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Abstract: FPGAs (Field Programmable Gate Arrays) are increasingly 
being used for both commercial and educational applications that take 
advantage of their re-configurability and computational power. The practice 
of offloading intensive computations to the FPGA where they can benefit 
from the computing parallelism and hardware acceleration is burdened by 
the need to overcome I/O bottlenecks generated by the lack of a fast and 
easy-to-use interface for transferring data. This paper presents the design 
and implementation of a service-based solution for interconnecting a PC and 
an FPGA over the Ethernet that offers a flexible, high-speed link for 
transferring data using an easy to use web interface. 
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1. Introduction 
 
FPGA devices have become very 

popular solutions for developing digital 
embedded systems, being an ideal platform 
for both commercial and educational 
applications due to their re-configurability, 
high flexibility and processing power. 
Thus FPGAs are increasingly being used 
for deploying compute-intensive tasks and 
for prototyping hardware systems. 

A general challenge for FPGA designers 
is overcoming the I/O bottlenecks 
generated by the relatively difficult and 
slow communication between the chip and 
the external environment - typically a PC 
that offloads intensive computational 
processes to the device. FPGA chips have 
become more and more powerful lately - 
gaining in reconfigurable hardware 
resources, higher clock frequencies, 
optimized power consumption. 
Consequently a general trend is currently 

underway to use the FPGAs as auxiliary 
devices connected to the PC, where 
specific computational tasks can be 
offloaded. Such tasks can then benefit 
from the FPGAs computing parallelism 
and hardware acceleration, leading to an 
overall speedup of the applications. This 
raises the key issue of data transfer to and 
from an FPGA device connected to a 
general-purpose computer. 

There are several interconnect 
technologies available for implementing 
the communication between and FPGA 
and PC: PCI Express, Ethernet, RS232 - 
which are available on nearly all recent 
FPGA platforms, and other technologies 
like Bluetooth, Wi-Fi, Infrared, that are not 
so widespread and usually imply 
connecting adaptors or extension cards. 

PCI Express is without a doubt the fastest 
way to transfer data between FPGA and PC, 
but also the most expensive and one that 
needs dedicated PCI Express driver on the 
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PC, and an FPGA with PCI Express 
capabilities - where a specialized (usually 
commercial and expensive) PCI Express IP 
Core needs to be instantiated [7]. 

RS232, while easy-to-use, is outdated 
and cannot cope with the performance and 
speed requirements of today's digital 
applications. 

The Ethernet solution remains the most 
accessible for interconnecting the two 
devices, however it brings on its own 
complexity and implementation issues [1]. 
The majority of existing Ethernet transfer 
solutions implement either the UDP/IP or 
TCP/IP protocol stack in the FPGA 
hardware for communicating with the PC. 
These solutions, although viable and with 
good performance, are suitable for 
complex applications that need extended 
network capabilities, and are also quite 
difficult to integrate and use in larger 
designs. 

 
2. Objectives 
 

This paper presents the design and 
implementation of a service-based solution 
for interconnecting a PC and an FPGA 
over the Ethernet that offers a flexible, 
high-speed link for transferring data using 
an easy to use web interface. 

We have chosen Ethernet as the 
underlying technology for our 
development since most FPGA platforms 
contain an EMAC (Ethernet Media Access 
Controller) module that allows direct, data 

link level access to the PHY (physical 
layer) on-board device. 

For successfully implementing this 
solution, our efforts have targeted: 

- The design and implementation of an 
EMAC controller as an HDL IP Core for 
Ethernet communication. 

- The development of a PC software 
application communicating with the 
embedded EMAC controller on the FPGA 
board over the Ethernet, using a 
proprietary protocol over the data-link 
layer. 

- Abstracting away the complexity of 
using the software application by 
implementing a web application for 
transferring data to/from the FPGA using a 
web service and a JSP (Java Server Pages) 
web page as an interface to the user. 

 
3. Design and Implementation 

 
The communication solution developed, 

illustrated in Figure 1 above, is composed 
of two main parts: the embedded hardware 
component - running on the FPGA board - 
representing the EthController IP Core 
(that controls the on-board EMAC 
interfacing the ETH PHY) implemented in 
Verilog HDL (Hardware Description 
Language), and the software component 
(RAW socket application - responsible for 
the Ethernet communication with the 
FPGA, and Web application for exposing 
the communication on a web-based 
interface using a web service).  

 

 
Fig. 1. Communication system - general overview 
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3.1. EthController IP Core 
 
The hardware implementation is based 

on a Atlys Spartan-6 FPGA Development 
Board that integrates a Xilinx Spartan-6 
LX45 FPGA and a Marvell Alaska Tri-
mode Ethernet PHY paired with a Halo 
HFJ11-1G01E RJ-45 connector.  

The ETH PHY's timing is controlled by 
an on-board 25MHz oscillator. The IP 
Core was implemented in Verilog HDL, an 
architectural view is available in Figure 2 
below. 

 
EthReceive Module 
This module is responsible with 

receiving data or acknowledgement 
packets sent by the raw socket software 
application running on the PC. It takes the 
following input signals from the ETH 

PHY: clock, data bus and data validation, 
and provides to the EthSend module the 
index of the received packet in order to 
send back the corresponding 
acknowledgement packet. 

The internal architecture of the 
EthReceive module is basically composed 
of a checksum compute module 
(CRC32_D8) and internal logic. The logic 
contains several counters and registers for 
discriminating inside the received packet 
flow. The packet inspection is being 
performed “real-time” which means that, 
as data is being received, it is also 
interpreted and actions are being taken 
based on it: the packet is validated, the 
length is extracted and the actual data is 
being grouped on a 16 bit wide bus and 
forwarded by an output port to a 
synchronization FIFO.  

 

 
Fig. 2. EthController IP Core internal architecture and interface with the PHY 

 
When the module's logic detects 

rx_valid_i signal=High, a packet is about 
to be received. The packet structure is 
presented in Figure 3. At first, the validity 
of the packet is checked - the existence of 
the Preamble and SFD (Start of Frame 
Delimiter) fields at the beginning of the 
incoming data. After confirming that the 
packet is valid, the module proceeds to 
checking the packet type - either 
confirmation packet or one containing user 
data - by analysing the first 4 bytes of the 
data frame. 

Afterwards the remaining data is 
interpreted: the following 2 bytes represent 
the packet number, and another 2 bytes - 
the length of the contained data. 

 

 
Fig. 3. Diagram of an Ethernet packet 

from the communication PC-FPGA  
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The user data is received as one nibble 
per clock and is read into a 16 bit shift 
register that once every 16 bit are read, is 
outputted together with a validation signal 
to be further used in the FPGA logic. 

While data is being read from the 
received packet, the CRC is computed on-
the-fly in order to validate its integrity. 
This is accomplished using the CRC32_D8 
module instantiated in the EthReceive 
module. Once the packet has been read 
completely, if the CRC32_D8 module's 
output value is 0, the packet is validated, 
and its index number is written in the 
synchronization FIFO to be used by the 
EthSend module for sending the 
acknowledgement packet, otherwise it is 
ignored and discarded. 

 
EthSend Module 
This module is responsible with sending 

packets - either for acknowledgement of 
the received ones or containing data - from 
the FPGA system to the PC. It reads data 
from the FIFO module, when available, 
and encapsulates it into a packet that is 
sent through the PHY on the Ethernet 
interface. It uses several counters and 
registers, together with the CRC module 
for building the packet “on-the-fly”, 
outputting on each clock cycle a nibble on 
the data bus. 

When acknowledgement information - 
the number(s) of the received packets that 
need to be confirmed - is available as 
output data from the FIFO module, a new 
Ethernet frame is sent containing the 
specific packet number. The same process 
is performed using standard user data read 
from the FIFO module. 

The sent packet structure is the same as 
in Figure 3. The module "builds" the 
packet according to the IEEE 802.3 
protocol standard [5], starting with the 
Preamble and SFD fields and continuing 
with the data field. This field has a first 
byte indicating the type of packet 

(acknowledgement or containing ordinary 
data), followed by either the confirmed 
packet's number, or the length followed by 
the actual data. The data before being sent 
is stored in a shift register that is shifted 4 
bits every clock period, since the Ethernet 
output data bus is 4 bits in width. The 
module’s logic ensures the fact that in the 
case of shorter packets, an extra padding is 
appended (byes having a zero value) in 
order to guarantee a minimum length of 64 
bytes/packet. 

The last field of the packet is the FCS 
(Frame Check Sequence), with a length of 
4 bytes, containing the 32 bit CRC value 
computed on-the-fly based on the packet's 
data. The CRC is computed using an 
instance of the same CRC32_D8 module. 

The Ethernet 802.3 protocol regulates the 
standard minimal interval needed to exist 
between two consecutive sent packets. For 
our current case, an Ethernet 100Mbit/s 
transmission, this interval has a value of 
960ns, which equals with 24 clock periods. 
This is ensured by interrogating a timer 
which is counting the clock periods after 
every sent packet. 

Guaranteeing this interval, together with 
the absence of a possible collision on the 
Ethernet interface (signalled by the col_i 
signal received from the PHY), and 
receiving confirmation for the last packet 
sent are the three conditions that enable 
sending a new packet. If any of them is 
false, the module waits until all 
requirements are met before sending a new 
frame.  

The packet acknowledgement mechanism 
was implemented in order to avoid 
congestions and to be able to guarantee the 
integrity of the transmitted data. The same 
counter mentioned above is used in the 
EthSend module to count 25000 clock 
periods (the equivalent of 1ms), an interval 
in which an acknowledgement for the last 
sent packet is expected. If not received, the 
same packet is re-transmitted - the data 
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being read from ResendFIFO, a structure 
that stores the content of the last sent 
packet. 
 
3.2 Software Applications 

 
The software applications designed to 

run on a PC with a Linux operating system 
are: 

- a C network application that implements 
the actual Ethernet communication with 
the FPGA board;  

- a Web Application composed of a web 
service, a Java servlet, and a JSP web 
page; it represents a service-based 
middleware that abstracts away the 
complexity and functional details of the C 
application and communication flow with 
the FPGA by exposing it on an easy-to-use 
web-based interface. 

 
C network application 
This application implements the 

communication between the Atlys FPGA 
development board and the PC over the 
Ethernet using RAW sockets. The program 
opens two RAW sockets: one for sending 
packets and another for receiving them. 
Thus, a bidirectional data exchange flow is 
supported: packets containing user data 
and the corresponding acknowledgements 
are being sent to/from the FPGA board. 

Since we have implemented our own 
proprietary protocol, the communication 
had to be implemented at the data-link 
layer (level 2 from the OSI stack), so the 
software application is working with RAW 
sockets that allow receiving the entire 
Ethernet frame [2]. This is a key feature of 
our application, only such an approach 
allowing the application running on the PC 
to receive packets with customized 
protocols. 

The communication domain of the 
socket opened for sending/receiving 
packets is set to PF_PACKET - which 
allows working with RAW packets at the 

data-link layer. The socket's type is 
SOCK_RAW and the specified protocol, 
ETH_P_ALL, which enables packet traffic 
regardless of protocol [3]. 

In order to guarantee the integrity of the 
data and to manage possible congestions, 
specific measures were implemented in the 
application, which work together with the 
ones developed in the EthController IP 
Core.  

When sending data to the FPGA system, 
after each sent packet the application waits 
for an acknowledgement a certain interval, 
and tries to re-send the same packet three 
times. If the acknowledgement has still not 
been received, the application terminates. 
A diagram illustrating the functionality of 
the application - when sending data to the 
FPGA - is shown in Figure 4. 

 

 
Fig. 4. C network application functionality 
 

When receiving data from the FPGA the 
flow is simpler, since the incoming data is 
stored in a file until and EOF (end of file) 
character is received in a packet’s data and 
each packet is confirmed when received. 
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Web applications 
The web application has three 

components: the web service that acts like 
a middleware between the user and the 
underlying network application, a JSP web 

page representing a friendly, easy to use 
web-based user interface, and a Java 
servlet which is an intermediate entity 
between the two, facilitating the data flow 
amongst them.  

 

 
Fig. 5. Screen capture showing JSP page web user interface for transferring data 

 
The servlet uses SOA (Simple Object 

Access Protocol) for communicating 
between the service and the JSP page [4]. 
It acts like an extension to the service by 
enhancing its functionality [6]; the HTML 
data and files from the JSP page are 
encapsulated by the servlet into a SOAP 
message that is sent to the service in order 
for it to be sent further away to the FPGA 
system. Any data received from the system 
follows a similar path: it is sent inside 
SOAP messages by the service to the 
servlet, and then it becomes available to 
the user on the JSP page. 

The web service was implemented in 
Java and runs on a Glassfish 4.0 Server 
instance. It contains a method that 
interfaces the RAW socket network 
application by automatically creating and 
configuring a script-enabled working 
environment for executing the C 
application. Through this application it is 
managing the incoming/outgoing data 

flow, in order to send and receive data 
from the FPGA board. 
 
4. Validation and Results 
 

The testing and validation of the 
communication solution started by 
simulating the hardware design: the 
EthController IP Core. Individual 
simulations were performed targeting each 
modules (EthSend, EthReceive, 
SendFIFO), and also an overall simulation 
of the entire design (Figure 6). 

A test bench module was developed for 
generating input signals (emulating the 
PHY): transmit and receive clocks 
(25MHz each, asynchronous), active-high 
reset, input data (4 bit bus) and data 
validation signal. Thus, the test bench 
generates packets received by EthReceive 
and verifies that the corresponding 
acknowledgements are being sent back by 
EthSend. 
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Also, this simulation environment allows 
an in-depth visual verification of the 
Ethernet frames sent by EthSend (valid 
structure - according to the 802.3 standard's 
specifications, correct CRC etc.). 

 

 
Fig. 6. EthController simulation test 

environment 
 

Besides simulation, the hardware design 
was also tested while running on the FPGA 
board. The insertion of specific faults was 
implemented using the switches and buttons 
available on the board in order to test the 
behaviour of the design in critical situations 
that may happen during run-time:  

- the possibility to turn off the sending of 
acknowledgement packets by the FPGA 
using an on-board switch for testing if the 
resending operation is working properly. 

- sending packets that do not comply 
with the proprietary protocol's specifications 
to see if it causes malfunctions in the RAW 
socket application. 

A benchmarking of the communication 
solution was made in order to evaluate the 
performance in terms of data transfer speed 
and also to stress the software and 
hardware components by emulating high 
traffic load scenarios. This was 
accomplished by sending a continuous data 

flow and monitoring the communication 
link using the IPTraf Linux utility. The 
results are shown in Table 1 below. 

 
Table 1 

IPTraf utility statistics of a data transfer 
from PC to FPGA 

Metric Value 
Incoming packets 328655 
Incoming bytes 248463 K 
Outgoing packets 328655 
Outgoing bytes 331256 K 
Total packets 657310 
Total bytes 579719 K 

2935.6 packets/s Incoming rates 
17754.5 Kbits/s 
2935.4 packets/s Outgoing rates 
23670.0 Kbits/s 
5871.0 packets/s Total rates 
41424.5 Kbits/s 

  
The figures above show that during a 

data transfer from the PC to the FPGA, the 
speed achieved was approx. 2.9 MB/s, 
while the acknowledgement packets were 
sent back to the FPGA system at a rate of 
2.2 MB/s. This transfer speed can be 
improved, since it is limited by the 
acknowledgement mechanism that was 
implemented, that is waiting for an 
individual confirmation for each sent 
packet before sending the next one. We are 
considering as a future development to 
substitute this mechanism with a sliding-
window type that would result in a 
potential speed-up. 

In Table 2 a summary of the FPGA 
utilization is presented, showing that the 
EthController IP Core occupies less than 
2% of the resources available in terms of 
slices (the Xilinx technology basic unit 
composed of LUTs and FFs), and only 8% 
of the IOBs (Input/Output Buffers - the 
effective number of FPGA pins used). 
These results, indicating a very low area 
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and IO usage, show that EthController IP 
Core can easily be integrated into a larger 
design since it does not need many 
resources and provides an important 
enhancement regarding I/O 
communication of the FPGA. 
 

Table 2 
Spartan 6 Device Utilization Summary 

Slice Logic Utilization 
 Nr. % 

Number of Slice Registers 349 1 
Number of Slice LUTs 378 1 
Number of occupied 
Slices 

145 2 

Number of MUXCYs 
used 

108 1 

Number of bonded IOBs 19 8 
Number of 
RAMB16BWERs 

1 1 

Number of 
BUFG/BUFGMUXs 

3 18 

 
The low resource usage is an advantage 

over the existing IP protocol based solutions 
[1], which makes our development ideal for 
FPGA hardware applications needing a basic 
connectivity with a PC for data transfer. 
 
5. Conclusions 
 

In this paper we have presented a new 
solution that implements an efficient 
communication interface between a PC 
and an FPGA over the Ethernet. The 
resource utilization is low - the IP Core 
running on the FPGA needs less than 2% 
of the available resources - and the 
transmission rates are around 3MB/s. 

This communication is further enhanced 
by the integration of a web service and a 
JSP page acting as a user interface that 
abstracts the complexity, lower-level 
implementation and architectural details of 
the RAW socket application that operates 
on the data-link layer. 

Future work will focus on improving the 
transfer speed by implementing an 
improved acknowledgement mechanism. 
Also, we are planning to enhance the 
EthController IP Core by implementing the 
TCP/IP stack, thus extending its 
application range. 
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