A NEW CLASS OF DIVISORS: THE EXPONENTIAL SEMIPROPER DIVISORS

Nicuşor MINCULETE ${ }^{1}$

Abstract

The aim of this paper is to present the notion of exponential semiproper divisor and to study some properties of arithmetical functions which use exponential semiproper divisors. We also investigate the maximal order and the minimal order of these arithmetical functions.

2000 Mathematics Subject Classification: 11A25, 11N37.
Key words: e-semiproper divisor, exponential divisor, the sum of the esemiproper divisors of n, the number of the e-semiproper divisor, e-semiproper perfect

1 Introduction

First we enumerate several types of divisors found in some papers on Number Theory.

In [17] R. Vaidyanathaswamy introduced the notion of block-factor in the following way: a divisor d of n is a block-factor when $\left(d, \frac{n}{d}\right)=1$. Later, E. Cohen [1] introduced the current terminology for a block-factor, namely, the unitary divisor. In 1966, M. V. Subbarao and L. J. Warren [11] introduced the unitary perfect numbers satisfying $\sigma^{*}(n)=2 n$, where $\sigma^{*}(n)$ denotes the sum of the unitary divisors of n. Let $\tau^{*}(n)$ denote the number of unitary divisors of n, which is, in fact, the number of the squarefree divisors of n.
F. Mertens, in [4], proved the relation

$$
\begin{equation*}
\sum_{n \leq x} \tau^{*}(n)=\frac{x}{\zeta(2)}\left(\log x+2 \gamma-1-\frac{2 \zeta^{\prime}(2)}{\zeta(2)}\right)+S_{2}(x), \text { where } S_{2}(x)=O\left(x^{\frac{1}{2}} \log x\right) \tag{1}
\end{equation*}
$$

A. A. Gioia and A. M. Vaidya [2] showed that $S_{2}(x)=O\left(x^{\frac{1}{2}}\right)$.
R. Sitaramachandrarao and D. Suryanarayana [9] found the following result:

$$
\begin{equation*}
\sum_{n \leq x} \sigma^{*}(n)=\frac{\pi^{2} x^{2}}{12 \zeta(3)}+O\left(x \log ^{\frac{2}{3}} x\right) . \tag{2}
\end{equation*}
$$

[^0]We recall that the notion of exponential divisor was introduced by M. V. Subbarao in [10] in the following way: d is said to be an exponential divisor (or e-divisor) of $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}>1$, if $d=p_{1}^{b_{1}} \ldots p_{r}^{b_{r}}$, where $b_{i} \mid a_{i}$ for any $1 \leq i \leq r$. A series of results related to the exponential divisors are given in more papers: [3,8,13,14].
N. Minculete and L. Tóth in [5] presented some properties of the arithmetical functions which use exponential unitary divisors or e-unitary divisors of $n=$ $p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}>1$, if $d=p_{1}^{b_{1}} \ldots p_{r}^{b_{r}}$, where b_{i} is a unitary divisor of a_{i}, so $\left(b_{i}, \frac{a_{i}}{b_{i}}\right)=1$, for any $1 \leq i \leq r$.

2 Main result

We now introduce a new class of divisors. Let n be a positive integer, such that $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}>1$ and the arithmetical function $\gamma(n)=p_{1} p_{2} \ldots p_{r}$, which is called the "core" of n.

A divisor d of n, so that $\gamma(d)=\gamma(n)$ and $\left(\frac{d}{\gamma(n)}, \frac{n}{d}\right)=1$ will be called an exponential semiproper divisor or an e-semiproper divisor of n.
As an example, we consider the number $n=2^{6} \cdot 3^{4}$; then the e-semiproper divisors of n are the following:

$$
2 \cdot 3,2^{6} \cdot 3,2 \cdot 3^{4}, 2^{6} \cdot 3^{4}
$$

Let $\tau^{(e) s}(n)$ denote the number of the e-semiproper divisors of n, and $\sigma^{(e) s}(n)$ denote the sum of the e-semiproper divisors of n. We note $\left.d\right|_{(e) s} n$. By convention, 1 is an exponential semiproper divisor of itself, so that $\sigma^{(e) s}(1)=\tau^{(e) s}(1)=1$. We notice that 1 is not an e-semiproper divisor of $n>1$, the smallest e-semiproper divisor of n is $\gamma(n)$ and the greatest e-semiproper divisor is n.

Any e-semiproper divisor d of n is written as $d=\gamma(n) \cdot d^{\prime}$, where d^{\prime} is a unitary divisor of $\frac{n}{\gamma(n)}$. Therefore, the number of the e-semiproper divisors of n is $\tau^{*}\left(\frac{n}{\gamma(n)}\right)$ and the sum of the e-semiproper divisors of n is $\gamma(n) \cdot \sigma^{*}\left(\frac{n}{\gamma(n)}\right)$, so we have the following relations:

$$
\begin{equation*}
\tau^{(e) s}(n)=\tau^{*}\left(\frac{n}{\gamma(n)}\right), \sigma^{(e) s}(n)=\gamma(n) \cdot \sigma^{*}\left(\frac{n}{\gamma(n)}\right) . \tag{3}
\end{equation*}
$$

We observe that if the integer $d=p_{1}^{b_{1}} \ldots p_{r}^{b_{r}}$ is an exponential semiproper divisor of $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}>1$, then $b_{i} \in\left\{1, a_{i}\right\}$, for any $1 \leq i \leq r$. Among the divisors of n defined in this way there is the improper divisor n and the others (if there are) are the proper divisors of n. This creates a connection between the exponents as the improper divisors and the proper divisors of n chosen from the exponential divisors of n, suggesting a hybrid concept, namely, the exponential semiproper divisor. Hence, according to the things mentioned above, we have

$$
\tau^{(e) s}\left(p^{a}\right)=\left\{\begin{array}{l}
1, \text { for } a=1 \tag{4}\\
2, \text { for } a \geq 2
\end{array}\right.
$$

so, p is an e-semiproper divisor of p, and e-semiproper divisors of $p^{a}(a \geq 2)$ are p and p^{a}, which means that

$$
\sigma^{(e) s}\left(p^{a}\right)=\left\{\begin{array}{c}
p, \text { for } a=1 \tag{5}\\
p^{a}+p, \text { for } a \geq 2 .
\end{array}\right.
$$

We remark also that the e-semiproper divisors of n are among the e-unitary divisors of n and the e-unitary divisors of n are among the e-divisors of n, so it is easy to see that

$$
\begin{equation*}
\tau^{(e) s}(n) \leq \tau^{(e) *}(n) \leq \tau^{(e)}(n) \text { and } \sigma^{(e) s}(n) \leq \sigma^{(e) *}(n) \leq \sigma^{(e)}(n) \tag{6}
\end{equation*}
$$

where $\tau^{(e)}$ is the number of exponential divisors of $n, \sigma^{(e)}$ is the sum of exponential divisors of $n, \tau^{(e) *}$ is the number of exponential unitary divisors of n and $\sigma^{(e) *}$ is the sum of exponential unitary divisors of n. It is obvious that the arithmetical functions $\tau^{(e) s}$ and $\sigma^{(e) s}$ are multiplicative and we have

$$
\begin{equation*}
\tau^{(e) s}(n)=2^{t}, \sigma^{(e) s}(n)=p_{1} \ldots p_{u} \prod_{i=u+1}^{r}\left(p_{i}^{a_{i}}+p_{i}\right) \tag{7}
\end{equation*}
$$

 so, t is the number of the exponents in the prime factorization of n which are ≥ 2.

If n is square-free, then $\tau^{(e) s}(n)=1$ and $\sigma^{(e) s}(n)=n$.
Similar to the exponential unitary convolution, we introduce the exponential semiproper convolution (e-semiproper convolution) of arithmetical functions, which is defined by

$$
\begin{equation*}
(f *(e) s g)(n)=\sum_{\substack{b_{1} c_{1}=a_{1} \\ b_{1}, c_{1} \in\left\{1, a_{1}\right\}}} \ldots \sum_{\substack{b_{r} c_{r}=a_{r} \\ b_{r}, c_{r} \in\left\{1, a_{r}\right\}}} f\left(p_{1}^{b_{1}} \ldots p_{r}^{b_{r}}\right) g\left(p_{1}^{c_{1}} \ldots p_{r}^{c_{r}}\right) \tag{8}
\end{equation*}
$$

The e-semiproper convolution is commutative, associative and has the identity element $\bar{\mu}$, where $\bar{\mu}(1)=1$ and

$$
\bar{\mu}\left(p^{a}\right)=\left\{\begin{array}{l}
1, \text { for } a=1 \tag{9}\\
0, \text { for } a \geq 2
\end{array}\right.
$$

It easy to see that that $\bar{\mu}$ is a multiplicative function. Furthermore, a function f has an inverse with respect to the e-semiproper convolution iff $f(1) \neq 0$ and $f\left(p_{1} \ldots p_{k}\right) \neq 0$, for any distinct primes p_{1}, \ldots, p_{k}.

The inverse with respect to the e-semiproper convolution of the constant 1 function is denoted by μ_{s}. The arithmetical function μ_{s} is given by $\mu_{s}(1)=1$ and for $n>1$, we have

$$
\mu_{s}\left(p^{a}\right)=\left\{\begin{array}{c}
1, \text { for } a=1 \tag{10}\\
-1, \text { for } a \geq 2
\end{array}\right.
$$

Hence, we obtain the identity

$$
\begin{equation*}
\mu_{s}{ }_{(e) s} \mu_{s}=\mu_{s} \cdot \tau^{(e) s} . \tag{11}
\end{equation*}
$$

In [6], we meet the regular convolutions of Narkiewicz-type, and here we observe that the e-semiproper convolution is a special case of these.

For the maximal order of the function $\tau^{(e) s}$, we have
Theorem 1.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{\log \tau^{(e) s}(n) \log \log n}{\log n}=\frac{\log 2}{2} \tag{12}
\end{equation*}
$$

Proof. We use the following general result given in [12]: Let F be a multiplicative function with $F\left(p^{a}\right)=f(a)$ for every prime powers p^{a}, where f is positive and satisfying $f(n)=O\left(n^{\beta}\right)$ for some fixed $\beta>0$. then

$$
\lim _{n \rightarrow \infty} \sup \frac{\log F(n) \log \log n}{\log n}=\sup _{m} \frac{\log f(m)}{m} .
$$

Take $F(n)=\tau^{(e) s}(n)$, which is a multiplicative function, and

$$
f(a)=\left\{\begin{array}{l}
1, \text { for } a=1 \\
2, \text { for } a \geq 2
\end{array}\right.
$$

But $f(n)=O(1)=O\left(n^{0}\right)$, it follows that

$$
\lim _{n \rightarrow \infty} \sup \frac{\log \tau^{(e) s}(n) \log \log n}{\log n}=\sup _{m} \frac{\log f(m)}{m}=\sup _{m} \frac{\log 2}{m}=\frac{\ln 2}{2},
$$

therefore, we obtain the result of the statement.

Theorem 2.

$$
\begin{equation*}
\sum_{n \leq x} \tau^{(e) s}(n)=\frac{15}{\pi^{2}} x+A x^{\frac{1}{2}}+O\left(x^{\frac{1}{3}+\epsilon}\right) \tag{13}
\end{equation*}
$$

for every $\epsilon>0$, where A is a constant, and the Dirichlet series of $\tau^{(e) s}(n)$ is

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\tau^{(e) s}(n)}{n^{t}}=\frac{\zeta(t) \zeta(2 t)}{\zeta(4 t)}, \text { for } \operatorname{Re} t>1 \tag{14}
\end{equation*}
$$

Proof. L. Tóth in [15, Theorem, p. 2] proved the following general result:
Let f be a complex valued multiplicative arithmetic function such that
a) $f(p)=f\left(p^{2}\right)=\ldots=f\left(p^{l-1}\right), f\left(p^{l}\right)=f\left(p^{l+1}\right)=k$, for every prime p, where $l, k \geq 2$ are fixed integers and
b) there are constants $C, m>0$, such that $\left|f\left(p^{a}\right)\right| \leq C a^{m}$ for every prime p and every $a \geq l+2$.
Then, for $t \in \mathbb{C}$,
i)

$$
\sum_{n=1}^{\infty} \frac{f(n)}{n^{t}}=\zeta(t) \cdot \zeta^{k-1}(l t) \cdot V(t), \text { for } \operatorname{Re} t>1
$$

where the Dirichlet series $V(t)=\sum_{n=1}^{\infty} \frac{v(n)}{n^{t}}$ is absolutely convergent for Ret $>$ $\frac{1}{l+2}$, and $v=f * \mu * \mu_{l}^{(k-1)}$ is a multiplicative function such that $v(1)=1$, $v(p)=v\left(p^{2}\right)=\ldots=v\left(p^{l+1}\right)=0$ and $v\left(p^{a}\right)=\sum_{j \geq 0}(-1)^{j}\binom{k-1}{j}\left(f\left(p^{a-j l}\right)-f\left(p^{a-j l-1}\right)\right)$ for $a=k l$.
ii)

$$
\sum_{n \leq x} f(n)=C_{f} x+x^{\frac{1}{l}} P_{f, k-2}(\log x)+O\left(x^{u_{k, l}+\epsilon}\right)
$$

for every $\epsilon>0$, where $P_{f, k-2}$ is a polynomial of degree $k-2, u_{k, l}=\frac{2 k-1}{3+(2 k-1) l}$ and

$$
C_{f}:=\prod_{p}\left(1+\sum_{a=l} \frac{f\left(p^{a}\right)-f\left(p^{a-1}\right)}{p^{a}}\right)
$$

where the arithmetical function μ_{l} is given by $\mu_{l}(1)=1$ and for $n>1$, we have

$$
\mu_{l}\left(p^{a}\right)=\left\{\begin{array}{cc}
-1, & \text { if } a=l \tag{15}\\
0, & \text { otherwise }
\end{array}\right.
$$

and for an integer $h \geq 1$ let the function $\mid m u_{l}^{(h)}$ be defined in terms of the Dirichlet convolution by

$$
\mu_{l}^{(h)}=\mu_{l} * \mu_{l} * \ldots * \mu_{l} .
$$

For the arithmetic function $f(n)=\tau^{(e) s}(n)$, take $l=2$ and $k=2$, because $\tau^{(e) s}(p)=1, \tau^{(e) s}\left(p^{2}\right)=\tau^{(e) s}\left(p^{3}\right)=2$, and for every $a \geq 2$, we have

$$
\left|\tau^{(e) s}\left(p^{a}\right)\right|=2 \leq C a^{m}
$$

where C and m are two constants. Therefore, the conditions from Tóth's theorem are satisfied, so it follows the relation

$$
\begin{gathered}
\sum_{n \leq x} \tau^{(e) s}(n)=C_{f} x+x^{\frac{1}{2}} P_{f, 0}(\log x)+O\left(x^{u_{2,2}+\epsilon}\right) \\
\text { But } C_{f}:=\prod_{p}\left(1+\sum_{a=l} \frac{f\left(p^{a}\right)-f\left(p^{a-1}\right)}{p^{a}}\right) \text {, so } \\
C_{f}=\prod_{p}\left(1+\sum_{a=2} \frac{\tau^{(e) s}\left(p^{a}\right)-\tau^{(e) s}\left(p^{a-1}\right)}{p^{a}}\right) \\
=\prod_{p}\left(1+\frac{1}{p^{2}}+\sum_{a=3} \frac{\tau^{(e) s}\left(p^{a}\right)-\tau^{(e) s}\left(p^{a-1}\right)}{p^{a}}\right)=\prod_{p}\left(1+\frac{1}{p^{2}}\right)=\frac{\zeta(2)}{\zeta(4)}=\frac{15}{\pi^{2}} .
\end{gathered}
$$

We obtain that $u_{2,2}=\frac{1}{3}$, and $P_{f, 0}$ is a constant, which is denoted by A. Therefore, the proof of relation (14) is complete.
Let $v(p)=v\left(p^{2}\right)=v\left(p^{3}\right)=0$ and
$v\left(p^{a}\right)=\sum_{j \geq 0}(-1)^{j}\binom{1}{j}\left(\tau^{(e) s}\left(p^{a-j l}\right)-\tau^{(e) s}\left(p^{a-j l-1}\right)\right)=\tau^{(e) s}\left(p^{a}\right)-\tau^{(e) s}\left(p^{a-1}\right)-$ $\tau^{(e) s}\left(p^{a-2}\right)+\tau^{(e) s}\left(p^{a-3}\right)=0$, if $a \geq 5$, and for $a=4$ we have $v\left(p^{4}\right)=-1$. Therefore, we obtain $v\left(p^{4}\right)=-1$, and $v\left(p^{a}\right)=0$ for any $a \neq 4$. But the Dirichlet series $V(t)=\sum_{n=1}^{\infty} \frac{v(n)}{n^{t}}$ is absolutely convergent for Ret $>\frac{1}{4}$ and is equal to $\prod_{p \text { prim }}\left(1-\frac{1}{p^{4 t}}\right)=\frac{1}{\zeta(4 t)}$, so $V(t)=\frac{1}{\zeta(4 t)}$, thus, relation (14) is true.

Theorem 3. For any integer $r \geq 1$, there are the following relations:

$$
\begin{equation*}
\sum_{n=1} \frac{\left[\tau^{(e) s}(n)\right]^{r}}{n^{t}}=\zeta(t) \zeta^{2^{r}-1}(2 t)\left[2-2^{r}+\frac{\left(2^{r}-1\right)}{\zeta(4 t)}\right], \text { for } \operatorname{Re} t>1 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[\tau^{(e) s}(n)\right]^{r}=A_{r} x+x^{\frac{1}{2}} P_{f, 2^{r}-2}(\log x)+O\left(x^{u_{r}+\epsilon}\right) \tag{17}
\end{equation*}
$$

for every $\epsilon>0$, where $P_{f, 2^{r}-2}$ is a polynomial of degree $2^{r}-2, u_{r}=\frac{2^{r+1}-1}{2^{r+2}+1}$ and

$$
A_{r}:=\prod_{p}\left(1+\frac{2^{r}-1}{p^{2}}\right)
$$

Proof. In case $f(n)=\left[\tau^{(e) s}(n)\right]^{r}$, with $r \geq 1$, we apply Tóth's Theorem for $l=2, k=2^{r}$ and we obtain the relations of statement.

We mention that a number n is an exponential semiproper perfect number if we have

$$
\sigma^{(e) s}(n)=2 n
$$

If m is a squarefree number and n is an exponential semiproper perfect number so that $(m, n)=1$, then $m n$ is exponential semiproper perfect, because

$$
\sigma^{(e) s}(m, n)=\sigma^{(e) s}(m) \cdot \sigma^{(e) s}(n)=m \cdot 2 n=2 m n
$$

The first e-semiproper perfect numbers until 1000 are the following:

$$
36,180,252,396,468,612,684,684,828
$$

There is an infinity of e-semiproper perfect numbers.
The number $9539712=2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}$ is an e-unitary perfect number, but it is not e-semiproper perfect.

Theorem 4. There are no odd e-semiproper perfect numbers.
Proof. It is similar to [5, Theorem 6]. Suppose that $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$ is an odd e-semiproper perfect number, so we have

$$
\begin{equation*}
\sigma^{(e) s}\left(p_{1}^{a_{1}}\right) \ldots \sigma^{(e) s}\left(p_{r}^{a_{r}}\right)=2 p_{1}^{a_{1}} \ldots p_{r}^{a_{r}} \tag{18}
\end{equation*}
$$

We can assume that $a_{i} \geq 2$, for any $i \in\{1, \ldots, r\}$, because if $a_{i}=1$ for an i, then $\sigma^{(e) s}\left(p_{i}\right)=p_{i}$ and we can simplify with p_{i} in relation (17), so relation (17) becomes $\left(p_{1}^{a_{1}}+p_{1}\right) \ldots\left(p_{r}^{a_{r}}+p_{r}\right)=2 p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$. Therefore, we have $\left(p_{1}^{a_{1}-1}+1\right) \ldots\left(p_{r}^{a_{r}-1}+1\right)=$ $2 p_{1}^{a_{1}-1} \ldots p_{r}^{a_{r}-1}$, which means that $r=1$. Consequently, we deduce the relation

$$
p_{1}^{a_{1}-1}+1=2 p_{1}^{a_{1}-1},
$$

which implies $a_{1}=1$, which is a contradiction. Thus, the demonstration ends.

Remark 1. The number n is an e-semiproper perfect number if and only if $\frac{n}{\gamma(n)}$ is a unitary perfect number.

Theorem 5.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \frac{\sigma^{(e) s}(\sigma(n))}{n}=1, \tag{19}
\end{equation*}
$$

where $\tau(n)$ is the number of the divisors of n and $\sigma(n)$ is the sum of the divisors of n.

Proof. Since $n \leq \sigma^{(e) s}(n) \leq \sigma(n)$ for any $n \geq 1$, we apply Theorem 5 form [7].

Theorem 6. For every $n \geq 1$, there is the following:

$$
\begin{equation*}
\tau(n) \leq \sqrt{n \gamma(n)} \leq \frac{\sigma^{(e) s}(n)}{\tau^{(e) s}(n)} \tag{20}
\end{equation*}
$$

Proof. For $n=1$ we have $\tau(1)=1=\sqrt{1 \gamma(1)}=1=\frac{\sigma^{(e) s}(1)}{\tau^{(e s}(1)}$.
For $n=p_{1} p_{2} \ldots p_{u} p_{u+1}^{a_{u+1}} \ldots p_{r}^{a_{r}}>1$, we deduce the inequality

$$
\begin{gathered}
p_{1} p_{2} \ldots p_{u} p_{u+1}^{\frac{a_{u+1}+1}{2}} \ldots p_{r}^{\frac{a_{r+1}}{2}} \leq p_{1} p_{2} \ldots p_{u} \prod_{j=u+1}^{r}\left(\frac{p_{j}^{a_{j}}+p_{j}}{2}\right)= \\
=\frac{1}{2^{r-u}} p_{1} p_{2} \ldots p_{u} \prod_{j=u+1}^{r}\left(p_{j}^{a_{j}}+p_{j}\right)=\frac{\sigma^{(e) s}(n)}{\tau^{(e) s}(n)} .
\end{gathered}
$$

But, we have the equality $p_{1} p_{2} \ldots p_{u} p_{u+1}^{\frac{a_{u+1}+1}{2}} \ldots p_{r}^{\frac{a_{r}+1}{2}}=\sqrt{n \gamma(n)}$. Therefore, we obtain the inequality

$$
\sqrt{n \gamma} \leq \frac{\sigma^{(e) s}(n)}{\tau^{(e) s}(n)}
$$

We show first that

$$
\sqrt{p^{a} \gamma\left(p^{a}\right)} \geq \tau\left(p^{a}\right)
$$

so $p^{\frac{a+1}{2}} \geq a+1$, which is true, because $p^{\frac{a+1}{2}} \geq 2^{\frac{a+1}{2}} \geq a+1$, for any $a \geq 1$.
Using the fact that the arithmetical function τ and γ are multiplicative, it follows that

$$
\sqrt{n \gamma(n)} \geq \tau(n), \text { for any } n \geq 1
$$

Thus, the demonstration is complete.

Remark 2. By simple calculation it is easy to see that

$$
\begin{equation*}
\frac{n+\gamma(n)}{2} \geq \frac{\sigma^{(e) s}(n)}{\tau^{(e) s}(n)} \geq \frac{\sigma^{*}(n)}{\tau^{*}(n)} \geq \frac{\sigma(n)}{\tau(n)} \geq \sqrt{n}, \text { for any } n \geq 1 \tag{21}
\end{equation*}
$$

Acknowledgements I would like to thank the anonymous reviewer for providing valuable comments to improve the manuscript.

References

[1] Cohen,E., Arithmetical functions associated with the unitary divisors of an integer, Math. Z. 74 (1960), 66-80.
[2] Gioia, A. A. and Vaidya, A. M., The number of squarefree divisors of an integer, Duke Math. J. 33 (1966), 797-799.
[3] Fabrykowski, J. and Subbarao, M. V., The maximal order and the average order of multiplicative function $\sigma^{(e)}(n)$, Théorie des Nombres (Quebec, PQ, 1987), 201-206, de Gruyter, Berlin-New York, 1989.
[4] Mertens, F., Über einige asymptotische Gesetze der Zahlentheorie, Crelle's Journal 77 (1874), 289-338.
[5] Minculete, N. and Tóth, L., Exponential unitary divisors, Annales Univ. Sci. Budapest., Sect. Comp., 22 (2011), 205-216.
[6] Narkiewicz, W., On a class of arithmetical convolutions, Colloq. Math., 10 (1963), 81-94.
[7] Sándor and J., Tóth, L., Extremal orders of compositions of certain arithmetical functions, Electronic Journal of Combinatorial Number Theory 8 (2008).
[8] Straus, E. G. and Subbarao, M. V., On exponential divisors, Duke Math. J. 41 (1974), 465-471.
[9] Sitaramachandrarao, R. and Suryanarayana, D., On $\sum_{n \leq x} \sigma^{*}(n)$ and $\sum_{n \leq x} \varphi^{*}(n)$, Proc. Amer. Math. Soc. 41 (1973), 61-66.
[10] Subbarao, M. V., On some arithmetic convolutions in The Theory of Arithmetic Functions, Lecture Notes in Mathematics, New York, Springer-Verlag, 1972.
[11] Subbarao, M. V. and Warren, L. J., Unitary perfect numbers, Canad. Math. Bull. 9 (1966), 147-153.
[12] Suryanarayana, D. and Sita Rama Chandra Rao, R., On the true maximum order of a class of arithmetical functions, Math. J. Okayama Univ., 17 (1975), 95-101.
[13] Tóth, L., On certain arithmetic functions involving exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp. 24 (2004), 285-294.
[14] Tóth, L., On certain arithmetic functions involving exponential divisors, II, Annales Univ. Sci. Budapest., Sect. Comp. 27 (2007), 155-166.
[15] Tóth, L. An order result for the exponential divisors function, Publ. Math. Debrecen, 71 (2007), no. 1-2, 165-171.
[16] Tóth, L. and Wirsing,E., The maximal order of a class of multiplicative arithmetical functions, Annales Univ. Sci. Budapest., Sect. Comp., 22 (2003), 353-364.
[17] Vaidyanathaswamy, R., The theory of multiplicative arithmetic functions, Trans. Amer. Math. Soc. 33 (1931), 579-662.

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: minculeten@yahoo.com

