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Abstract

In this article we present a study of the subspaces of the manifold OscM,
the total space of the osculator bundle of a real manifold M. We obtain the in-
duced connections of the canonical metrical N-linear connection determined
by the homogeneous prolongation of a Finsler metric to the manifold OscM.
We present the Gauss-Weingarten equations of the associated osculator sub-
manifold.
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1 Introduction

The Sasaki N -prolongation G to the osculator bundle without the null section

ÕscM = OscM\ {0} of a Finslerian metric gab on the manifold M given by

G = gab (x, y) dxa ⊗ dxb + gab (x, y) δya ⊗ δyb (*)

is a Riemannian structure on ÕscM, which depends only on the metric gab.
The tensor G is not invariant with respect to the homothetis on the fibres of

ÕscM , because G is not homogeneous with respect to the variable ya.

In this paper, we use a new kind of prolongation G̊ to ÕscM , ([8]), which

depends only on the metric gab. Thus, G̊ determines on the manifold ÕscM a
Riemannian structure which is 0-homogeneous on the fibres of OscM.

Some geometrical properties of G̊ are studied: the canonical metrical N -linear
connection, the induced linear connections etc.

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
alexandru.oana@unitbv.ro
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2 Preliminaries

As far as we know the general theory of submanifolds (in particular the
Finsler submanifolds or the complex Finsler submanifolds) is far from being set-
tled ([1],[10], [3],[11], [12]). In [9] and [10] R.Miron and M. Anastasiei give the
theory of subspaces in generalized Lagrange spaces. Also, in [6] and [5] R. Miron
presented the theory of subspaces in higher order Finsler and Lagrange spaces
respectively.

If M̌ is an immersed manifold in manifold M , a nonlinear connection on OscM
induces a nonlinear connection Ň on OscM̌.

The d-tensor G from (*) is not homogeneous with respect to the variable
ya. This is an incovenient from the point of view of mechanics. Moreover, the
physical dimensions of the terms of G are not the same. This disadvantage was

corrected by R. Miron. He took a new kind of prolongation G̊ to ÕscM of the
fundamental tensor of a Finsler space, ([8]) (5), which depends only on the metric

gab. Thus, G̊ determines on the manifold ÕscM a Riemannian structure which
is 0-homogeneous on the fibres of OscM and p is a positive constant required
by applications in order that the physical dimensions of the terms of G̊ be the
same. He proved that there exist metrical N-linear connections with respect to
the metric tensor G̊.

We take this canonical N-linear metric connection D on the manifold OscM
and obtain the induced tangent and normal connections and the relative covariant
derivation in the algebra of d-tensor fields ([13], [16]).

In this paper we get the Gauss-Weingarten formulae of submanifold OscM̌ .

Let us consider Fn = (M,F ) a Finsler space ([10]), and F : TM = OscM → R
the fundamental function. F is a C∞ function on the manifold OscM and it is
continuous on the null section of the projection π : OscM →M. The fundamental
tensor on Fn is

gab (x, y) =
1

2

∂2F 2

∂ya∂yb
, ∀ (x, y) ∈ OscM.

The lagrangian F 2 (x, y) determines the canonical spray S = ya
∂

∂xa
−2Ga

∂

∂ya

with the coefficients Ga =
1

2
γabc (x, y) ybyc, where γabc (x, y) are the Christoffels

symbols of the metric tensor gab (x, y) . The Cartan nonlinear connection N of the
space Fn has the coefficients

Na
b =

∂Ga

∂yb
. (1)

N determines a distribution on the manifold ÕscM, ([10],[9]), which is supple-
mentary to the vertical distribution V. We have the next decomposition

TwÕscM = Nw ⊕ Vw,∀w = (x, y) ∈ ÕscM. (2)
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The adapted basis of this decomposition is

{
δ

δxa
,
∂

∂ya

}
, (a = 1, .., n) and its

dual basis is (dxa, δya) , where
δ

δxa
=

∂

∂xa
−N b

a
δ

δyb
,

∂

∂ya
=

∂

∂ya

(3)

and {
dxa = dxa,

δya = dya +Na
bdx

b.
(4)

We use the next notations:

δa =
δ

δxa
, ∂̇1a =

∂

∂ya
.

The fundamental tensor gab determines on the manifold ÕscM the homoge-

neous N-lift
0
G,[8],

0
G = gab (x, y) dxa ⊗ dxb + hab (x, y) δya ⊗ δyb, (5)

where

hab (x, y) =
p2

‖y‖2
gab (x, y) , (6)

‖y‖2 = gab (x, y) yayb.

This is homogeneous with respect to y, and p is a positive constant required
by applications in order that the physical dimensions of the terms of G̊ be the
same.

Let M̌ be a real, m-dimensional manifold, immersed in M through the immer-
sion i : M̌ →M . Localy, i can be given in the form

xa = xa
(
u1, ..., um

)
, rank

∥∥∥∥∂xa∂uα

∥∥∥∥ = m.

The indices a, b, c,....run over the set {1, ..., n} and α, β, γ, ... run on the set
{1, ...,m} . We assume 1 < m < n. We take the immersed submanifold OscM̌ of
the manifold OscM, by the immersion Osci : OscM̌ → OscM. The parametric
equations of the submanifold OscM̌ are

xa = xa
(
u1, ..., um

)
, rang

∥∥∥∥∂xa∂uα

∥∥∥∥ = m

ya =
∂xa

∂uα
vα.

(7)
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The restriction of the fundamental function F to the submanifold ÕscM̌ is

F̌ (u, v) = F (x (u) , y (u, v))

and we call F̌m =
(
M̌, F̌

)
the induced Finsler subspaces of Fn and F̌ the

induced fundamental function.

Let Ba
α(u) =

∂xa

∂uα
and gαβ the induced fundamental tensor,

gαβ (u, v) = gab (x (u) , y (u, v))Ba
αB

b
β. (8)

We obtain a system of d-vectors {Ba
α, B

a
ᾱ} which determines a moving frame

R = {(u, v) ;Ba
α (u) , Ba

ᾱ (u, v)} in OscM along to the submanifold OscM̌.

Its dual frame will be denoted by R∗= {Bα
a (u, v) , Bᾱ

a (u, v)} . This is also de-
fined on an open set π̌−1

(
Ǔ
)
⊂ OscM̌, Ǔ being a domain of a local chart on the

submanifold M̌.

The conditions of duality are given by:

Ba
βB

α
a = δαβ , Ba

βB
ᾱ
a = 0, Bα

aB
a
β̄ = 0, Bᾱ

aB
a
β̄ = δᾱβ̄

Ba
αB

α
b +Ba

ᾱB
ᾱ
b = δab .

The restriction of the nonlinear connection N to ÕscM̌ uniquely determines

an induced nonlinear connection Ň on ÕscM̌

Ňα
β = Bα

a

(
Ba

0β +Na
bB

b
β

)
. (9)

The cobasis
(
dxi, δya

)
restricted to OscM̌ is uniquely represented in the mov-

ing frame R in the following form:
dxa = Ba

βdu
β

δya = Ba
αδv

α +Ba
ᾱK

ᾱ
βdu

β

(10)

where

Kᾱ
β = Bᾱ

a

(
Ba

0β +Ma
bB

b
β

)
, Ba

0β = Ba
αβv

a.

A linear connection D on the manifold OscM is called metrical N-linear
connection with respect to G̊, if DG̊ =0 and D preserves by parallelism the
distributions N and V. The coefficients of the N-linear connections DΓ (N) will

be denoted with

(
H
L

(00)

a
bc,

V
L

(10)

a
bc,

H
C

(01)

a
bc,

V
C

(11)

a
bc

)
.

Theorem 1.1([8]) There exist metrical N -linear connections DΓ (N) on ÕscM,
with respect to the homogeneous prolongation G̊, which depend only on the metric
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gab (x, y) . One of these connections has
the ”horizontal” coefficients

H
L

(00)

a
bc =

1

2
gad (δbgdc + δcgbd − δdgbc)

V
L

(10)

a
bc =

1

2
had (δbhdc + δchbd − δdhbc)

(11)

and the ”vertical” coefficients:

H
C

(01)

a
bc =

1

2
gad
(
∂̇bgdc + ∂̇cgbd − ∂̇dgbc

)
V
C

(11)

a
bc =

1

2
had

(
∂̇bhdc + ∂̇chbd − ∂̇dhbc

)
.

(12)

It is called the Cartan metrical N-linear connection. This linear connection
will be used throughout this paper.

For this N-linear connection, we have the operators
H
D and

V
D which are given

by the following relations

H
DXa = dXa +

H
ωabX

b

V
DXa = dXa +

V
ωabX

b.

∀X ∈ F
(
ÕscM

)
(13)

We call these operators the horizontal and vertical covariant differentials.
The 1-forms which define these operators will be called the horizontal and ver-
tical 1-form, where

H
ωab =

H
L

(00)

a
bcdx

c +
H
C

(01)

a
bcδy

c

V
ωab =

V
L

(10)

a
bcdx

c +
V
C

(11)

a
bcδy

c.

(14)

We have
Theorem 1.2[16] The d-tensors of torsion of the Cartan metrical N-linear con-
nection D have the next expresions:

H
T

(00)

a
bc =

H
L

(00)

a
bc −

H
L

(00)

a
cb,

V
T

(01)

a
bc = Rabc,

H
P

(10)

a
bc =

H
C

(01)

a
bc,

V
P

(11)

a
bc = B

(11)

a
bc −

V
L

(10)

a
cb

V
S

(11)

a
bc =

V
C

(11)

a
bc −

V
C

(11)

a
cb.

(15)
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Theorem 1.3[16] The Cartan metrical N-linear connection D has, in the adapted

bases
{
δa, ∂̇1a

}
, the following d-tensors of curvature

”horizontals”

H
R

(00)
b
a
cd = δd

H
L

(00)

a
bc − δc

H
L

(00)

a
bd +

H
L

(00)

f
bc

H
L

(00)

a
fd −

H
L

(00)

f
bd

H
L

(00)

a
fc +

+
H
C

(01)

a
bfR

f
cd,

H
P

(10)
b
a
cd = ∂̇1d

H
L

(00)

a
bc −

H
C

(01)

a
bd|0c +

H
C

(01)

a
bf

H
P

(11)

f
cd,

H
S

(10)
b
a
cd = ∂̇1d

H
C

(01)

a
bc − ∂̇1c

H
C

(01)

a
bd +

H
C

(01)

f
bc

H
C

(01)

a
fd −

H
C

(01)

f
bd

H
C

(01)

a
fc,

(16)

and the ”verticals”

V
R

(01)
b
a
cd = δd

V
L

(10)

a
bc − δc

V
L

(10)

a
bd +

V
L

(10)

f
bc

V
L

(10)

a
fd −

V
L

(10)

f
bd

V
L

(10)

a
fc +

+
V
C

(11)

a
bfR

f
cd,

V
P

(11)
b
a
cd = ∂̇1d

V
L

(10)

a
bc −

V
C

(11)

a
bd|1c +

V
C

(11)

a
bf

V
P

(11)

f
cd,

V
S

(11)
b
a
cd = ∂̇1d

V
C

(11)

a
bc − ∂̇1c

V
C

(11)

a
bd +

V
C

(11)

f
bc

V
C

(11)

a
fd −

V
C

(11)

f
bd

V
C

(11)

a
fc.

(17)

3 The relative covariant derivatives

Let DΓ (N), the Cartan metrical N-linear connection of the manifold OscM .
A classical method to determine the laws of derivation on a Finsler submanifold
is the type of the coupling.
Theorem 2.1 The coupling of the N-linear connection D to the induced nonli-

near connection Ň along ÕscM̌ is locally given by the set of coefficients ĎΓ
(
Ň
)

=
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(
H

Ľ
(00)

a
bδ,

V

Ľ
(10)

a
bδ,

H

Č
(01)

a
bδ,

V

Č
(11)

a
bδ

)
, where



H

Ľ
(00)

a
bδ =

H
L

(00)

a
bdB

d
δ +

H
C

(01)

a
bdB

d
δ̄
K δ̄
δ

V

Ľ
(10)

a
bδ =

V
L

(10)

a
bdB

d
δ +

V
C

(11)

a
bdB

d
δ̄
K δ̄
δ

H

Č
(01)

a
bδ =

H
C

(01)

a
bdB

d
δ

V

Č
(11)

a
bδ =

V
C

(11)

a
bdB

d
δ .

(18)

Definition 2.2 We call the induced tangent connection on ÕscM̌ by the

metrical N-linear connection D, the couple of operators
H

D>,
V

D> which are defined
by

H

D>Xα = Bα
b

H

ĎXb,

V

D>Xα = Bα
b

V

ĎXb,

forXa = Ba
γX

γ

where

H

D>Xα = dXα +XβHωαβ

V

D>Xα = dXα +XβVωαβ

and
H
ωαβ ,

V
ωαβ are called the tangent connection 1-forms.

We have
Theorem 2.3 The tangent connections 1-forms are as follows:

H
ωαβ =

H
L

(00)

α
βδdu

δ +
H
C

(01)

α
βδδv

δ

V
ωαβ =

V
L

(10)

α
βδdu

δ +
V
C

(11)

α
βδδv

δ,

(19)
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where

H
L

(00)

α
βδ = Bα

d

(
Bd
βδ +Bf

β

H

Ľ
(00)

d
fδ

)
,

V
L

(10)

α
βδ = Bα

d

(
Bd
βδ +Bf

β

V

Ľ
(10)

d
fδ

)
,

H
C

(01)

α
βδ = Bα

dB
f
β

H

Č
(01)

d
fδ,

V
C

(11)

α
βδ = Bα

dB
f
β

V

Č
(11)

d
fδ.

(20)

Definition 2.4 We call the induced normal connection on ÕscM̌ by the

metrical N-linear connection D, the couple of operators
H

D⊥,
V

D⊥ which are defined
by

H

D⊥Xα = Bα
b

H

ĎXb

V

D⊥Xα = Bα
b

V

ĎXb,

for Xa = Ba
γ̄X

γ̄

where

H

D⊥Xα = dXα +XβHωα
β

V

D⊥Xα = dXα +XβVωα
β

and
H
ωα
β
,
V
ωα
β

are called the normal connection 1-forms.

We have
Theorem 2.5 The normal connections 1-forms are as follows:

H
ωα
β

=
H
L

(00)

α
βδ
duδ +

H
C

(01)

α
βδ
δvδ

V
ωα
β

=
V
L

(10)

α
βδ
duδ +

V
C

(11)

α
βδ
δvδ,

(21)

where
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H
L

(00)

α
βδ

= Bα
d

(
δBd

β

δuδ
+Bf

β

H

Ľ
(00)

d
fδ

)
,

V
L

(10)

α
βδ

= Bα
d

(
δBd

β

δuδ
+Bf

β

V

Ľ
(10)

d
fδ

)
,

H
C

(01)

α
βδ

= Bα
d

(
∂Bd

β

∂vδ
+Bf

β

H

Č
(01)

d
fδ

)
,

V
C

(11)

α
βδ

= Bα
d

(
∂Bd

β

∂vδ
+Bf

β

V

Č
(11)

d
fδ

)
.

(22)

Now, we can define the relative (or mixed) covariant derivatives
H
∇ and

V
∇ .

Theorem 2.6 The relative covariant (mixed) derivatives in the algebra of mixed

d-tensor fields are the operators
H
∇,

V
∇ for which the following properties hold :

H
∇f = df,

V
∇f = df,

∀f ∈ F

(
ÕscM̌

)

H
∇Xa =

H

ĎXa,

V
∇Xa =

V

ĎXa,

H
∇Xα =

H
DᵀXα,

V
∇Xα =

V
DᵀXα,

H
∇Xα =

H

D⊥Xα,

V
∇Xα =

H

D⊥Xα.

H
ω̌ab ,

V
ω̌ab ,

H
ωαβ ,

V
ωαβ ,

H
ωα
β
,
V
ωα
β

are called the connection 1-forms of
H
∇,

V
∇.

4 The Gauss-Weingarten formulae

As usual in the theory of the submanifolds we are interesed in finding the
moving equations of the moving frame R along OscM̌.

These equations, called also Gauss-Weingarten formulae, are obtained when
the relative covariant derivatives of the vector fields from R are expressed again
in the frame R.

Thus we have
Theorem 3.1 The following Gauss-Weingarten formulae hold:

Vi
∇Ba

α = Ba
δ̄

Vi
Πδ̄
α,

(23)

Vi
∇Ba

ᾱ = −Ba
δ

Vi
Πδ
ᾱ,

(24)
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where

Vi
Πδ̄
α =

Vi
H
(0)
α
δ̄
βdu

β +
Vi
H
(1)
α
δ̄
βδv

β

Vi
Πα
δ̄

= gασδδ̄σ̄
Vi
Πσ̄
σ,

(25)

and the d-tensors

H
H
(0)
α
δ̄
β = Bδ̄

d

(
Bd
αβ +Bf

α

H

Ľ
(00)

d
fβ

)
V
H
(0)
α
δ̄
β = Bδ̄

d

(
Bd
αβ +Bf

α

V

Ľ
(10)

d
fβ

)

H
H
(1)
α
δ̄
β = Bδ̄

dB
f
α

H

Č
(01)

d
fβ

V
H
(1)
α
δ̄
β = Bδ̄

dB
f
α

V

Č
(11)

d
fβ ,

(26)

are the fundamental d-tensors of the second order of manifold ÕscM ,
(i = 0, 1, V0 = H,V1 = V ).
Proof From (11) and (12) we have

H
∇Ba

α = Ba
α|0βdu

β +Ba
α |0β δvδ

=

(
δBa

α

δuβ
+

H

Ľ
(00)

a
bβB

b
α −

H
L

(00)

δ
αβB

a
δ

)
duβ+

+

(
δBa

α

δvβ
+

H

Č
(01)

a
bβB

b
α −

H
C

(01)

δ
αβB

a
δ

)
δvβ

= Ba
αβdu

β +Bb
α

(
H

Ľ
(00)

a
bβdu

β +
H

Č
(01)

a
bβδv

β

)
−

−Ba
δ

[
Bδ
d

(
Bd
αβ +Bf

α

H

Ľ
(00)

d
fβ

)
duβ +Bδ

dB
f
α

H

Č
(01)

d
fβδv

β

]
Using (25) we get relation (23) for V0 = H.

Now, by applying
H
∇ to both sides of the equations

gabB
a
αB

b
β̄ = 0

one gets

gabB
a
δ̄

H
Πδ̄
αB

b
β̄ + gabB

a
α

H
ΠBb

β̄ = 0.

Multiplying these relation with Bα
d we obtain

gbd
H
∇Bb

β̄ −B
a
δ̄B

δ̄
dgab

H
∇Bb

β̄ = −Bα
d δβ̄γ̄

H
Πγ̄
α.
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But Ba
δ̄
Bδ̄
dgab

H
∇Bb

β̄
= 0. Consequently, we obtain the relations (24) for V0 = H.

Analogously, for the operator
V
∇ one gets the other relations.
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