String pwdHash);

}

5. Implement the web method in the web service class. By using the userservice
the input parameters are checked and the query response is packed into a
JSON object.

JSONObject object = new JSONObject();

// ...

User user = userservice.find(username, pwdHash);

if (user != null) {

dbusername = user.getUsername();



56 Constantin Aldea

dbpwdHash = user.getPassword();

try {

if (dbusername.equalsIgnoreCase(username)

&& dbpwdHash.equalsIgnoreCase(pwdHash)) {

response = "ok";

}

} catch (JSONException e) {

e.printStackTrace();

}

}

object.put("username", username);

object.put("response", response);

6. Register the web service in the main method of the web project.

Endpoint.publish("http://localhost:8080/WS/Login", new LoginImpl());

7. Deploy the web service. The generated archive (war) is copied into the
deployments subdirectory of the JBoss server. The application server auto-
matically detects the war files and deploys or redeploys them.

2.3 Android client application

The Android client application creates an activity with two input fields (user-
name and password). After clicking the login button a thread is created. In this
thread the web service is accesed. To access the web service the library ksoap2 is
used. The JSON response of the web service is retreived. A message is shown on
the screen indicating whether the login was successful or not.

Steps made by the client application:

1. Create an activity and add butons and textviews to its layout

...

<EditText

android:text=""

android:id="@+id/txtUserName"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:inputType="text">

</EditText>

...

<Button

android:text="@string/txt_login"

android:id="@+id/btnLogin"

android:layout_width="fill_parent"

android:layout_height="wrap_content">

</Button>

...



JAX-WS login web service and Android client 57

Figure 2: Android client application response

2. Initialize the SOAP parameters for accessing the login web service. These
parameters can be read by accessing the WSDL8 URL.

private static final String SOAP_ACTION = "";

private static final String METHOD_NAME = "doLogin";

private static final String NAMESPACE = "http://but.acl/";

private static final String URL =

"http://192.168.22.101:8080/DynWP-WS/LoginImpl?wsdl";

3. Download and add the ksoap2 library to the Android project [8]. It must be
also marked in Order an Export configuration tab of the JavaBuildPath for
the Android project.

4. Implement the login activity and the onclick listener method

public void onClick(View v) {

switch (v.getId()) {

case R.id.btnLogin:

8Web Services Description Language



58 Constantin Aldea

System.out.println("login button clicked");

String username = txtUserName.getText().toString();

String passwd = txtPassword.getText().toString();

passwd = Hashing.md5(passwd);

callDoLogin(username, passwd);

break;

\\ ...

5. Call of the login web service using a thread

SoapObject request = new SoapObject(NAMESPACE, METHOD_NAME);

PropertyInfo propertyInfo = new PropertyInfo();

propertyInfo.type = PropertyInfo.STRING_CLASS;

propertyInfo.name = "arg0";

request.addProperty(propertyInfo, username);

propertyInfo = new PropertyInfo();

propertyInfo.type = PropertyInfo.STRING_CLASS;

propertyInfo.name = "arg1";

request.addProperty(propertyInfo, passwd);

SoapSerializationEnvelope envelope = new

SoapSerializationEnvelope(SoapEnvelope.VER11);

envelope.setOutputSoapObject(request);

HttpTransportSE androidHttpTransport = new HttpTransportSE(URL);

androidHttpTransport.call(SOAP_ACTION, envelope);

SoapPrimitive response = (SoapPrimitive) envelope.getResponse();

responseWS = response.toString();

6. Decode and show the response

JSONObject jsonObj = new JSONObject(responseWS);

String res = "responseWS: " + jsonObj.toString();

System.out.println(res);

Toast.makeText(LoginActivity.this, res, Toast.LENGTH_LONG).show();

2.4 Remarks

• When the error message ”Webservice invocation failing with Unmarshalling
Error” appears, the parameters and their order must be verified.

• Timeout for thread - when the http connection (trasnport for SOAP messages)
isn’t available the background thread must have a timeout.

• a simple Java client can be implemented by generating and using the stubs
for the web service by using the command wsimport − s.http : //localhost :
8080/DynWP−WS/LoginImpl?wsdl [6]. The classes LoginImplService and
Login are automatically generated.



JAX-WS login web service and Android client 59

LoginImplService serviceLogin = new LoginImplService();

Login portLogin = serviceLogin.getLoginImplPort();

System.out.println(portLogin.doLogin("costel", Hashing.md5("costel")));

• The method md5(String) from the class Hashing is used by the Android
client application to compute the hass for the given password before sending
it through the network.

digest = MessageDigest.getInstance("MD5");

digest.update(inputPassword.getBytes(),0,inputPassword.length());

String hash = new BigInteger(1, digest.digest()).toString(16);

return hash;

• persistence.xml must be placed into the web project into the subdirectory
src\main\resources\META− INF

• For creating the war files using maven command mvn clean install is used. For
creating executable jars command mvn package is used.

3 Conclusion

The Java enterprise applications are scalable. Many of them are ported to mobile
devices. One of the porting mechanisms is by using the web services architecture
presented in the paper.

The login web service architecture can be extended and adapted to any other
application functionality. The proposed web service uses the CDI mechanism and
also uses JSON format for representing requests and responses such that any fields
from the database can be transferred between client application and the database
using the web service. The web service has also access to all local resources on the
server where it runs. It is run in JBboss application server in the context of the
enterprise applications which are to be extended.

References

[1] Aldea, C., L., Elemente de securitate ı̂n reţele de calculatoare, Transilvania
University Publishing House, Braşov, 2010.

[2] Aldea, C., Sangeorzan, L., Aldea, A. (2009, September). Web services and en-
terprise games, In I. Rudas, N. Mastorakis (Eds.), WSEAS International Con-
ference. Proceedings. Mathematics and Computers in Science and Engineering
(No. 5). WSEAS.

[3] https://developer.android.com/sdk/index.html

[4] http://developer.android.com/sdk/installing/installing-adt.html



60 Constantin Aldea

[5] http://www.oracle.com/technetwork/java/javase/downloads/index.html

[6] http://java.dzone.com/articles/jax-ws-hello-world

[7] http://www.jboss.org/jbossas/downloads/

[8] http://sourceforge.net/projects/ksoap2/

[9] http://maven.apache.org/download.cgi

[10] https://zorq.net/b/2011/07/12/adding-a-mysql-datasource-to-jboss-as-7/

[11] http://dev.mysql.com/downloads/connector/j/


