ON MASTROIANNI OPERATORS AND THEIR DURRMEYER TYPE GENERALIZATION

Cristina Sanda CISMAŞIU ${ }^{1}$

Communicated to:
International Conference on Mathematics and Computer Science,
June 26-28, 2014, Braşov, Romania

Abstract

In this paper, we define and study some approximation properties of a Durrmeyer type operators associated with Mastroianni operators.

2000 Mathematics Subject Classification: 41A36, 41A25. Key words: Mastroianni operator, operator of Durrmeyer type, approximation properties.

1 Introduction

In [5], [6] G. Mastroianni defined and studied a general class of linear positive approximation operators, which was generalized by O. Agratini, B. Della Vechia [1]. Briefly we recall this construction. Let $\left(\Phi_{n}\right)_{n \geq 1}$ be a sequence of real functions defined on $[0, \infty):=\mathbb{R}_{+}$which are infinitely differentiable on \mathbb{R}_{+}and satisfy the following conditions:
(i). $\Phi_{n}(0)=1, n \in \mathbb{N}$;
(ii). $(-1)^{k} \Phi_{n}^{(k)}(x) \geq 0$, for every $n \in \mathbb{N}, x \in \mathbb{R}_{+}$and $k \in \mathbb{N} \cup\{0\}:=\mathbb{N}_{0}$;
(iii). for each $(n, k) \in \mathbb{N} \times \mathbb{N}_{0}$ there exists a number $p(n, k) \in \mathbb{N}$ and a function $\alpha_{n, k} \in \mathbb{R}^{\mathbb{R}}$ such that

$$
\begin{equation*}
\Phi_{n}^{(i+k)}(x)=(-1)^{k} \Phi_{p(n, k)}^{(i)}(x) \alpha_{n, k}(x), i \in \mathbb{N}_{0}, x \in \mathbb{R}_{+} \tag{1}
\end{equation*}
$$

and

[^0](iv). $\lim _{n \rightarrow \infty} \frac{n}{p(n, k)}=\lim _{n \rightarrow \infty} \frac{\alpha_{n, k}(x)}{n^{k}}=1$.

Remark 1. It is easy to see that the next relation is true

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\Phi_{n}^{(k)}(0)}{n^{k}}=\lim _{n \rightarrow \infty} \frac{(-1)^{k} \alpha_{n, k}(0)}{n^{k}}=(-1)^{k} \tag{2}
\end{equation*}
$$

The Mastroianni operators $M_{n}: C_{2}\left(\mathbb{R}_{+}\right) \longrightarrow C\left(\mathbb{R}_{+}\right)$are defined by the following formula

$$
\begin{equation*}
M_{n}(f, x)=\sum_{k=0}^{\infty} m_{n, k}(x) f\left(\frac{k}{n}\right) \tag{3}
\end{equation*}
$$

with the basis functions,

$$
\begin{equation*}
m_{n, k}(x)=\frac{(-x)^{k} \Phi_{n}^{(k)}(x)}{k!} \tag{4}
\end{equation*}
$$

and $C_{2}\left(\mathbb{R}_{+}\right)=\left\{f \in C\left(\mathbb{R}_{+}\right) \left\lvert\,(\exists) \lim _{x \rightarrow \infty} \frac{|f(x)|}{1+x^{2}}<\infty\right.\right\}$. The space $C_{2}\left(\mathbb{R}_{+}\right)$endowed with the norm $\|f\|_{*}=\sup \left\{\frac{|f(x)|}{1+x^{2}}, x \geq 0\right\}$ is a Banach space. For these operators and for the test functions $e_{r}(x)=x^{r}, r=0,1,2$ we have

$$
\begin{align*}
& M_{n}\left(e_{0} ; x\right)=\Phi_{n}(0) \\
& M_{n}\left(e_{1} ; x\right)=-\frac{\Phi_{n}^{\prime}(0)}{n} x \tag{5}\\
& M_{n}\left(e_{2} ; x\right)=\frac{\Phi_{n}^{\prime \prime}(0) x^{2}-\Phi_{n}^{\prime}(0) x}{n^{2}}
\end{align*}
$$

Recent results about Durrmeyer type operators [2], [3], [4], [8], in terms of the hypergeometric and confluent hypergeometric functions, have considered the definition of the basis functions, the family's functions defined as:

$$
\Phi_{n, c}(x)= \begin{cases}e^{-n x} & , c=0, x \geq 0 \\ (1+c x)^{-\frac{n}{c}} & , c \in \mathbb{N}, x \geq 0\end{cases}
$$

For these functions we have
$\Phi_{n, c}^{(k+1)}(x)=-n \Phi_{n+c, c}^{(k)}(x), n>\max \{0,-c\}$ respectively
$\Phi_{n, c}^{(i+k)}(x)=(-1)^{k} n_{[k,-c]} \Phi_{n+k c, c}^{(i)}(x)$
where $n_{[k,-c]}=n(n+c)(n+2 c) \cdots(n+\overline{k-1} c)$ is the factorial power of the k-th order of n with the increment $-c$ and $n_{[0,-c]}=1$.

So, conditions (iii)-(iv) are true, for $p(n, k)=n+k c$ and $\alpha_{n, k}(x)=n_{[k,-c]}$.
In the next section we propose a Mastroianni -Durrmeyer operator, when the sequence of functions $\left(\Phi_{n}\right)_{n \geq 1}$ satisfy the conditions (i)-(iv) and other supplementary conditions.

2 Main results

We consider the sequence of functions $\left(\Phi_{n}\right)_{n \geq 1}$ which satisfy the conditions (i)-(iv) and the next supplementary conditions, for any $n \in \mathbb{N}$ and $r, k \in \mathbb{N}_{0}$:
(v). $\lim _{x \rightarrow \infty} x^{r} \Phi_{n}^{(k)}(x)=0$
(vi). (ヨ) $J_{n, k, r}:=\int_{0}^{\infty} x^{r} \Phi_{n}^{(k)}(x) d x<\infty,(\exists) J_{n, 0,0}:=\int_{0}^{\infty} \Phi_{n}(x) d x \neq 0$.

We define the operators of Durrmeyer type associated with Mastroianni operators (3)-(4) for each real value function $f \in \mathbb{R}^{\mathbb{R}_{+}}$for which the series exists:

$$
D M_{n}(f ; x)=\sum_{k=0}^{\infty} m_{n, k}(x) \frac{\int_{0}^{\infty} m_{n, k}(t) f(t) d t}{\int_{0}^{\infty} m_{n, k}(t) d t}=\int_{0}^{\infty} K_{n}(t, x) f(t) d t
$$

with the kernel $K_{n}(t, x)=\frac{1}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) m_{n, k}(t), I_{n, 0,0}=\int_{0}^{\infty} \Phi_{n}(t) d t \neq 0$.
Lemma 1. The next identity is true for any $n \in \mathbb{N}$ and $r, k \in \mathbb{N}_{0}$

$$
I_{n, k, r}=\frac{(r+1)_{k}}{k!} I_{n, 0, r},
$$

where $I_{n, k, r}:=\int_{0}^{\infty} t^{r} m_{n, k}(t) d t=\frac{(-1)^{k}}{k!} J_{n, k, r+k}$ and $(n)_{k}=n(n+1)(n+2) \cdots(n+$ $k-1)=n_{[k,-1]},(n)_{0}=1$ is the Pochhammer symbol (or the factorial power of the k-th order of n and the increment -1).
So, $(1)_{k}=k!,(2)_{k}=(k+1)$!.
The proof presupposes an easy computation using the identities:
$I_{n, 0, r}=J_{n, 0, r}=\int_{0}^{\infty} t^{r} \Phi_{n}(t) d t, r \geq 0$, (the moments of the r-th order reported to Φ_{n})
$I_{n, k, 0}=\int_{0}^{\infty} m_{n, k}(t) d t=\frac{(-1)^{k}}{k!} J_{n, k, k}$,
$J_{n, k, k}=(-1)^{k} k!J_{n, 0,0}, k \geq 0$,
$I_{n, k, 0}=I_{n, 0,0}=J_{n, 0,0}=\int_{0}^{\infty} \Phi_{n}(t) d t$,
$I_{n, k, r}=\int_{0}^{\infty} t^{r} m_{n, k}(t) d t=\frac{(-1)^{k}}{k!} \int_{0}^{\infty} t^{r+k} \Phi_{n}^{(k)}(t) d t=\frac{(r+1)_{k}}{k!} \int_{0}^{\infty} t^{r} \Phi_{n}(t) d t$
$=\frac{(r+1)_{k}}{k!} J_{n, 0, r}=\frac{(r+1)_{k}}{k!} I_{n, 0, r}$, (the moments of the r-th order reported to $m_{n, k}$).

Lemma 2. The moments of the operators $D M_{n}(f ; x)$ are given for $e_{r}(x)=$ $x^{r}, r \in \mathbb{N}_{0}$ as

$$
D M_{n}\left(e_{r} ; x\right)=\frac{I_{n, 0, r}}{I_{n, 0,0}} \sum_{k=0}^{\infty} \frac{(r+1)_{k}}{k!} m_{n, k}(x) .
$$

Futher, we have

$$
\begin{aligned}
D M_{n}\left(e_{0} ; x\right) & =1 \\
D M_{n}\left(e_{1} ; x\right) & =\frac{I_{n, 0,1}}{I_{n, 0,0}}\left(1-x \Phi_{n}^{\prime}(0)\right) \\
D M_{n}\left(e_{2} ; x\right) & =\frac{I_{n, 0,2}}{2 I_{n, 0,0}}\left(x^{2} \Phi_{n}^{\prime \prime}(0)-4 x \Phi_{n}^{\prime}(0)+2\right)
\end{aligned}
$$

Proof. Using lemma (1) we obtain

$$
\begin{aligned}
D M_{n}\left(e_{r} ; x\right) & =\frac{1}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) I_{n, k, r}=\frac{I_{n, 0, r}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(r+1)_{k}}{k!} . \\
D M_{n}\left(e_{0} ; x\right) & =\frac{1}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) I_{n, k, 0}=\frac{I_{n, 0,0}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(1)_{k}}{k!}=1, \\
D M_{n}\left(e_{1} ; x\right) & =\frac{1}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) I_{n, k, 1}=\frac{I_{n, 0,1}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(2)_{k}}{k!} \\
& =\frac{I_{n, 0,1}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(k+1)!}{k!}=\frac{I_{n, 0,1}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x)(k+1) \\
& =\frac{n I_{n, 0,1}}{I_{n, 0,0}}\left(M_{n}\left(e_{1} ; x\right)+\frac{1}{n}\right)=\frac{n I_{n, 0,1}}{I_{n, 0,0}}\left(-\frac{\Phi_{n}^{\prime}(0)}{n} x+\frac{1}{n}\right) \\
D M_{n}\left(e_{2} ; x\right) & =\frac{1}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) I_{n, k, 2}=\frac{I_{n, 0,2}}{I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(3)_{k}}{k!} \\
& =\frac{I_{n, 0,2}}{2 I_{n, 0,0}} \sum_{k=0}^{\infty} m_{n, k}(x) \frac{(k+2)!}{k!} \\
& =\frac{n^{2} I_{n, 0,2}}{2 I_{n, 0,0}}\left(M_{n}\left(e_{2} ; x\right)+\frac{3}{n} M_{n}\left(e_{1} ; x\right)+\frac{2}{n^{2}}\right) \\
& =\frac{n^{2} I_{n, 0,2}}{2 I_{n, 0,0}}\left(\frac{\Phi_{n}^{\prime \prime}(0) x^{2}-\Phi_{n}^{\prime}(0) x}{n^{2}}-\frac{3 \Phi_{n}^{\prime}(0) x}{n^{2}}+\frac{2}{n^{2}}\right) .
\end{aligned}
$$

Theorem 1. If $\lim _{n \rightarrow \infty} \frac{n^{r} I_{n, 0, r}}{r!I_{n, 0,0}}=1, r=0,1,2$, then $\lim _{n \rightarrow \infty} D M_{n}(f ; x)=f(x)$, $(\forall) f \in C_{2}\left(\mathbb{R}_{+}\right)$. The convergence is uniform on each compact $[0, b], b>0$ and

$$
\left|D M_{n}(f ; x)-f(x)\right| \leq 2 \omega\left(f, \delta_{n}(x)\right), \text { with }
$$

$\delta_{n}(x)=\left\{\frac{I_{n, 0,2}}{2 I_{n, 0,0}}\left(x^{2} \Phi_{n}^{\prime \prime}(0)-4 x \Phi_{n}^{\prime}(0)+2\right)-2 x \frac{I_{n, 0,1}}{I_{n, 0,0}}\left(1-x \Phi_{n}^{\prime}(0)\right)+x^{2}\right\}^{\frac{1}{2}}$.
Proof. Because $\lim _{n \rightarrow \infty} \frac{\Phi_{n}^{(k)}(0)}{n^{k}}=\lim _{n \rightarrow \infty} \frac{(-1)^{k} \alpha_{n, k}(0)}{n^{k}}=(-1)^{k}$ and $\lim _{n \rightarrow \infty} \frac{n^{r} I_{n, 0, r}}{r!I_{n, 0,0}}=1$, $r=0,1,2$ we have $\lim _{n \rightarrow \infty} D M_{n}\left(e_{r} ; x\right)=e_{r}(x), r=0,1,2$ and so, the BohmannKorovkin assure a part of the conclusions of the theorem.

On the other hand, using a result of O. Shisha, B. Mond [7] with the continuity modulus of f, we obtain a quantitative estimation of the remainder of the approximation formula:

$$
\left|D M_{n}(f ; x)-f(x)\right| \leq\left(1+\delta_{n}^{-1}(x) \sqrt{D M_{n}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right)}\right) \omega\left(f, \delta_{n}(x)\right)
$$

with $D M_{n}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right)=$
$=\frac{I_{n, 0,2}}{2 I_{n, 0,0}}\left(x^{2} \Phi_{n}^{\prime \prime}(0)-4 x \Phi_{n}^{\prime}(0)+2\right)-2 x \frac{I_{n, 0,1}}{I_{n, 0,0}}\left(1-x \Phi_{n}^{\prime}(0)\right)+x^{2}$.

References

[1] Agratini, O. and Della Vechia, B., Mastroianni operators revisited, Facta Universitatis (Nis), Ser. Math. Inform. 19 (2004), 53-63.
[2] Govil, N. K., Gupta, V. and Soybaş, D., Certain new classes of Durrmeyer type operators, Applied Mathematics and Computation 225 (2013), 195-203.
[3] Gupta, V., Combinations of integral operators, Applied Mathematics and Computation 224 (2013), 876-881.
[4] Gupta, V., A new class of Durrmeyer operators, Advanced Studies in Contemporary Mathematics 23 (2013), no. 2, 219-224.
[5] Mastroianni, G., Su un operatore lineare e positivo, Rend. Acc. Sc. Fis. Mat., Napoli (4) 46 (1979), 161-176.
[6] Mastroianni, G., Su una classe di operatori e positivi, Rend. Acc. Sc. Fis. Mat., Napoli (4) 48 (1980), 217-235.
[7] Shisha, O. and Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1196-1200.
[8] Srivastava, H. M. and Gupta, V., A Certain Family of Summation-Integral Type Operators, Matematical and Computer Modelling 37 (2003), 1307-1315.

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: c.cismasiu@unitbv.ro

