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Abstract

Building on author’s previous results in singular semi-Riemannian geom-
etry and singular general relativity, the behavior of gauge theory at singulari-
ties is analyzed. The usual formulations of the field equations at singularities
are accompanied by infinities which block the evolution equations, mainly
because the metric is singular, hence the usual differential operators, con-
structed from the metric, blow up. However, it is possible to give otherwise
equivalent formulations of the Einstein, Maxwell and Yang-Mills equations,
which in addition admit solutions which can be extended beyond the sin-
gularities. The main purpose of this analysis is represented by applications
to the black hole information loss paradox. An alternative approach can be
made in terms of the Kaluza-Klein theory.
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1 Introduction

1.1 Motivation

As it is known from the singularity theorems of Penrose and Hawking [2–4,6,
15,16], general relativity predicts, under very general conditions, the occurrence of
singularities. At singularities, some of the quantities which are used in geometry
and in physics become singular.

However, recent mathematical results [18,28,31] showed that semi-Riemannian
geometry, the geometry used in general relativity, can be extended at singularities
in many important cases, so that we can give descriptions containing the same
geometric information, by using only non-singular geometric objects (see section
§2). These new methods were applied to the singularities in general relativity
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[21, 27, 29, 30], in particular to big-bang singularities [20, 24, 26], and to black
hole singularities [19, 22, 23, 25, 32], showing that they are not as bad as initially
thought, and that they even help solving other problems accompanied by infinities
[19,25,30]. One important result is that we can rewrite Einstein’s equation so that
it can be extended smoothly at singularities [29,31].

But what happens to other fields, can they be extended at singularities in
a similar way? In the case of the charged stationary black holes, the answer
is positive, provided that we use the proper coordinate systems [19, 25]. In the
mentioned cases, both the potential and the electromagnetic field are analytic
even at the singularity. The reason why in the usual coordinates for the Reissner-
Nordström and Kerr-Newman black holes they appeared singular is due to the
fact that, in order to move from the proper coordinates to the usual ones, we have
to make a singular transformation. So, we can say that the coordinates that were
used before were themselves singular, and this led to a singularity of the fields
which is only apparent.

This article aims to advance our understanding of the electromagnetic and
Yang-Mills fields at singularities. We look first at the electromagnetic field, since,
although it is abelian, it exhibits all the features which are relevant to our discus-
sion (section §3).

The electromagnetic field Fab satisfies Maxwell’s equations{
dF = 0,
δF = J,

(1)

where J is a differential 1-form representing the electric four-current. The first
equation involves only the exterior differential d, so it is independent on the metric.
On the other hand, to define the codifferential δ, one normally needs the Hodge ∗
operator, which is defined only for a non-degenerate metric. One can avoid using
δ, and consider instead that the exterior differential d is applied to the two-form
∗F , but this doesn’t solve the issue, because it relies on the undefined Hodge ∗
operator. However, as we shall see, we can define the codifferential operator δ
without the Hodge ∗ operator. This allows us to rewrite the Maxwell equations
in a way that is defined at singularities too and admits smooth solutions. On the
other hand, solutions that are distributions are also useful, since they represent
charged currents associated to point-like particles. The analysis of Maxwell’s
equations extends almost straightforwardly to Yang-Mills equations (section §4).

The singular semi-Riemannian manifolds satisfying the vacuum Einstein equa-
tion are the simplest and easier to understand. When other fields are involved, we
can use equations which are equivalent to Einstein’s outside the singulatities, but
extend smoothly at singularities too [29, 31]. However, in vacuum, the Einstein
equation is simply the condition of Ricci flatness. Therefore, if we could describe
the Maxwell and Yang-Mills fields by vacuum Einstein equations, we could obtain
some insights into the behavior of these fields at singularities. Fortunately, such
a description can be obtained by using the Kaluza-Klein theory, and it will be
discussed in section §5. Section §6 contains some open questions.
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2 Singular manifolds

This section recalls some basic notions and results about singular manifolds,
from [31], which will be used in the remainder of the article.

A singular semi-Riemannian manifold (M, g) is a differentiable manifold M
endowed with a symmetric bilinear form g ∈ Γ(T ∗M �M T ∗M) named metric
[1,9,10,33–37]. This includes semi-Riemannian manifolds, having the metric non-
degenerate, and in particular Riemannian manifolds, when g is positive definite.

Let (V, g) be a finite dimensional vector space with an inner product g, possibly
degenerate. The totally degenerate space V ◦ := V ⊥ is called the radical of V .
The inner product g on V is non-degenerate if and only if V ◦ = {0}. For a
singular semi-Riemannian manifold (M, g) we define the radical of TM , by T ◦M =
∪p∈M (TpM)◦. Let X◦(M) denote the set of vector fields on M for which Wp ∈
(TpM)◦.

We define the radical-annihilator of (M, g) as the fiber bundle (with variable
fiber, if g doesn’t have constant signature)

T •M =
⋃
p∈M

(TpM)•, (2)

where (TpM)• ⊆ T ∗pM is the space of covectors at p of the form ωp(Xp) = 〈Yp, Xp〉,
for some vectors Yp ∈ TpM and any Xp ∈ TpM .

We denote the F (M)-module of radical-annihilator k-forms by

A•k(M) := Γ

(
k∧
T •M

)
, (3)

and by A•kd(M) the discontinuous k-forms that are from A•k(M) on the regions
of constant signature.

On T •M there is a unique non-degenerate inner product g•, defined by 〈〈ω, τ〉〉• :=
g•(ω, τ) := 〈X,Y 〉, where X• = ω, Y • = τ , X,Y ∈ X(M).

A tensor T of type (r, s) is named radical-annihilator in the l-th covariant slot
if T ∈ Trl−1M⊗M T •M⊗M T0

s−lM . There is a unique and canonical covariant con-
traction or covariant trace between covariant slots which are radical-annihilator,
defined by the inner product g•. For a tensor field T we denote the contraction
covariant CklT by

T (ω1, . . . , ωr, v1, . . . , •, . . . , •, . . . , vs).

For a non-degenerate metric, the covariant derivative of a vector field Y in the
direction of a vector field X, where X,Y ∈ X(M), is well defined, by the Koszul
formula (see e.g. [14], p. 61). If the metric is degenerate, the covariant derivative
can’t be extracted from the Koszul formula. We will use instead the right part of
the Koszul formula, since it remains smooth even for degenerate metrics:

K : X(M)3 → R,
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K(X,Y, Z) :=
1

2
{X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉
−〈X, [Y,Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X,Y ]〉}.

(4)

We call it the Koszul form. Its properties are similar to those of the covariant
derivative, and were studied in [31].

Let X,Y ∈ X(M). The lower covariant derivative of Y in the direction of X
is defined as the differential 1-form ∇[XY ∈ A1(M)

(∇[XY )(Z) := K(X,Y, Z), (5)

for any Z ∈ X(M). We also define the lower covariant derivative operator

∇[ : X(M)× X(M)→ A1(M), (6)

which associates to each X,Y ∈ X(M) the differential 1-form ∇[XY .
A singular manifold (M, g) is radical-stationary if it satisfies the condition

K(X,Y, ) ∈ A•1(M), (7)

for any X,Y ∈ X(M) (see [9] Definition 3.1.3).
LetX ∈ X(M), ω ∈ A•1(M), where (M, g) is radical-stationary. The covariant

derivative of ω in the direction of X is defined as

∇ : X(M)×A•1(M)→ A•1d(M),

(∇Xω) (Y ) := X (ω(Y ))− 〈〈∇[XY, ω〉〉•. (8)

If the singular manifold (M, g) is radical-stationary, we define:

A •1(M) = {ω ∈ A•1(M)|(∀X ∈ X(M)) ∇Xω ∈ A•1(M)}. (9)

The Riemann curvature tensor is defined as

R : X(M)× X(M)× X(M)× X(M)→ R,

R(X,Y, Z, T ) := (∇X∇[Y Z −∇Y∇[XZ −∇[[X,Y ]Z)(T ) (10)

for any vector fields X,Y, Z, T ∈ X(M).
A singular manifold (M, g) satisfying

∇[XY ∈ A •1(M) (11)

for any vector fields X,Y ∈ X(M), is called semi-regular manifold. A radical-
stationary manifold (M, g) is semi-regular if and only if for any X,Y, Z, T ∈ X(M)

K(X,Y, •)K(Z, T, •) ∈ F (M). (12)

The Riemann curvature of a semi-regular manifold (M, g) is a smooth tensor
field R ∈ T0

4M . It satisfies

R(X,Y, Z, T ) = X
(
(∇[Y Z)(T )

)
− Y

(
(∇[XZ)(T )

)
− (∇[[X,Y ]Z)(T )

+〈〈∇[XZ,∇[Y T 〉〉• − 〈〈∇[Y Z,∇[XT 〉〉•
(13)
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for any vector fields X,Y, Z, T ∈ X(M).
In a semi-regular four dimensional spacetime, the densitized Einstein tensor

Gab det g is smooth [31], so a densitized version of the Einstein equation,

G det g + Λg det g = κT det g, (14)

is smooth even at singularities, where κ :=
8πG

c4
, G is Newton’s constant, and c the

speed of light. In some conditions the equation is smooth even if we replace det g
with

√
det g. Also, if the Riemann tensor admits a smooth Ricci decomposition,

there is an alternative version of Einstein’s equation, called the expanded Einstein
equation, which is smooth at singularities too [29]. Both these equations are
equivalent to Einstein’s on the regions where the metric is non-degenerate.

3 Maxwell’s equations at singularities

3.1 The exterior codifferential

An important differential operator present in the Maxwell and Yang-Mills
equations is the codifferential. This section introduces and discusses this operator
at singularities.

If the metric is non-degenerate, the Hodge dual of a differential form is defined
on the space of differential k-forms, and valued in the space of n− k-forms,

∗ : Ak(M)→ An−k(M), (15)

by

(∗η)i1...in−k
=

1

k!
ηj1...jk

√
|det g|εj1...jki1...in−k

. (16)

The symbol ∗ is called the Hodge ∗ operator.
If the metric is non-degenerate, we can define the codifferential operator, which

is the adjoint of the exterior derivative operator, or δ, with the help of Hodge’s
star operator ∗ (cf. e.g. [11], p. 250):

δk : Ak(M)→ Ak−1(M) (17)

by
δk = (−1)k ∗−1 dk ∗ . (18)

When k is understood, one can omit it and simply write δ instead of δk.
If the metric is degenerate, but has constant signature, we can try to cook a

similar definition
δk : A•k(M)→ A•k−1d (M), (19)

by using a Hodge ∗ operator defined this time at each point on the exterior algebra
over the radical-annihilator space:

∗ : A•k(M)→ A•rank g−kd (M). (20)
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If the signature of the metric is variable, then the ∗ operator is not continuous,
in fact the dimension of the codomain space changes from point to point, as the
signature changes. But the codomain of δ remains ∧k−1T ∗Mp at any point p, so
this should not be a problem. But it would be useful to find another definition
of the adjoint exterior derivative operator δ. Since the domain and codomain
of δ do not change when the rank of g changes, it may be possible that it acts
continuously on some exterior differential forms.

Remark 1. A way to define the exterior codifferential on semi-Riemannian man-
ifolds, without using the duality given by the Hodge ∗ operator, is by the following
formula

(δω)(X1, . . . , Xk−1) := − 1

(k − 1)!

n∑
a=1

∇Eaω(Ea, X1, . . . , Xk−1), (21)

where (Ea)
n
a=1 is an orthonormal frame.

This suggests the following definition:

Definition 1. Let (M, g) be a radical-stationary semi-Riemannian manifold, and
ω ∈ A•k(M). The codifferential of ω is the differential form δω defined by

(δω)(X1, . . . , Xk−1) := − 1

(k − 1)!
∇•ω(•, X1, . . . , Xk−1) (22)

This formula can be shortened to

δω := − i•(∇•ω)

(k − 1)!
. (23)

The codifferential form is not guaranteed to be smooth for all ω ∈ A•k(M).

3.2 Maxwell’s equations at singularities

Section §3.1 introduced a way to construct it which avoids the use of the ∗
operator, which in the case of a differential 2-form F takes the expression

(δF )(X) := −∇•F (•, X), (24)

or
δF := −i•(∇•F ), (25)

or
(δF )a := −∇•F•a. (26)

It is straightforward now to generalize Maxwell’s equations at singularities –
they are formally just equations (1), with the specification that the codifferential
operator from the second equation is defined as in equation (24). In the case when
the metric is non-degenerate, the equations coincide with the usual ones.

It is not always needed that the solution to the equation (24) is smooth: a
distribution solution is good enough, since the source may be for example a point-
like particle (see section §3.3).
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3.3 Example: the analytic Reissner-Nordström solution

The Reissner-Nordström solution to the Einstein-Maxwell equations, describ-
ing a static, spherically symmetric, electrically charged, non-rotating black hole
is [5, 12,17]

ds2 = −
(

1− 2m

r
+
q2

r2

)
dt2 +

(
1− 2m

r
+
q2

r2

)−1
dr2 + r2dσ2, (27)

where q and m are the electric charge and the mass of the body, the units are
chosen so that c = 1 and G = 1, and

dσ2 = dθ2 + sin2 θdφ2. (28)

We change the coordinates r and t in a neighborhood r ∈ [0,M) of the singu-
larity, where M depends on whether the black hole is naked, by{

t = τρT

r = ρS
. (29)

To make the metric analytic even at the singularity r = 0, we choose S,T ∈ N
given by {

S ≥ 1
T ≥ S + 1

. (30)

In the new coordinates, the Reissner-Nordström metric takes the form

ds2 = −∆ρ2T−2S−2 (ρdτ + Tτdρ)2 +
S2

∆
ρ4S−2dρ2 + ρ2Sdσ2, (31)

where

∆ := r2 − 2mr + q2 (hence ∆ = ρ2S − 2mρS + q2). (32)

In the standard Reissner-Nordström solution, in coordinates (t, r, φ, θ), the
potential of the electromagnetic field is

A = −q
r

dt, (33)

and it is singular at r = 0. But in the new coordinates (τ, ρ, φ, θ), the electromag-
netic potential is

A = −qρT−S−1 (ρdτ + Tτdρ) , (34)

and the electromagnetic field is

F = q(2T− S)ρT−S−1dτ ∧ dρ. (35)

Both are finite, and analytic everywhere, including at the singularity ρ = 0.

The second Maxwell equation δF = J gives the current density, which is a
distribution vanishing outside the singularity ρ = 0.
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4 The Yang-Mills equations at singularities

In this section, the remarks regarding Maxwell’s equations at singularities are
extended to the non-commutative gauge theories.

4.1 The Yang-Mills equations

Let E → M be a vector bundle over a manifold M , and D a connection on
E. Let’s denote by DXs the covariant derivative of a section s ∈ Γ(E) in the
direction of a vector field X on M . If (xa)

n
a=1 are coordinates on U ⊆ M , and

(ei)
dimE
i=1 is a basis of local sections of E → U , then the covariant derivative of a

section s has the components

(Das)
i = ∂as

i +Aiajs
j . (36)

The functions Aiaj are the components of a vector potential A = Aiaje
j ⊗ ei⊗dxa,

which is an End(E)-valued 1-form. We also denote Aa := Aiaje
j⊗ei, and A(X) :=

AaX
a. Since A can be written as a linear combination A =

∑
α Tα ⊗ ωα, where

Tα are sections of End(E) and ωα are 1-forms on M , it follows that A(X) =∑
α ωα(X)Tα is a section of End(E).

The exterior covariant derivative is defined for a section s ∈ Γ(E) as

dDs(X) := Dxs, (37)

and for an E-valued differential form

dD(s⊗ ω) := dDs ∧ ω + s⊗ dω, (38)

where (s⊗ ω) ∧ τ := s⊗ (ω ∧ τ).

The curvature of the connection D is defined as

F (X,Y )s := DXDY s−DYDXs−D[X,Y ]s. (39)

Let Fab := F (∂a, ∂b). Then

Fabi
j = ∂aAbi

j − ∂bAaij +Aak
jAbi

k −AbkjAaik, (40)

or

Fab = ∂aAb − ∂bAa + [Aa, Ab]. (41)

The curvature F satisfies the Bianchi identity

dDF = 0, (42)

which is the first of the two Yang-Mills equations.

Let’s define the Hodge ∗ operator on End(E)-valued differential forms by

∗ (T ⊗ ω) := T ⊗ ∗ω, (43)
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and the codifferential δD associated to the connection D by

δD := ∗dD ∗ . (44)

Then, the Yang-Mills equations are{
dDF = 0,
δDF = J,

(45)

where J is the current.

4.2 The Yang-Mills equations at singularities

But what are the Yang-Mills equations at singularities? From equations (38)
and (44), it is immediate that the codifferential δD associated to the connection
D depends only on dD and d,

δD(s⊗ω) = ∗dD ∗ (s⊗ω) = dDs∧∗2ω+ s⊗∗d∗ω = (−1)qdDs∧ω+ s⊗ δω (46)

where q is an integer depending on the signature of the metric, the degree of the
form ω, and the dimension. Hence, ultimately, all that may be affected by the
singularity in the second Yang-Mills equation is δFi

j , where Fi
j = Fabi

jdxa∧dxb.
In other words, at singularities, the components of the gauge curvature behave
similarly to the simpler case of Maxwell’s equations.

5 Kaluza-Klein theory with singularities

5.1 Kaluza-Klein theory

Maxwell’s theory is a gauge theory, and can be described using the fiber
bundle approach. The electromagnetic potential is a connection on a principal
U(1)-bundle PU(1) → M , and the electromagnetic field is the curvature of that
connection. The base manifold M of the principal U(1)-bundle is the spacetime.
But why would we have two different manifolds, the five-dimensional U(1)-bundle
manifold PU(1), and the four-dimensional spacetime M? The specification of the
base manifold is redundant, since it can be obtained by factoring the manifold
PU(1) in the fiber direction. This shows that gauge theory is, from geometric
viewpoint, a Kaluza-Klein theory, with symmetries constrained by the gauge in-
variance.

The Kaluza-Klein theory is based on an idea of Nordström [13], who proposed
it in his metric theory of gravity. The general relativistic version was proposed
by Kaluza [7]. Because at that time the notion of a principal bundle was not
yet understood, it was considered that the fifth dimension should be observable,
which would contradict our experience. To hide it, Klein proposed that the fifth
dimension be compact and very small [8].
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In the Kaluza-Klein theory, electromagnetism is obtained as a curvature effect
in the fifth dimension. More precisely, the five-dimensional metric is

g
(5)
AB =

(
gab − ξ2AaAbφ ξAaφ

ξAbφ −φ

)
, (47)

where ξ2 = 16πG, and φ is a scalar field that, should be constant in order to
obtain the same predictions as electromagnetism.

By imposing the condition that g
(5)
AB satisfies the vacuum Einstein equation

Ric(g(5)) = 0, i.e. that the five-dimenisonal manifold is Ricci flat, one obtains
the Einstein-Maxwell equations, that is, the source-free Maxwell equations, and
the Einstein equation for the four-dimensional metric gab with the stress-energy
tensor

Tab =
1

µ0

(
FasFb

s − 1

4
FstF

stgab

)
(48)

sourced by the electromagnetic field.

5.2 Kaluza-Klein theory with singularities

We are interested now in the case when singularities are present. If the five-

dimensional manifold PU(1) is semi-regular, its Riemann curvature tensor R
(5)
ABCD

is smooth and radical-annihilator, and the Ricci tensor R
(5)
AB = Ric(g(5)) is well-

defined at the points where the signature of the metric doesn’t change. The
condition that the vacuum Einstein equation is satisfied implies in particular that

the Einstein tensor G
(5)
AB = R

(5)
AB = 0 is well-defined and smooth everywhere, even

at singularites.
Not the same can be said about the base manifold M , for which the Einstein-

Maxwell equations may be singular when viewed as four-dimensional equations,
although they are equivalent to smooth five-dimensional vacuum Einstein equa-
tions. In the presence of singularities, the index raising doesn’t work, and we have
to use the covariant contraction, the generalizations of covariant derivative and
the Riemann curvature defined in section §2. In this case, one can use equations
equivalent to Einstein’s, but which work at singularities too, such as the densitized
Einstein equation [31], or the expanded Einstein equation [20,29,30]. The Maxwell
and Yang-Mills equations have to be replaced by their versions in sections §3 and
§4. The stress-energy tensor of an electromagnetic field becomes

Tab =
1

µ0

(
Fa•Fb• −

1

4
F••′F••′gab

)
. (49)

It is smooth where the signature is constant, and where the signature changes, it
is not smooth or even diverges. But it can be made smooth and non-singular if
additional boundary conditions are imposed to F where the signature changes. On
the other hand, for a semi-regular metric, Tab det g is smooth even at singularities.

In conclusion, the semi-regular spacetimes that are Ricci flat are simpler than
the general ones, which need special alternatives to the Einstein equation and the
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other field equations. Increasing the dimension to avoid these difficulties may be
fruitful, because all that remains is the vacuum Einstein equation at singularities,
which is simpler. The Kaluza-Klein theory can be extended to contain singular-
ities in a simpler and safer way than the four-dimensional theory containing the
corresponding electromagnetic fields. Moreover, the sources of the fields can be
included at singularities, as we have seen in section §3.3.

6 Some open questions

As any young fields, singular semi-Riemannian geometry and singular general
relativity are expected to have many yet unsolved research problems. Concerning
the issues of gauge theory at singularities, I will mention a few open questions.
Some of them concern the relation between the gauge theory at singularities (sec-
tions §3 and §4) and the Kaluza-Klein approach (section §5). Are the two ap-
proaches equivalent? Can we learn more about singularities in four dimensions,
from singularities in Ricci flat higher dimensional spaces? What is the physical
meaning of the singularities in gauge theory? Do these approaches allow matter
to survive passing through the black hole’s singularities during the Hawking evap-
oration, leading to a positive resolution of the black hole information paradox?
Can these approaches reveal more about the renormalizability in quantum field
theory and quantum gravity, by using dimensional reduction at singularities [30]?
These are just a few open questions that, if solved, may lead to significant progress
in the issues surrounding the singularities in general relativity.

7 Conclusions

In this article, I built the case for the importance of understanding how gauge
fields behave at singularities. The motivation is multiple: we need to understand
their behavior at the big-bang singularity, we need to understand what happens
with the fields carrying information at singularities, to see whether the information
is indeed lost, we need to understand what is happening at high energy scales, and
how point-like particles which can be modeled as very small black holes behave.
The geometric apparatus is already in place from previous work, and it was applied
to various problems involving black hole and big-bang singularities.

In this article, the methods of singular semi-Riemannian geometry and sin-
gular general relativity were applied also to gauge fields on singular spacetimes.
The Maxwell and Yang-Mills equations were written in a way that works at sin-
gularities too.

A particularly promising direction comes from the Kaluza-Klein theory. Since
in the higher-dimensional manifolds on which Kaluza-Klein theories are defined
the Einstein equation satisfies the vacuum condition, the singularities are simpler,
and don’t need special conditions as in the case when matter is present. This may
simplify the conditions to be satisfied by the gauge fields at singularities.
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These new directions are only at the beginning, since there are more implica-
tions to be explored. The aim of this article is to establish a foundation. There
are some important open problems, some of them mentioned in section §6.
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flächentreuen Abbildungen der Ebene, Math. Z. 50 (1944), no. 1, 1–92.

[37] Vrănceanu, G., Sur les invariants des espaces de Riemann singuliers, Disqu.
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