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Abstract: In this paper, the authors have been applied the adaptive control 
to a mass-damper-spring. During the whole design process only parametric 
disturbances have been considered. Based on the uncertainty parameters 
(mass, damping constant, and spring) and by using a gradient method (the 
MIT rule), a PI adaptive controller is proposed and designed. The used 
gradient method (i.e. the MIT rule) allowed for the studied parameters to be 
varied in a predefined range. The whole design, as well as the experimental 
results, was done in Matlab/Simulink. 
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1. Introduction 
 
In general, the term of adapting to 

something can be explained as behavior 
changes due to direct reactions for given 
circumstances. Based on this broad 
definition, an adaptive controller can be 
defined as the controller's ability to modify 
its behavior in response to any changes of 
the process dynamics that have an impact 
on him.  

Historically speaking, the whole progress 
in the microelectronics area was a real 
stimulus for plenty of adaptive control 
experiments developed in special 
laboratories and industry. The results were 
not left waiting - in the early 80s, adaptive 
controllers were commercially launched 
and heavily used in industry. The key for 
having such a success was given by the 
very narrow definition for adaptive 
control: to easily adapt to any change of 

the process dynamics and, eventually, to 
gain the needed control through the whole 
process. 

Due to the large scale of adaptive 
controllers, in this paper the studied case is 
related to mass-damper-spring. One of the 
most important characteristics imposed to 
a good adaptive controller design is the 
capability to ensure the system stability 
against any of the uncertainty parameters. 
Considering such premises as a valid 
starting point (n.b. it is known that the 
values of uncertainty parameters vary 
frequently and significantly), in this paper 
an adaptive control strategy is proposed 
and, based on it, a model of system 
uncertainty can be specified further by a 
designer. 

When dealing with uncertainty parameter 
is recommended and considered a good 
practice for correctly design managing, to 
use adaptive control. Therefore, searching 
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for a proper controller is adequate in most 
cases. For a controller to be considered fit 
to its purpose, one rule has to be 
accomplished - such that in case of a 
closed loop system, a certain adaptive 
stability needs to be achieved. As a 
consequence, one of the main approaches 
applied in adaptive control is Model 
Reference Adaptive System (MRAS). 

Adaptive control is a technique that 
provides automatic and real time 
adjustment for a controller. Such an 
adjustment is performed when the studied 
process presents unknown but constant 
parameters (in this case, the design of 
adaptive control should come up with an 
automatic tuning procedure applicable to 
all these parameters in a closed loop 
system), or unpredictably changing in time 
parameters (in this case, for the system 
performances to be maintained, adaptive 
control of the control system should be 
used). The goal is to maintain system 
performances of a controller to its imposed 
thresholds [1], [4], [5]. 

Although the original scheme for MRAS, 
which was proposed by Whitaker in 1958, 
was introduced for flight control, in the 
current study is applied to DC electrical 
drive controlling (Figure 1) [1]. 

 

 
Fig. 1. General block diagram of MRAS 

 
The gradient method mentioned above is 

used to design and simulate a MRAS 
system. 

2. Model Reference Adaptive Control 
(MRAC) 

 
It is considered a starting point the 

desired behavior of a given process that 
can be described. It can be achieved by 
using a model reference. Particularly, a 
linear time-invariant system (LTI) is 
representing the process, while the model 
reference is implemented as MRAC. The 
aforementioned process is driven by its 
input reference and has associated the 
transfer function Gm(s). 

MRAS was derived from continuous 
systems and has an inner loop and an outer 
loop. The process itself and classical 
feedback are included in the inner loop, 
while the outer loop is only used to adjust 
controller parameters.  

A complex process in designing of the 
transfer function for model reference 
(Gm(s)) can be outlined by following the 
behavior of 3 (three) important signals 
(input, output, and error). The input signal 
is based on a given reference input signal 
r(t) and the output signal ym(t) is represented 
by the system desired response.  

An important goal is to succeed in 
diminishing the gap between system output 
and reference model. This gap is considered 
the error signal e(t) and its size depends on 
the chosen model reference, the process y(t) 
- which must follow the output signal, and 
the command signal. It is said that a perfect 
model can be achieved when, for all 
command signals, the error signal is 
reduced to a null value [2], [3], [5], [7]. 

In the particular case of MRAC, all 
parameters can be adjusted either by using 
a gradient method, or by applying a 
stability theory. 

 
2.1. MRAS Designing by Using the 

Gradient Method 
 

The gradient method, also named the MIT 
rule due to fact that was developed by the 
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Instrumentation laboratory at Massachusetts 
Institute of Technology (MIT), is one of the 
two aforementioned approaches for MRAC 
discussed in this paper. The associated 
equation to MIT rule is: 
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where:  - is the controller parameter; e - is 
the error between the process and the 
model outputs;  - is the adaptation gain; 

θ
e - is the system’s sensitivity derivative. 

To understand better the MIT rule and its 
purposes, a few explanations are 
mandatory. A first assumption is that for 
the examined closed loop system, the 
given controller has one single adjustable 
parameter . The next assumption is to 
determine the error (e) between the process 
output (y(t)) and model reference output 
(ym(t)).  

To succeed in minimizing of the loss 

function eJ
2
1)(   [4], [6], the parameter 

 must be adjusted. Changing the 
parameters in a way of having negative 
gradient forces the function J to be small. 
One important aspect is that loss function 
is randomly chosen. Supposing that loss 
function is eJ )( , then the adjustment 
factor depends, among other variables, on 
signum function, too: 
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3. Process Modelling of the Mass -

Damper - Spring 
 

A mass - damper - spring system can be 
described like in the Figure 2. 

Using the second law of Newton, the 
system dynamic can be represented by the 

following second order differential 
Equation: 
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where m is the mass, c the damping 
constant, k the spring stiffness, x(t) = y(t) 
the displacement, and F(t) = u(t) the 
external force.  
 

 
Fig. 2. Mass-damper-spring process 

 
The block diagram of the process is 

represented in the Figure 3. 
 

 
Fig. 3. The diagram block of the system 

 
In a realistic system, parameters like 

mass, damping constant, and spring 
stiffness are unknown, but they can be 
varied in certain ranges: m  (1.8, 4.2), 
c  (0.8, 1.2) and k  (1.4, 2.6).  

To control such a process, it is necessary 
to use a PI adaptive controller. 

 
3.1. PI Adaptive Controller Designing 

 
By selecting an adaptive law with three 

adjusting parameters, the downsides of the 
three unknown parameters process 
specifics, can help in finding of the proper 



Bulletin of the Transilvania University of Braşov • Series I • Vol. 7 (56) No. 2 - 2014 
 
72 

values. To continue, the same adjusting 
mechanism that was detailed for the MIT 
rule is used further on. The mass - damper 
- spring process is a second order element 
with the following transfer function: 

 

mksmcs
m

sU
sYsG

/)/(
/1

)(
)()( 2 
  

32
2

1

αα
α




ss
.         (4) 

  
For the reference model, a second order 

transfer function is selected: 
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A perfect following of the model 

reference is achieved with the PI control 
law [4], [8], [9]: 
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By inserting Equation (4) into Equation 

(6), the MIT rule is applied, where p is the 
differential operator: 
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As a consequence, the error is: 
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 The sensitivity derivatives are obtained 
by taking the partial derivatives of the 
error and considering the controller 
parameters: 
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Due to the fact that the process 

parameters are unknown, none of the 
above three equations can be used. The 
below approximation is required in order 
to overcome such an impediment: 
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In conclusion, the adjustment for the 

controller parameters is: 
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where parameter 1 is introduced in the 
adaptation gain . 
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Fig. 4. The simulation scheme 

 
4. Simulation Results 
 

Both, the PI controller and the process 
have been designed in continuous time 
domain. The closed loop control system 
was simulated in Matlab/Simulink for the 
nominal values of the uncertain parameters 
(Figure 4) [10].  

For the process model the authors 
proposed three scenarios: the first one is 
using the nominal values of the parameters 
(y1(t)), the second is using the minimum 
values of the parameters (y2(t)), and the 
third is using the maximum values of the 
parameters (y3(t)). 

By imposing a value equal to 3.5 for 
adaption gain and by analysing the signals’ 
progression (y1(t), y2(t), y3(t)), it can be 
deducted that system is adjustable. 
Moreover, in Figure 5 (where for a period of 
100 seconds, a step input was applied), by 
analysing the signals it can be concluded that 
the system’s performances are acceptable. 

 
5. Conclusions 

 
The current study presents in a rigorous 

way the experiments performed by the 
authors and pertaining to an adaptive 

controller designed for a mass - damper - 
spring process.  

 

 
 

 
Fig. 5. Progression of the output signals 
(y(t), ym(t)) and adjustment error signal 

(e(t)) 
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The best experimental results have been 
obtained by applying a PI adaptive 
controller and only for a single scenario - 
when the parameters’ nominal values have 
been set.  

The MIT rule provides satisfactory 
results but does not guarantee coverage or 
stability. 
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