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AN ASYMPTOTIC FORMULA FOR THE
SEMIMARTINGALE LOCAL TIME OF REFLECTING
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Abstract

We derive an asymptotic formula for the expected value of the difference
of the semimartingale local times of the 1-dimensional reflecting Brownian
motion on [−1, 1] at the two ends of the interval.

As an application we derive the classical probabilistic representation of
the solution of the Neumann problem for the Laplace operator in the 1-
dimensional case.
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1 Introduction

The local time at the boundary of a stochastic process is an important object
of study in the theory of stochastic processes, in particular for the theory and the
applications of stochastic differential equations with reflection (see for example
[5]). In the simplest 1-dimensional case, the celebrated Tanaka formula (2) gives
at the same time a construction of the reflecting Brownian motion on [0,∞) and
of the local time at the boundary, which can be identified with another remarkable
process, namely (twice) the semimartingale local time at the origin. As it is known,
this process is nondecreasing and unbounded, so this case is not really interesting.
However, if we consider the reflecting Brownian motion X on the interval [−1, 1]
(by Brownian scaling we can reduce the problem of a general bounded interval to
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this case), then the local time at the boundary is related to the semimartingale
local time at the two ends at the interval: L−1

t (X) and L1−
t (X) (in Proposition 1

we show that in fact it is their sum). Since limt→∞ L1−
t (X) = limt→∞ L−1

t (X) =
∞ a.s., we can ask what is the asymptotic behavior of the expected value of their
difference, that is we can try to find (if it exists) the value of the following limit

lim
t→∞

Ex
(
L1−

t (X)− L−1
t (X)

)
. (1)

In the present paper we show that the above limit exists, and it is equal to 2x,
twice the starting position of the process X. As an application of this asymptotic
behavior, we derive a new proof of a probabilistic representation of the solution
of the Neumann problem for the Laplace operator in the 1-dimensional case (for
the general result see [2], [3] and [4]).

The structure of the paper is the following. In Section 2 we introduce the
definitions and the main properties of the semimartingale local time and the local
time at the boundary of a continuous semimartingale. In Proposition 1 we give a
connection between these two notions of local time, which is needed in the sequel.

The main result is given in Theorem 3 (Section 3), and it shows that the limit
in (1) exists and equals 2x, for all x ∈ [−1, 1]. The proof uses standard stochastic
calculus arguments (e.g. Doob’s optional stopping theorem) and the properties of
the local time.

As an application of Theorem 3, in Section 4 we derive a new proof of the prob-
abilistic representation of the solution of the Neumann problem for the Laplace
operator in the 1-dimensional case (this result appears in [3] in the case of smooth
C3 domains, and in [2] in the more general case of Lipschitz domains).

2 Semimartingale local time

The semimartingale local time at a ∈ R for a continuous 1-dimensional semi-
martingale (Xt)t≥0 can be defined by means of the Tanaka formula (see for exam-
ple Theorem 1.2 in [6], Ch. VI), as the unique continuous non-decreasing process
satisfying

|Xt − a| = |X0 − a|+
∫ t

0
sgn (Xs − a) dXs + La

t (X) , (2)

(Xt − a)+ = (X0 − a)+ +
∫ t

0
1{Xs>a}dXs +

1
2
La

t (X) , (3)

and

(Xt − a)− = (X0 − a)− −
∫ t

0
1{Xs≤a}dXs +

1
2
La

t (X) , (4)

for all t ≥ 0, where sgn (x) = 1(0,∞) (x)− 1(−∞,0] (x), x ∈ R.
Equivalently (Corollary 1.9, [6] in Ch. VI) , the local time can be defined by

the following formulae, which give rise to the name “local time”:

La
t (X) = lim

ε↘0

1
ε

∫ t

0
1[a,a+ε) (Xs) d〈X〉s, (5)
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if X is a continuous semimartingale, and

La
t (M) = lim

ε↘0

1
2ε

∫ t

0
1(a−ε,a+ε) (Ms) d〈M〉s, (6)

if M is a continuous local martingale. As a consequence, it can be shown (Exercise
1.17 in [6], Ch. VI) that for a continuous semimartingale X we have

La−
t (X) = L−a

t (−X) , t ≥ 0, a ∈ R, (7)

where La−
t (X) = limα↗a Lα

t (X) denotes the left limit of the local time of X at
a.

It is known (Proposition 1.3 in [6], Ch. VI) that the support of the measure
dLa

t (X) is precisely the set {t ≥ 0 : Xt = a}, so in particular we have∫ ∞

0
1R−{a} (Xs) dLa

s (X) = 0.

It is also known (Theorem 1.7 in [6], Ch. VI) that there exists a modification of
the process {La

t : t ≥ 0, a ∈ R} which is continuous in t and cadlag in a, which we
are going to work with in the sequel. Moreover, if X = M+V is the decomposition
of the continuous semimartingale X into the martingale part M and the bounded
variation part V , then

La
t (X)− La−

t (X) = 2
∫ t

0
1{Xs=a}dVs = 2

∫ t

0
1{Xs=a}dXs, t ≥ 0, a ∈ R.

(8)
The reflecting Brownian motion X on [−1, 1] can be defined as the strong

solution of the stochastic differential equation

Xt = X0 + Bt +
1
2

∫ t

0
ν (Xs) dLs, t ≥ 0, (9)

where (Bt)t≥0 is a given 1-dimensional Brownian motion starting at the origin,
(Lt)t≥0 is the local time of X at the boundary of [−1, 1], and ν is the inner unit
normal to the boundary of [−1, 1], that is ν (−1) = 1 and ν (1) = −1. We draw
attention to the normalization factor 1

2 which appears in the above stochastic
differential equation, since some authors do not use it, and therefore subsequent
formulae differ by a factor of 2.

Note that for the reflecting Brownian motion X on [−1, 1], we have two notions
of local time: one is the local time (Lt)t≥0 of X at the boundary of [−1, 1], and
the other one is the semimartingale local time (La

t )t≥0 at a point a ∈ [−1, 1]. For
further use, we prove the following connection between them.

Proposition 1. If X is the reflecting Brownian motion on [−1, 1], and (Lt)t≥0,
(La

t (X))t≥0 are the local time of X at the boundary of [−1, 1], respectively the
semimartingale local time of X at a, then for any t ≥ 0 we have

Lt = L−1
t (X) + L1−

t (X) . (10)
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Proof. Applying Tanaka formula (3) with a = −1 to X, we get

(Xt + 1)+ = (x + 1)+ +
∫ t

0
1{Xs>−1} (Xs) dXs +

1
2
L−1

t (X) ,

and since Xt ∈ [−1, 1] for any t ≥ 0, we obtain equivalent

Xt = x +
∫ t

0
1{Xs>−1}dXs +

1
2
L−1

t (X)

= x +
∫ t

0
1− 1{Xs=−1}dXs +

1
2
L−1

t (X)

= x + Xt −X0 −
∫ t

0
1{Xs=−1}dXs +

1
2
L−1

t (X) ,

which shows that
1
2
L−1

t (X) =
∫ t

0
1{Xs=−1}dXs (11)

=
∫ t

0
1{Xs=−1}dBs +

1
2

∫ t

0
1{Xs=−1}dLs

=
1
2

∫ t

0
1{Xs=−1}dLs

(the stochastic integral in the last equality above is identically zero since it is a
local martingale with quadratic variation process

∫ t
0 1{Xs=−1}d〈B〉s

=
∫ t
0 1{Xs=−1}d〈X〉s =

∫∞
−∞ 1{a=−1}L

a
t da = 0 by the occupation time formula).

Similarly, applying Tanaka formula (3) with a = −1 to −X we get

(−Xt + 1)+ = (−x + 1)+ +
∫ t

0
1{−Xs>−1}d (−Xs) +

1
2
L−1

t (−X) ,

from which we obtain
1
2
L−1

t (−X) = −
∫ t

0
1{Xs=1}dXs (12)

= −
∫ t

0
1{Xs=1}dBs −

1
2

∫ t

0
1{Xs=1}ν (Xs) dLs

= −1
2

∫ t

0
1{Xs=1}ν (1) dLs

=
1
2

∫ t

0
1{Xs=1}dLs.

Adding relations (11) and (12) we obtain

L−1
t (X) + L1−

t (X) = L−1
t (X) + L−1

t (−X)

=
∫ t

0
1{Xs=−1} + 1{Xs=−1}dLs

=
∫ t

0
1{Xs=±1}dLs

= Lt,
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since the support of the measure dLt is the set {t ≥ 0 : Xt ∈ ∂ [−1, 1] = {±1}}.

Remark 2. An alternate proof of the above proposition can be obtained by using
relations (8) with a = ±1 (Theorem 1.6 in [6], Ch. VI), and the fact that for the
reflecting Brownian X motion on [−1, 1] we have L

(−1)−
t (X) = L1

t (X) = 0, since
Xt ∈ [−1, 1] for all t ≥ 0.

3 An asymptotic formula for the semimartingale local
time of Brownian motion

The main result is the following.

Theorem 3. If (Xt)t≥0 is the reflecting Brownian motion on [−1, 1] starting
at X0 = x ∈ [−1, 1], and (La

t (X))t≥0,
(
La−

t (X)
)
t≥0

denote the semimartingale
local time of X at a, respectively its left limit at a, then the following asymptotic
formula holds

lim
t→∞

Ex
(
L1−

t (X)− L−1
t (X)

)
= 2x. (13)

Proof. By (7) we have L1−
t (−X) = L−1

t (X) and L−1
t (−X) = L1−

t (X) for all
t ≥ 0, hence replacing X by −X if necessary, without loss of generality we may
assume that X0 = x ≥ 0.

Since X is reflecting Brownian motion on [−1, 1], X is the strong solution to

Xt = x + Bt +
1
2

∫ t

0
ν (Xs) dLs, t ≥ 0, (14)

where (Bt)t≥0 a 1-dimensional Brownian motion starting at the origin, (Lt)t≥0 is
the local time of X at the boundary of [−1, 1], and ν (x) = −x, x = ±1, is the
inner unit normal to the boundary of the interval [−1, 1].

Consider τ = inf {t ≥ 0 : Xt = 0}, and note that τ is a stopping time with
respect to the filtration of X.

Since Xs ≥ 0 for s ∈ [0, τ ] (we are using here the continuity of X and the fact
that X0 = x ≥ 0), before the time τ the process X can only hit the boundary
point 1 of [−1, 1] (for which ν (1) = −1), and therefore from (14) we obtain

Xτ = x + Bτ +
1
2

∫ τ

0
ν (Xs) dLs, (15)

or equivalent

Xτ = x + Bτ −
1
2
Lτ . (16)

From the definition of the stopping time τ it follows that Xτ = 0, and therefore

1
2
Lτ = x + Bτ . (17)
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From (14) and the definition of τ it follows that Xt ≤ x + Bt for t ≤ τ , and
therefore

τ ≤ τ0 = inf {t ≥ 0 : Bt + x = 0} .

The process Bx
t = x + Bt, t ≥ 0, is a (free) 1-dimensional Brownian motion

starting at x, and it is known that its first hitting time of the origin τ0 has expected
value (Bx

0 − 0)2 = x2. Combining with the above we obtain

Eτ ≤ Eτ0 = x2 < ∞,

which shows in particular that τ is an almost surely finite stopping time.
Also, since

(
B2

t − t
)
t≥0

is a martingale and t ∧ τ is a bounded stopping time,
by Doob’s optional stopping theorem we obtain

E
(
B2

t∧τ − t ∧ τ
)

= E
(
B2

0 − 0
)

= 0,

or equivalent
E

(
B2

t∧τ

)
= E (t ∧ τ) ≤ Eτ < ∞, t ≥ 0,

and therefore
sup
t≥0

E
(
B2

t∧τ

)
≤ Eτ < ∞,

which shows that (Bt∧τ )t≥0 is a collection of uniformly integrable random vari-
ables. Using again the fact that (Bt)t≥0 is a martingale and τ < ∞ a.s., from
Doob’s optional stopping theorem we obtain

EBτ = EB0 = 0.

Combining the above with (17) we obtain ELτ = 2x, which by Proposition 1
is equivalent to

Ex
(
L1−

τ (X)− L−1
τ (X)

)
= 2x. (18)

Next, conditioning on the σ−algebra Fτ and using the strong Markov property
of X (reflecting Brownian motion on [−1, 1]), we obtain

Ex
(
L1−

t+τ (X)− L−1
t+τ (X)

)
= (19)

= Ex
[
Ex

(
L1−

t+τ (X)− L−1
t+τ (X)

)∣∣ Fτ

]
= Ex

[
Ex

((
L1−

τ (X) + L1−
t (X ◦ θτ )

)
−

(
L−1

τ (X) + L−1
t (X ◦ θτ )

))∣∣ Fτ

]
= Ex

[
Ex

(
L1−

τ (X)− L−1
τ (X) +

(
L1−

t (X ◦ θτ )− L−1
t (X ◦ θτ )

))∣∣ Fτ

]
= Ex

(
L1−

τ (X)− L−1
τ (X)

)
+ Ex

[
EXτ

(
L1−

t (X)− L−1
t (X)

)]
= Ex

(
L1−

τ (X)− L−1
τ (X)

)
+ E0

(
L1−

t (X)− L−1
t (X)

)
= 2x + E0

(
L1−

t (X)− L−1
t (X)

)
.

Note that if X is reflecting Brownian motion on [−1, 1] starting at the origin,
then by symmetry so is −X. In particular, this shows that

E0
(
L1−

t (X)− L−1
t (X)

)
= E0

(
L1−

t (−X)− L−1
t (−X)

)
, t ≥ 0.
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Since L1−
t (−X) = L−1

t (X) and L−1
t (−X) = L1−

t (X), from the above we
obtain

E0
(
L1−

t (X)− L−1
t (X)

)
= 0, t ≥ 0,

which combined with (19) gives

Ex
(
L1−

t+τ (X)− L−1
t+τ (X)

)
= 2x, t ≥ 0.

Since τ < ∞ a.s., passing to the limit with t → ∞ in the last equality we
obtain

lim
t→∞

Ex
(
L1−

t (X)− L−1
t (X)

)
= 2x,

concluding the proof.

4 An application to the Neumann problem for the
Laplace operator

As an application of Theorem 3 we will derive a new proof of a probabilistic
representation of the Neumann problem for the Laplace operator (Theorem 4
below) in the 1-dimensional case.

For a smooth bounded domain D ⊂ Rn, consider the Neumann problem for
the Laplacian {

∆u = 0 in D
∂u
∂n = f on ∂D

, (20)

where f : ∂D → R is a given continuous function satisfying the (necessary)
centering condition

∫
∂D f (y) σ (dy) = 0, σ is the surface measure on the boundary

∂D, and n (x) is the outward unit normal to the boundary of D at x ∈ ∂D.
In [2], the authors extended a result of Brosamler ([3]) from the case of smooth

domains, and gave the following probabilistic representation of the solution of the
above problem (note that for smooth domains, a classical solution is the same as
a generalized solution – see [4] for the details).

Theorem 4 ([2]). Let D be a bounded Lipschitz domain and let f ∈ B (∂D)
with

∫
∂D f (x) σ (dx) = 0. Then there is a unique generalized solution u to the

Neumann boundary problem (20) satisfying the condition
∫
D u (x) dx = 0. Fur-

thermore, we have for each x ∈ D

u (x) = lim
t→∞

1
2
Ex

∫ t

0
f (Xs) dLs, (21)

where X is reflecting Brownian motion on D and Lt is the boundary local time
for X.

Using Theorem 3, we will derive a new proof of the above result in the 1-
dimensional case, as follows.
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Corollary 5. For D = [−1, 1] ⊂ R, the solution u of the Neumann problem (20)
which satisfies

∫ 1
−1 u (x) dx = 0, is given by

u (x) = lim
t→∞

1
2
Ex

∫ t

0
f (Xs) dLs, x ∈ [−1, 1] , (22)

where X is the reflecting Brownian motion on [−1, 1] starting at x ∈ [−1, 1] and
(Lt)t≥0 is the local time of X at the boundary of [−1, 1].

Proof. Note that in this case the problem (20) reduces to determining the function
u form u (x) = ax + b (the harmonic functions in R), so that u′ (1) = f (1) and
−u′ (−1) = f (−1). The centering condition on f implies that f (1) = −f (−1) =
α for some α ∈ R, so the solutions of the problem (20) are in this case u (x) =
αx + b, b ∈ R. Finally, the condition

∫ 1
−1 u (x) dx = 0 implies b = 0, so the

normalized solution of the Neumann problem (20) is u (x) = αx, x ∈ [−1, 1].
In order to prove claim (22), it remains to be shown that the quantity on the

right equals αx, for any x ∈ [−1, 1].
Fix an arbitrary x ∈ [−1, 1], and let X be the reflecting Brownian motion on

[−1, 1] starting at x, that is a strong solution to

Xt = X0 + Bt +
1
2

∫ t

0
ν (Xs) dLs, t ≥ 0, (23)

where (Bt)t≥0 is a given 1-dimensional Brownian motion starting at the origin,
(Lt)t≥0 is the local time of X at the boundary of [−1, 1], and ν (x) = −x = −n (x),
x = ±1, is the inner unit normal to the boundary of [−1, 1].

Using Proposition 1 and the fact that the support of the measures dL−1
t (X)

and dL1−
t (X) = dL−1

t (−X) are the sets {t ≥ 0 : Xt = −1}, respectively
{t ≥ 0 : Xt = 1}, we obtain∫ t

0
f (Xs) dLs =

∫ t

0
f (Xs) dL−1

s (X) +
∫ t

0
f (Xs) dL1−

s (X)

=
∫ t

0
f (−1) dL−1

s (X) +
∫ t

0
f (1) dL1−

s (X)

= −α

∫ t

0
dL−1

s + α

∫ t

0
dL1−

s

= α
(
L1−

t − L−1
t

)
.

Passing to the limit with t →∞, by Theorem 3 we obtain

lim
t→∞

1
2
Ex

∫ t

0
f (Xs) dLs =

α

2
lim
t→∞

Ex
(
L1−

t − L−1
t

)
=

α

2
2x = αx.

We have shown that

u (x) = αx = lim
t→∞

1
2
Ex

∫ t

0
f (Xs) dLs, x ∈ [−1, 1] ,

concluding the proof.
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