
Bulletin of the Transilvania University of Braşov • Vol 7(56), No. 2 - 2014

Series III: Mathematics, Informatics, Physics, 193-202

THE MAXIMUM FLOWS IN BIPARTITE DYNAMIC
NETWORKS

Camelia SCHIOPU1

Communicated to:
International Conference on Mathematics and Computer Science ,

June 26-28, 2014, Braşov, Romania

Abstract

In this paper we study maximum flow algorithms for stationary bipartite
dynamic networks. In a bipartite static network the several maximum flow
algorithms can be substantially improved. The basic idea in this improve-
ment is a two arcs push rule. This idea is also extended to minimum cost
flow. In the end of the paper we present an example.

2000 Mathematics Subject Classification: 0B10, 90C35, 05C35, 68R10.
Key words: bipartite dynamic network flow, maximum flow, minimum

cost flow.

1 Introduction

The theory of flow is one of the most important parts of Combinatorial Op-
timization. The static network flow models arise in a number of combinatorial
applications that on the surface might not appear to be optimal flow problems
at all. The problem also arises directly in problems reaching as far as machine
scheduling, the assignment of computer modules to computer processor, tanker
scheduling etc. [1]. However, in some applications, the time is an essential ingre-
dient [3], [4], [5]. In this case we need to use dynamic network flow model. On
the other hand, the bipartite static network also arises in practical context such
baseball elimination problem, network reliability testing etc. and hence it is of
interest to find fast flow algorithms for this class of networks [1], [6].

In this paper we present the maximum flow problem in bipartite dynamic
networks when the dynamic networks are stationary. This problem has not been

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail:
camelia.a@unitbv.ro

194 Camelia Schiopu

treated so far. Further on, in Section 2 we discuss some basic notions and re-
sults for maximum flow problem in general static networks. Section 3 deals with
maximum flow problem in general dynamic networks. In Section 4 we present al-
gorithms for flow problems in bipartite static network and in Section 5 we discuss
the maximum flow problem in stationary bipartite dynamic networks. Section 6
deals with an example for a problem presented in Section 5.

2 Terminology and preliminaries

In this section we discuss some basic notations and results used in the rest of
the paper.

Let G = (N,A, u) be a general static network with the node set N =
{1, . . . , n}, the arc set A = {a1, . . . , ak, . . . , am}, ak = (i, j), i, j ∈ N , the up-
per bound (capacity) function u, u : A → N with N the natural number set and
with 1 the source node, n the sink node.

For a given pair of subset X,Y of the nodes set N of a network G we use the
notation:

(X,Y) = {(i, j)|(i, j) ∈ A, i ∈ X, j ∈ Y }

and for a given function f on arcs set A we use the notation:

f(X,Y) =
∑

(X,Y) f(x, y)

A flow is a function f : A→ N satisfying the next conditions:

f(i,N)− f(N, i) =

v, if i = 1

0, if i 6= 1, n

−v, if i = n

(1.1)

0 ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A (1.2)

for some v ≥ 0. We refer to v as the value of the flow f .
The maximum flow problem is to determine a flow f for which v is maximum.
We further assume, without loss of generality, that if (i, j) ∈ A then (j, i) ∈ A

(if (j, i) /∈ A we consider that (j, i) ∈ A with u(j, i) = 0).
A preflow f is a function f : A→ N satisfying the next conditions:

f(N, i)− f(i,N) ≥ 0, i ∈ N − {1, n} (2.1)

0 ≤ f(i, j) ≤ u(i, j), (i, j) ∈ A (2.2)

A pseudoflow is a function f : A→ N satisfying only the constraints (2.2).
For a preflow f the excess of each node i ∈ N is

e(i) = f(N, i)− f(i,N) (3)

and if e(i) > 0, i ∈ N − {1, n} then we say that node i is an active node. For
any pseudoflow f , we define the imbalance of node i ∈ N with relation (3) and

The maximum flows in bipartite dynamic networks 195

if e(i) > 0 we refer to e(i) as the excess of node i; if e(i) < 0, we call −e(i) the
node’s deficit.

Given a flow (preflow or pseudoflow) f , the residual capacity r(i, j) of any arc
(i, j) ∈ A is r(i, j) = u(i, j)− f(i, j) + f(j, i). The residual network with respect
to the flow (preflow or pseudoflow) f is G̃ = (N, Ã, r) with Ã = {(i, j)|(i, j) ∈
A, r(i, j) > 0}. In residual network G̃ = (N, Ã, r) we define the distance function
d : N → N. We say that a distance function is valid if it satisties the following
two conditions

d(n) = 0 (4.1)

d(i) ≤ d(j) + 1, (i, j) ∈ Ã (4.2)

We refer to d(i) as the distance label of node i. We say that an arc (i, j) ∈ Ã is
admissible if satisfies the condition that d(i) = d(j) + 1; we refer to all other arcs
as inadmissible. We also refer to a path from node 1 to node t consisting entirely
of admissilbe arcs as an admissible path.

In minimum cost flow problem each arc (i, j) ∈ A has a cost c(i, j). We assume
that the costs are antisymmetric, i.e., c(i, j) = −c(j, i) for each arc (i, j) ∈ A. The
minimum cost flow problem can be formulated as follows:

min
∑
A

c(i, j)f(i, j) (5)

subject to conditions (1.1) and (1.2).

In the next presentation we assume familiarity with maximum flow algorithms,
minimum cost flow algorithms and we omit many details. The reader interested
in further details is urged to consult the book [1].

3 Maximum flows in dynamic networks

Dynamic network models arise in many problem settings, including production
distribution systems, economic planning, energy systems, traffic systems, and
building evacuation systems.

Let G = (N,A, u) be a static network with the node set N = {1, . . . , n}, the
arc set A = {a1, . . . , am}, the upper bound (capacity) function u, 1 the source node
and n the sink node. Let N be the natural number set and let H = {0, 1, . . . , T}
be the set of periods, where T is a finite time horizon, T ∈ N. Let use state
the transit time function h : A × H → N and the time upper bound function
q : A×H → N. The parameter h(i, j; t) is the transit time needed to traverse an
arc (i, j). The parameter q(i, j; t) represents the maximum amount of flow that
can travel over arc (i, j) when the flow departs from node i at time t and arrives
at node j at time θ = t+ h(i, j; t).

The maximal dynamic flow problem for T time periods is to determine a flow
function g : A×H → N, which should satisfy the following conditions in dynamic

196 Camelia Schiopu

network D = (N,A, h, q) :

T∑
t=0

(g(1, N ; t)−
∑
τ

g(N, 1; τ)) = w (6a)

g(i,N ; t)−
∑
τ

g(N, i; τ) = 0, i 6= 1, n, t ∈ H (6b)

T∑
t=0

(g(n,N ; t)−
∑
τ

g(N,n; τ)) = −w (6c)

0 ≤ g(i, j; t) ≤ q(i, j; t), (i, j) ∈ A , t ∈ H (7)

max w, (8)

where τ = t−h(k, i; τ), w =
T∑
t=0

v(t), v(t) is the flow value at time t and g(i, j; t) =

0 for all t ∈ {T − h(i, j; t) + 1, . . . , T}.
Obviously, the problem of finding a maximum flow in dynamic network D =

(N,A, h, q) is more complex than the problem of finding a maximum flow in
static network G = (N,A, u). Happily, this complication can be resolved by
rephrasing the problem in dynamic network D into a problem in static network
R1 = (V1, E1, u1) called the reduced expanded network.

The static expanded network of dynamic network D = (N,A, h, q) is the
network R = (V,E, u) with V = {it|i ∈ N, t ∈ H}, E = {(it, jθ)|(i, j) ∈ A, t ∈
{0, 1, . . . , T − h(i, j; t)}, θ = t+ h(i, j; t), θ ∈ H}, u(it, jθ) = q(i, j; t), (it, jθ) ∈ E.
The number of nodes in static expanded network R is n(T+1) and number of arcs

is limited by m(T + 1) −
∑
A

◦
h(i, j), where

◦
h(i, j) = min{h(i, j; 0), . . . , h(i, j;T)}.

It is easy to see that any flow in dynamic network D from the source node 1 to the
sink node n is equivalent to a flow in static expanded network R from the source
nodes 10, 11, . . . , 1T to the sink nodes n0, n1, . . . , nT and vice versa. We can further
reduce the multiple source, multiple sink problem in static expanded network R
to a single source, single sink problem by introducing a supersource node 0 and a
supersink node n+1 constructing static super expanded networkR2 = (V2, E2, u2),
where V2 = V ∪ {0, n + 1}, E2 = E ∪ {(0, 1t)|t ∈ H} ∪ {(nt, n + 1)|t ∈ H},
u2(it, jθ) = u(it, jθ), (it, jθ) ∈ E, u2(0, 1t) = u2(nt, n+ 1) =∞, t ∈ H.

We construct the static reduced expanded networkR1 = (V1, E1, u1) as follows.
We define the function h2 : E2 −→ N, with h2(0, 1t) = h2(nt, n + 1) = 0, t ∈ H,
h2(it, jθ) = h(i, j; t), (it, jθ) ∈ E. Let d2(0, it) be the length of the shortest path
from the source node 0 to the node it, and d2(it, n+ 1) the length of the shortest
path from node it to the sink node n + 1, with respect to h2 in network R2.
The computation of d2(0, it) and d2(it, n + 1) for all it ∈ V are performing by
means of the usual shortest path algorithms. The network R1 = (V1, E1, u1) has
V1 = {0, n+1}∪{it|it ∈ V, d2(0, it)+d2(it, n+1) ≤ T}, E1 = {(0, 1t)|d2(1t, n+1) ≤
T, t ∈ H}∪{(it, jθ)|(it, jθ) ∈ E, d2(0, it)+h2(it, jθ)+d2(jθ, n+1) ≤ T}∪{(nt, n+
1)|d2(0, nt) ≤ T, t ∈ H} and u1 are restrictions of u2 at E1.

The maximum flows in bipartite dynamic networks 197

Now, we construct the static reduced expanded network R1 = (V1, E1, u1) us-
ing the notion of dynamic shortest path. The dynamic shortest path problem is
presented in [3]. Let d(1, i; t) be the length of the dynamic shortest path at time t
from the source node 1 to the node i and d(i, n; t) the length of the dynamic short-
est path at time t from the node i to the sink node n, with respect to h in dynamic
network D. Let us consider Hi = {t|t ∈ H, d(1, i; t) ≤ t ≤ T − d(i, n; t)}, i ∈ N ,
and Hi,j = {t|t ∈ H, d(1, i; t) ≤ t ≤ T − h(i, j; t)− d(j, n; θ)}, (i, j) ∈ A. The mul-
tiple source, multiple sinks static reduced expanded network R0 = (V0, E0, l0, u0)
has V0 = {it|i ∈ N, t ∈ Hi}, E0 = {(it, jθ)|(i, j) ∈ A, t ∈ Hi,j}, u0(it, jθ) =
u1(i, j; t), (it, jθ) ∈ E0. The static reduced expanded network R1 = (V1, E1, l1, u1)
is constructed from network R0 as follows: V1 = V0 ∪ {0, n + 1}, E1 = E0 ∪
{(0, 1t)|1t ∈ V0} ∪ {(nt, n+ 1)|nt ∈ V0}, u1(0, 1t) = u1(nt, n+ 1) =∞, 1t, nt ∈ V0
and u1(it, jθ) = u0(it, jθ), (it, jθ) ∈ E0.

We remark the fact that the static reduced expanded network R1 is always a
partial subnetwork of static super expanded network R2. In references [4], [5] it is
shown that a dynamic flow for T periods in the dynamic network D is equivalent
with a static flow in a static reduced expanded network R1. Since an item released
from a node at a specific time does not return to the location at the same or an
earlier time, the static networks R,R2, R1 cannot contain any circuit, and are
therefore acyclic always.

In the most general dynamic model, the parameter h (i) = 1 is waiting time
at node i, and the parameter q(i; t) is upper bound for flow g(i; t) that can wait
at node i from time t to t+ 1. This most general dynamic model is not discussed
in this paper.

The maximum flow problem for T time periods in dynamic network D formu-
lated in conditions (1), (2), (3) is equivalent with the maximum flow problem in
static reduced expanded network R1 as follows:

f1(it, V1)− f1(V1, it) =

v1, if it = 0 (9a)

0, if it 6= 0, n+ 1 (9b)

−v1, if it = n+ 1 (9c)

0 ≤ f1(it, jθ) ≤ u1(it, jθ), (it, jθ) ∈ E1 (10)

max v1, (11)

where by convention it = 0 for t = −1 and it = n+ 1 for t = T + 1.

If T is very large, then the static reduced expanded network R1 becomes very
large and the number of calculations required to find a maximum flow in network
R1 becomes prohibitively large. Happily, Ford and Fulkerson [5] have devised an
algorithm that generates a maximum flow in dynamic network D. This algorithm
works only when h and q are constant over time. If h and q are constant over
time, then a dynamic network D is said to be stationary.

The algorithm for maximum dynamic flow in stationary dynamic network
D = (N,A, h, q) is presented in Figure 1.

198 Camelia Schiopu

1: MDFSDN;
2: BEGIN

3: AMVMCSF(G,
∗
f∗);

4: ADSFEF(
∗
f∗, r(P1), . . . , r(Pk));

5: ARPF(r(P1), . . . , r(Pk));
6: END.

Figure 1: Algorithm for maximum dynamic flow in stationary dynamic network.

The procedure AMVMCSF performs the algorithm for maximum value and

minimum cost flow
∗
f∗ in static network G = (N,A, c, u), where c(i, j) = h(i, j),

u(i, j) = q(i, j), (i, j) ∈ A. Let O(n,m, h̄, q̄) be the complexity of procedure
AMVMCSF with h̄ = max{h(i, j)|(i, j) ∈ A}, q̄ = max{q(i, j)|(i, j) ∈ A}. The

procedure ADSFEF performs the algorithm for decomposition of static flow
∗
f∗ in

elementary flows (path flows) with r(Ps) the flow along the path Ps, s = 1, . . . , k,
from source node 1 to sink node n. This algorithm has the complexity O(m2). We
remark the fact that it is necessary that c(Ps) ≤ T, s = 1, . . . , k. The procedure
ARPF performs the algorithm to repeat each path flow, starting out from source
node 1 at time periods 0 and repeat it after each time period as long as there is
enough time left in the horizon for the flow along the path to arrive at the sink
node n. This algorithm has complexity O(nT). Hence, the algorithm MDFSDN
has complexity O(max{O(n,m, h̄, ū), nT}). The dynamic flow obtained with the
algorithm MDFSDN is called temporally repeated flow and has the value:

∗
w = (T + 1)

∗
v∗ −

∑
A

h(i, j)
∗
f∗(i, j) (12)

where
∗
v∗ is value of maximum flow and minimum cost static flow

∗
f∗.

In stationary case the dynamic distances d(1, i; t), d(i, n; t) become static dis-
tances d(1, i), d(i, n).

4 Flows in bipartite static networks

In this section we consider that static network G = (N,A, u) is bipartite static
network. A bipartite network has the node set N partitioned into two subsets N1

and N2, so that for each arc (i, j) ∈ A, either i ∈ N1 and j ∈ N2 or i ∈ N2

and j ∈ N1. Let n1 = |N1| and n2 = |N2|. Without any loss of generality, we
assume that n1 ≤ n2. We also assume that source node 1 belongs to N2 (if the
source node 1 belonged to N1, then we could create a new source node 1

′ ∈ N2,
and we could add an arc (1

′
, 1) with u(1

′
, 1) = ∞. A bipartite network is called

unbalanced if n1 << n2 and balanced otherwise.

The observation of Gusfield, Martel, and Fernandez-Baca [6] that the time
bounds for several maximum flow algorithms automatically improve when the

The maximum flows in bipartite dynamic networks 199

algorithms are applied without modification to unbalanced networks. A careful
analysis of the running times of these algorithms reveals that the worst case
bounds depend on the number of arcs in the longest node simple path in the
network. We denote this length by L. For general network, L ≤ n − 1 and for a
bipartite network L ≤ 2n1 + 1. Hence for unbalanced bipartite network L << n.
Column 3 of Figure 2 summarizes these improvements for several network flow
algorithms.

Ahuja, Orlin, Stein, and Tarjan [2] obtain further running time improvements
by modifying the algorithms. This modification applies only to preflow push
algorithms [4]. They call it the two arcs push rule. According to this rule, always
push flow from a node in N1 and push flow on two arcs at a time, in a step called
a bipush, so that no excess accumulates at nodes in N2. Column 4 of Figure 2
summarizes the improvements obtained using this approach.

Algorithm Running time, Running time, Running time

general network bipartite network modified version

Maximum flows

Dinic n2m n2
1m does not apply

Karazanov n3 n2
1n n1m + n3

1

FIFO preflow n3 n2
1n n1m + n3

1

Highest label preflow n2√m n1n
√
m n1m

Excess scaling nm + n2 log ū n1m + n1n log ū n1m + n2
1 log ū

Minimum cost flows

Cost scaling n3 log(nc̄) n2
1n log(n1c̄) n1m + n3

1 log(n1c̄)

Figure 2: Several maximum flows algorithms and minimum cost flows algorithm.

These ideas are also extended to minimum cost flows. The cost scaling algo-
rithm of Goldberg and Tarjan relies on the concept of approximate optimality [1].
The running time for general network or bipartite network and running time for
modified version are presented in Figure 2. We denote ū = max{u(i, j)|(i, j) ∈ A}
and c̄ = max{c(i, j)|(i, j) ∈ A}.

The reader interested in further details is urged to consult the book [1] and
the paper [2].

5 Maximum flows in bipartite dynamic networks

In this section we consider the maximum flows in bipartite dynamic networks
in the stationary case i.e. h(i, j; t) = h(i, j), q(i, j; t) = q(i, j), (i, j) ∈ A, t ∈ H.
We use the algorithm MDFSDN which has been presented in Section 3. In this
Section the dynamic network D = (N,A, h, q) is bipartite.

We consider the bipartite static network G = (N,A, c, u) where c(i, j) =
h(i, j), u(i, j) = q(i, j), (i, j) ∈ A. The procedure AMVMCSF from algo-
rithm MDFSDN performs the algorithm for maximum value and minimum cost

200 Camelia Schiopu

flow
∗
f∗ in bipartite static network. The modified version of cost scaling al-

gorithm for bipartite static network G starts with any feasibly flow. In this

case the feasible flow is a maximum flow
∗
f . We determine a flow

∗
f with max-

imum value with modified version of FIFO preflow which has the complexity
O(n1m+ n31). The modified version of cost scaling algorithm has the complexity
O(n1m+ n31 log(n1c̄)) = O(n1m+ n31 log(n1h̄)).

Theorem 1. The algorithm MDFSDN correctly computes the maximum flow in
bipartite stationary dynamic network.

Proof. The algorithm MDFSDN correctly computes the maximum flow in general
stationary dynamic network. Obviously that the algorithm is correct for bipartite
stationary dynamic network too.

Theorem 2. The algorithm MDFSDN applied on bipartite stationary dynamic
network has the complexity O(max{n1m+ n31 log(n1h̄), nT}).

Proof. The algorithm MDFSDN applied on general stationary dynamic network
has the complexity O(max{O(n,m, h̄, ū), nT}). In the bipartite stationary dy-
namic network we have O(n,m, h̄, ū) = O(n1m + n31 log(n1, h̄)). Hence the algo-
rithm MDFSDN applied on bipartite stationary dynamic network has the com-
plexity O(max{n1m+ n31 log(n1h̄), nT}).

6 Example

The support digraph of bipartite stationary dynamic network is presented
in Figure 3 and time horizon being set T = 5, therefore H = {0, 1, 2, 3, 4, 5}.
The transit times h(i, j) and the upper bounds (capacities) q(i, j) for all arcs are
indicated in Figure 4.

2

1

3

4

5

6

7

Figure 3: The suport digraph of network D = (N,A, h, q)

The maximum flows in bipartite dynamic networks 201

(i, j) (1, 2) (1, 3) (2, 4) (2, 5) (2, 6) (3, 4) (3, 6) (4, 7) (5, 3) (5, 7) (6, 7)

h(i, j) 1 1 3 1 2 3 1 1 1 1 1

q(i, j) 12 10 8 3 3 4 5 12 3 4 10

∗
f(i, j) 12 9 8 1 3 4 5 12 0 1 8

∗
f∗(i, j) 12 9 6 3 3 4 5 10 0 3 8

Figure 4: The functions h, q,
∗
f ,

∗
f∗

The maximum flow
∗
f and the maximum flow of minimum cost

∗
f∗ obtained

with the procedure AMVMCSF in bipartite static network G = (N,A, c, u) are
presented in Figure 4.

Applying the procedure ADSFEF we obtain the results which are indicated in
Figure 5.

Ps r(Ps) h(Ps) γ(Ps)

P1 = (1, 2, 5, 7) 3 3 3

P2 = (1, 3, 6, 7) 5 3 3

P3 = (1, 2, 6, 7) 3 4 2

P4 = (1, 2, 4, 7) 6 5 1

P5 = (1, 3, 4, 7) 4 5 1

Figure 5: The results of procedure ADSFEF

The procedure ARPF generates the flow f0 in network R0 = (V0, E0, u0).
The network R0 with the flow f0 is presented in Figure 6. With formula (12)

we obtain
∗
w0 = (5 + 1) · 21 − (1 · 12 + 1 · 9 + 3 · 6 + 1 · 3 + 2 · 3 + 3 · 4 + 1 ·

5 + 1 · 10 + 1 · 0 + 1 · 3 + 1 · 8) = 126 − 86 = 40. A minimum (10, 11, 12) −
(73, 74, 75) cut in static network R0 is

[
Y0, Ȳ0

]
= (Y0, Ȳ0)

⋃
(Ȳ0, Y0) with Y0 =

{10, 11, 12, 22, 23, 31, 32, 33} and Ȳ0 = {21, 44, 52, 53, 54, 62, 63, 64, 73, 74, 75}. Hence[
Y0, Ȳ0

]
= {(10, 21), (22, 53), (22, 64), (23, 54), (31, 62), (31, 44), (32, 64)} ∪ {(52, 33)}.

We have w0 = f0(Y0, Ȳ0) − f0(¯Y0, Y0) = 40 − 0 = 40 = u0(Y0, Ȳ0). Hence f0 is a

maximum flow, i.e.
∗
f0 = f0 and

∗
w0 = 40 = w0.

202 Camelia Schiopu

10

11

12

21

22

23

31

32

33

44 54

53

52 62

63

64

73

74

75

12

9

6

5

3

5

6

3

3

3

3

3

4

5

5

5

10

0 3

3

3

5

8

8

Figure 6: The network R0 = (V0, E0, u0) with flow
∗
f0 = f0.

We remark that γ(Ps) = (T + 1)− h(Ps).

References

[1] Ahuja, R., Magnanti, T. and Orlin, J., Network Flows. Theory, algorithms
and applications, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1993.

[2] Ahuja, R., Orlin, J., Stein, C. and Tarjan, R., Improved algorithms for bipar-
tite network flows, SIAM Journal of Computing, 23, (1994), 906-933.

[3] Cai, X., Sha, D. and Wong, C., Time-varying Nework Optimization, Springer,
2007.

[4] Ciurea, E., Second best temporally repeated flow, Korean Journal of Compu-
tational and Applied Mathematics, 9, (2002), no. 1, 77-86.

[5] Ford, L. and Fulkerson, D., Flow in Networks., Princeton University Press,
Princenton, New Jersey, 1962.

[6] Gusfield, D., Martel, C. and Fernandez-Baca, D., Fast algorithms for bipartite
network flow, SIAM Journal of Computing, 16, (1987), 237-251.

[7] Wilkinson, W., An algorithm for universal maximal dynamic flows in net-
work, Operation Research, 19, (1971), 1602-1612.

