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A NEW CLASS OF DIVISORS: THE EXPONENTIAL
SEMIPROPER DIVISORS

Nicuşor MINCULETE1

Abstract

The aim of this paper is to present the notion of exponential semiproper
divisor and to study some properties of arithmetical functions which use ex-
ponential semiproper divisors. We also investigate the maximal order and
the minimal order of these arithmetical functions.
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1 Introduction

First we enumerate several types of divisors found in some papers on
Number Theory.

In [17] R. Vaidyanathaswamy introduced the notion of block-factor in the fol-
lowing way: a divisor d of n is a block-factor when

(
d,

n

d

)
= 1. Later, E. Cohen

[1] introduced the current terminology for a block-factor, namely, the unitary di-
visor. In 1966, M. V. Subbarao and L. J. Warren [11] introduced the unitary
perfect numbers satisfying σ∗(n) = 2n, where σ∗(n) denotes the sum of the uni-
tary divisors of n. Let τ∗(n) denote the number of unitary divisors of n, which is,
in fact, the number of the squarefree divisors of n.

F. Mertens, in [4], proved the relation∑
n≤x

τ∗(n) =
x

ζ(2)

(
log x + 2γ − 1− 2ζ ′(2)

ζ(2)

)
+S2(x), where S2(x) = O

(
x

1
2 log x

)
.

(1)
A. A. Gioia and A. M. Vaidya [2] showed that S2(x) = O

(
x

1
2

)
.

R. Sitaramachandrarao and D. Suryanarayana [9] found the following result:∑
n≤x

σ∗(n) =
π2x2

12ζ(3)
+ O

(
x log

2
3 x
)

. (2)
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We recall that the notion of exponential divisor was introduced by M. V. Subbarao
in [10] in the following way: d is said to be an exponential divisor (or e-divisor) of
n = pa1

1 ...par
r > 1, if d = pb1

1 ...pbr
r , where bi|ai for any 1 ≤ i ≤ r. A series of results

related to the exponential divisors are given in more papers: [3,8,13,14].
N. Minculete and L. Tóth in [5] presented some properties of the arithmeti-

cal functions which use exponential unitary divisors or e-unitary divisors of n =

pa1
1 ...par

r > 1, if d = pb1
1 ...pbr

r , where bi is a unitary divisor of ai, so
(

bi,
ai

bi

)
= 1,

for any 1 ≤ i ≤ r.

2 Main result

We now introduce a new class of divisors. Let n be a positive integer, such
that n = pa1

1 ...par
r > 1 and the arithmetical function γ(n) = p1p2...pr, which is

called the ”core” of n.

A divisor d of n, so that γ(d) = γ(n) and
(

d

γ(n)
,
n

d

)
= 1 will be called an

exponential semiproper divisor or an e-semiproper divisor of n.
As an example, we consider the number n = 26 ·34; then the e-semiproper divisors
of n are the following:

2 · 3, 26 · 3, 2 · 34, 26 · 34.

Let τ (e)s(n) denote the number of the e-semiproper divisors of n, and σ(e)s(n)
denote the sum of the e-semiproper divisors of n. We note d|(e)sn. By convention,
1 is an exponential semiproper divisor of itself, so that σ(e)s(1) = τ (e)s(1) = 1. We
notice that 1 is not an e-semiproper divisor of n > 1, the smallest e-semiproper
divisor of n is γ(n) and the greatest e-semiproper divisor is n.

Any e-semiproper divisor d of n is written as d = γ(n) · d′, where d′ is a
unitary divisor of

n

γ(n)
. Therefore, the number of the e-semiproper divisors of n

is τ∗
(

n

γ(n)

)
and the sum of the e-semiproper divisors of n is γ(n) · σ∗

(
n

γ(n)

)
, so

we have the following relations:

τ (e)s(n) = τ∗
(

n

γ(n)

)
, σ(e)s(n) = γ(n) · σ∗

(
n

γ(n)

)
. (3)

We observe that if the integer d = pb1
1 ...pbr

r is an exponential semiproper divisor
of n = pa1

1 ...par
r > 1, then bi ∈ {1, ai}, for any 1 ≤ i ≤ r. Among the divisors of

n defined in this way there is the improper divisor n and the others (if there are)
are the proper divisors of n. This creates a connection between the exponents as
the improper divisors and the proper divisors of n chosen from the exponential
divisors of n, suggesting a hybrid concept, namely, the exponential semiproper
divisor. Hence, according to the things mentioned above, we have

τ (e)s(pa) =
{

1, for a = 1
2, for a ≥ 2,

(4)
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so, p is an e-semiproper divisor of p, and e-semiproper divisors of pa(a ≥ 2) are p
and pa, which means that

σ(e)s(pa) =
{

p, for a = 1
pa + p, for a ≥ 2.

(5)

We remark also that the e-semiproper divisors of n are among the e-unitary di-
visors of n and the e-unitary divisors of n are among the e-divisors of n, so it is
easy to see that

τ (e)s(n) ≤ τ (e)∗(n) ≤ τ (e)(n) and σ(e)s(n) ≤ σ(e)∗(n) ≤ σ(e)(n), (6)

where τ (e) is the number of exponential divisors of n, σ(e) is the sum of exponential
divisors of n, τ (e)∗ is the number of exponential unitary divisors of n and σ(e)∗ is
the sum of exponential unitary divisors of n. It is obvious that the arithmetical
functions τ (e)s and σ(e)s are multiplicative and we have

τ (e)s(n) = 2t, σ(e)s(n) = p1...pu

r∏
i=u+1

(pai
i + pi), (7)

where n = p1...pup
au+1

u+1 ...par
r , with ai ≥ 2 for any i ∈ {u + 1, ..., r} and t = r − u,

so, t is the number of the exponents in the prime factorization of n which are ≥ 2.
If n is square-free, then τ (e)s(n) = 1 and σ(e)s(n) = n.

Similar to the exponential unitary convolution, we introduce the exponential
semiproper convolution (e-semiproper convolution) of arithmetical functions, which
is defined by

(f ∗(e)s g)(n) =
∑

b1c1=a1
b1,c1∈{1,a1}

...
∑

brcr=ar
br,cr∈{1,ar}

f(pb1
1 ...pbr

r )g(pc1
1 ...pcr

r ) (8)

The e-semiproper convolution is commutative, associative and has the identity
element µ, where µ(1) = 1 and

µ(pa) =
{

1, for a = 1
0, for a ≥ 2.

(9)

It easy to see that that µ is a multiplicative function. Furthermore, a function
f has an inverse with respect to the e-semiproper convolution iff f(1) 6= 0 and
f(p1...pk) 6= 0, for any distinct primes p1, ..., pk.

The inverse with respect to the e-semiproper convolution of the constant 1
function is denoted by µs. The arithmetical function µs is given by µs(1) = 1 and
for n > 1, we have

µs(pa) =
{

1, for a = 1
−1, for a ≥ 2

(10)

Hence, we obtain the identity

µs ∗(e)s µs = µs · τ (e)s. (11)
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In [6], we meet the regular convolutions of Narkiewicz-type, and here we ob-
serve that the e-semiproper convolution is a special case of these.

For the maximal order of the function τ (e)s, we have

Theorem 1.

lim
n→∞

sup
log τ (e)s(n) log log n

log n
=

log 2
2

. (12)

Proof. We use the following general result given in [12]: Let F be a multiplicative
function with F (pa) = f(a) for every prime powers pa, where f is positive and
satisfying f(n) = O(nβ) for some fixed β > 0. then

lim
n→∞

sup
log F (n) log log n

log n
= sup

m

log f(m)
m

.

Take F (n) = τ (e)s(n), which is a multiplicative function, and

f(a) =
{

1, for a = 1
2, for a ≥ 2.

But f(n) = O(1) = O(n0), it follows that

lim
n→∞

sup
log τ (e)s(n) log log n

log n
= sup

m

log f(m)
m

= sup
m

log 2
m

=
ln 2
2

,

therefore, we obtain the result of the statement.

Theorem 2. ∑
n≤x

τ (e)s(n) =
15
π2

x + Ax
1
2 + O

(
x

1
3
+ε
)

, (13)

for every ε > 0, where A is a constant, and the Dirichlet series of τ (e)s(n) is

∞∑
n=1

τ (e)s(n)
nt

=
ζ(t)ζ(2t)

ζ(4t)
, for Ret > 1. (14)

Proof. L. Tóth in [15, Theorem, p. 2] proved the following general result:
Let f be a complex valued multiplicative arithmetic function such that

a) f(p) = f(p2) = ... = f(pl−1), f(pl) = f(pl+1) = k, for every prime p, where
l, k ≥ 2 are fixed integers and

b) there are constants C, m > 0, such that |f(pa)| ≤ Cam for every prime p
and every a ≥ l + 2.
Then, for t ∈ C,
i)

∞∑
n=1

f(n)
nt

= ζ(t) · ζk−1(lt) · V (t), for Ret > 1
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where the Dirichlet series V (t) =
∞∑

n=1

v(n)
nt

is absolutely convergent for Ret >

1
l + 2

, and v = f ∗ µ ∗ µ
(k−1)
l is a multiplicative function such that v(1) = 1,

v(p) = v(p2) = ... = v(pl+1) = 0 and

v(pa) =
∑

j≥0(−1)j

(
k − 1

j

)
(f(pa−jl)− f(pa−jl−1)) for a = kl.

ii) ∑
n≤x

f(n) = Cfx + x
1
l Pf,k−2(log x) + O(xuk,l+ε),

for every ε > 0, where Pf,k−2 is a polynomial of degree k−2, uk,l =
2k − 1

3 + (2k − 1)l
and

Cf :=
∏
p

(
1 +

∑
a=l

f(pa)− f(pa−1)
pa

)
,

where the arithmetical function µl is given by µl(1) = 1 and for n > 1, we have

µl(pa) =
{

−1, if a = l
0, otherwise

(15)

and for an integer h ≥ 1 let the function |mu
(h)
l be defined in terms of the Dirichlet

convolution by
µ

(h)
l = µl ∗ µl ∗ ... ∗ µl.

For the arithmetic function f(n) = τ (e)s(n), take l = 2 and k = 2, because
τ (e)s(p) = 1, τ (e)s(p2) = τ (e)s(p3) = 2, and for every a ≥ 2, we have

|τ (e)s(pa)| = 2 ≤ Cam,

where C and m are two constants. Therefore, the conditions from Tóth’s theorem
are satisfied, so it follows the relation∑

n≤x

τ (e)s(n) = Cfx + x
1
2 Pf,0(log x) + O(xu2,2+ε).

But Cf :=
∏
p

(
1 +

∑
a=l

f(pa)− f(pa−1)
pa

)
, so

Cf =
∏
p

(
1 +

∑
a=2

τ (e)s(pa)− τ (e)s(pa−1)
pa

)

=
∏
p

(
1 +

1
p2

+
∑
a=3

τ (e)s(pa)− τ (e)s(pa−1)
pa

)
=
∏
p

(
1 +

1
p2

)
=

ζ(2)
ζ(4)

=
15
π2

.
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We obtain that u2,2 = 1
3 , and Pf,0 is a constant, which is denoted by A. Therefore,

the proof of relation (14) is complete.
Let v(p) = v(p2) = v(p3) = 0 and

v(pa) =
∑
j≥0

(−1)j

(
1
j

)
(τ (e)s(pa−jl)− τ (e)s(pa−jl−1)) = τ (e)s(pa)− τ (e)s(pa−1)−

τ (e)s(pa−2) + τ (e)s(pa−3) = 0, if a ≥ 5, and for a = 4 we have v(p4) = −1.
Therefore, we obtain v(p4) = −1, and v(pa) = 0 for any a 6= 4. But the Dirich-

let series V (t) =
∞∑

n=1

v(n)
nt

is absolutely convergent for Ret >
1
4

and is equal to

∏
p prim

(
1− 1

p4t

)
=

1
ζ(4t)

, so V (t) =
1

ζ(4t)
, thus, relation (14) is true.

Theorem 3. For any integer r ≥ 1, there are the following relations:

∑
n=1

[τ (e)s(n)]r

nt
= ζ(t)ζ2r−1(2t)

[
2− 2r +

(2r − 1)
ζ(4t)

]
, for Ret > 1, (16)

and
∞∑

n=1

[τ (e)s(n)]r = Arx + x
1
2 Pf,2r−2(log x) + O(xur+ε), (17)

for every ε > 0, where Pf,2r−2 is a polynomial of degree 2r − 2, ur =
2r+1 − 1
2r+2 + 1

and

Ar :=
∏
p

(
1 +

2r − 1
p2

)
.

Proof. In case f(n) = [τ (e)s(n)]r, with r ≥ 1, we apply Tóth’s Theorem for
l = 2, k = 2r and we obtain the relations of statement.

We mention that a number n is an exponential semiproper perfect number if we
have

σ(e)s(n) = 2n.

If m is a squarefree number and n is an exponential semiproper perfect number
so that (m,n) = 1, then mn is exponential semiproper perfect, because

σ(e)s(m,n) = σ(e)s(m) · σ(e)s(n) = m · 2n = 2mn.

The first e-semiproper perfect numbers until 1000 are the following:

36, 180, 252, 396, 468, 612, 684, 684, 828.

There is an infinity of e-semiproper perfect numbers.
The number 9539712 = 26 · 32 · 72 · 132 is an e-unitary perfect number, but it is
not e-semiproper perfect.
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Theorem 4. There are no odd e-semiproper perfect numbers.

Proof. It is similar to [5, Theorem 6]. Suppose that n = pa1
1 ...par

r is an odd
e-semiproper perfect number, so we have

σ(e)s(pa1
1 )...σ(e)s(par

r ) = 2pa1
1 ...par

r . (18)

We can assume that ai ≥ 2, for any i ∈ {1, ..., r}, because if ai = 1 for an i, then
σ(e)s(pi) = pi and we can simplify with pi in relation (17), so relation (17) becomes
(pa1

1 + p1)...(par
r + pr) = 2pa1

1 ...par
r . Therefore, we have (pa1−1

1 + 1)...(par−1
r + 1) =

2pa1−1
1 ...par−1

r , which means that r = 1. Consequently, we deduce the relation

pa1−1
1 + 1 = 2pa1−1

1 ,

which implies a1 = 1, which is a contradiction. Thus, the demonstration ends.

Remark 1. The number n is an e-semiproper perfect number if and only if
n

γ(n)
is a unitary perfect number.

Theorem 5.

lim
n→∞

inf
σ(e)s(σ(n))

n
= 1, (19)

where τ(n) is the number of the divisors of n and σ(n) is the sum of the divisors
of n.

Proof. Since n ≤ σ(e)s(n) ≤ σ(n) for any n ≥ 1, we apply Theorem 5 form [7].

Theorem 6. For every n ≥ 1, there is the following:

τ(n) ≤
√

nγ(n) ≤ σ(e)s(n)
τ (e)s(n)

. (20)

Proof. For n = 1 we have τ(1) = 1 =
√

1γ(1) = 1 = σ(e)s(1)

τ (e)s(1)
.

For n = p1p2...pup
au+1

u+1 ...par
r > 1, we deduce the inequality

p1p2...pup
au+1+1

2
u+1 ...p

ar+1
2

r ≤ p1p2...pu

r∏
j=u+1

(
p

aj

j + pj

2

)
=

=
1

2r−u
p1p2...pu

r∏
j=u+1

(paj

j + pj) =
σ(e)s(n)
τ (e)s(n)

.

But, we have the equality p1p2...pup
au+1+1

2
u+1 ...p

ar+1
2

r =
√

nγ(n). Therefore, we
obtain the inequality

√
nγ ≤ σ(e)s(n)

τ (e)s(n)
.
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We show first that √
paγ(pa) ≥ τ(pa),

so p
a+1
2 ≥ a + 1, which is true, because p

a+1
2 ≥ 2

a+1
2 ≥ a + 1, for any a ≥ 1.

Using the fact that the arithmetical function τ and γ are multiplicative, it follows
that √

nγ(n) ≥ τ(n), for any n ≥ 1.

Thus, the demonstration is complete.

Remark 2. By simple calculation it is easy to see that

n + γ(n)
2

≥ σ(e)s(n)
τ (e)s(n)

≥ σ∗(n)
τ∗(n)

≥ σ(n)
τ(n)

≥
√

n, for any n ≥ 1. (21)
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