Bulletin of the *Transilvania* University of Braşov • Vol 7(56), No. 2 - 2014 Series III: Mathematics, Informatics, Physics, 65-72

ON LIFTS OF LEFT-INVARIANT HOLOMORPHIC VECTOR FIELDS IN COMPLEX LIE GROUPS

Alexandru IONESCU¹

Communicated to: International Conference on Mathematics and Computer Science, June 26-28, 2014, Braşov, Romania

Abstract

In this paper the complete, vertical and horizontal lifts of left invariant holomorphic vector fields to the holomorphic tangent bundle $T^{1,0}G$ of a complex Lie group G are studied.

2000 Mathematics Subject Classification: 22E10, 32M05, 53B20, 53B21, 53C25.

Key words: Complex Lie group, tangent group, left invariant holomorphic vector field, complete, vertical and horizontal lift.

1 Introduction

The study of complete, vertical and horizontal lifts of left-invariant vector fields on both tangent and tensor bundles of (2,0) type over a real Lie group was initiated and intensively studied in [6, 7, 8]. The aim of this note is to obtain a complex analytic version of these notions on the holomorphic tangent bundle of a complex Lie group.

The paper is organized as follows. In the second section we present the complex Lie group structure of the holomorphic tangent bundle $T^{1,0}G$ of a complex Lie group G and we construct the complete and vertical lifts of left-invariant holomorphic vector fields on $T^{1,0}G$. In the third section we consider a holomorphic horizontal distribution on $T^{1,0}G$ defined by a linear holomorphic connection on G. In the last section we construct horizontal lifts of left-invariant holomorphic vector fields on $T^{1,0}G$ and we give necessary and sufficient conditions for the horizontal lifts of left-invariant holomorphic vector fields to be left-invariant on $T^{1,0}G$.

¹Faculty of Mathematics and Computer Science, *Transilvania* University of Braşov, Romania, e-mail: alexandru.codrin.ionescu@gmail.com

2 The complex Lie group structure of the holomorphic tangent bundle $T^{1,0}G$

Let G be a complex Lie group. Let us denote by $(u, v) \to w = uv$ the composition law of the complex Lie group G, by S – the inverse mapping $u \to u^{-1}$ and by R_a and L_a , the left and right transitions of the group, respectively, where $a \in G$. These mappings are holomorphic, see [5]. We can now define a composition law " \circ " on $T^{1,0}G$.

Let $U = (u, \eta_u), V = (v, \eta_v)$ be two holomorphic vector fields on $T^{1,0}G$. Then

$$(u, \eta_u) \circ (v, \eta_v) = (uv, L_*(u)\eta_v + R_*(v)\eta_u)$$
(1)

defines a holomorphic composition law on $T^{1,0}G$. In local coordinates, we have

$$w^{k} = \varphi^{k}(u^{i}, v^{j}), \ \eta^{i}_{w} = L^{i}_{s}(u)\eta^{s}_{v} + R^{k}_{s}(v)\eta^{s}_{u}.$$
(2)

Theorem 1. The holomorphic tangent bundle $T^{1,0}G$ is a complex Lie group with respect to the composition law defined in (1).

Proof. The identity of the group $T^{1,0}G$ is E = (e, 0), where e is the identity of G. Indeed, one has

$$(u, \eta_u) \circ (e, 0) = (ue, L_*(u) \cdot 0 + R_*(e) \cdot \eta_u) = (u, \eta_u).$$

Similarly, $(e, 0) \circ (u, \eta_u) = (u, \eta_u).$

For the inverse of $U \in T^{1,0}G$, $U \circ V = E$ yields uv = e and $L_*(u)\eta_v + R_*(v)\eta_u = 0$. These imply $v = u^{-1}$ and $\eta_v = -L_*^{-1}(u)R_*^{-1}(u)\eta_u = S_*\eta_u$. Therefore,

$$U^{-1} = (u^{-1}, S_* \eta_u), \tag{3}$$

where $S_* = -L_*^{-1}(u)R_*^{-1}(u)$.

In order to prove the associativity of the composition law (1), one has, on the one hand,

$$(u, \eta_u) \circ (v, \eta_v) = (uv, L_*(u)\eta_v + R_*(v)\eta_u) = (uv, \tau_{uv}),$$
$$((u, \eta_u) \circ (v, \eta_v)) \circ (z, \eta_z) = ((uv)z, L_*(uv)\eta_z + R_*(z)\tau_{uv})$$

and, on the other hand,

$$(v, \eta_v) \circ (z, \eta_z) = (vz, L_*(v)\eta_z + R_*(z)\eta_v) = (vz, \zeta_{vz}),$$
$$(u, \eta_u) \circ ((v, \eta_v) \circ (z, \eta_z)) = (u(vz), L_*(u)\zeta_{vz} + R_*(vz)\eta_u).$$

But G is a complex Lie group and by using $L_*(uv) = L_*(u)L_*(v)$, $R_*(uv) = R_*(u)R_*(v)$ and $L_*(u)R_*(v) = R_*(v)L_*(u)$, the associativity is also proved. Therefore, $T^{1,0}G$ is a complex Lie group with the composition law (1). **Remark 1.** Let $\omega_u \in (T^{1,0}G)^*$ be a holomorphic 1-form on G. One has

$$\omega_u(\eta_u) = \omega_u(S_*\eta_{u^{-1}}) = S^*\omega_u(\eta_{u^{-1}}) = \omega_{u^{-1}}(\eta_{u^{-1}}),$$

such that $\omega_u(\eta_u) = \omega_{u^{-1}}(S_*\eta_u)$. Therefore,

$$(u, \omega_u)^{-1} = (u^{-1}, S^{*-1}\omega_u) \tag{4}$$

is the inverse of $(u, \omega_u) \in (T^{1,0}G)^*$.

Let us now extend the notion of left-invariance on Lie groups to holomorphic vector fields on complex Lie groups. Recall that a holomorphic vector field ξ on G is called left-invariant if

$$L_*(a)\xi(u) = \xi(au)$$

for any $u \in G$. For u = e, we have

$$\xi(a) = L_*(a)z,$$

where z is a holomorphic vector field on the complex Lie group G. In local coordinates,

$$\xi^i(a) = L^i_i(a) z^j,$$

where

$$L_j^i(a) = (\partial_{u^j} \varphi^j(a, u))_e,$$

and $\partial_{u^j} = \partial_j = \frac{\partial}{\partial u^j}$.

Now we can apply these considerations to the complex Lie group $T^{1,0}G$. If we denote by L(A) the matrix of the holomorphic composition law (1), locally given by (2), then a left-invariant holomorphic vector field ξ satisfies

$$\xi(A) = L_*(A)Z,$$

where $A \in T^{1,0}G$ and Z is a holomorphic vector field. If we put U = A and V = E in (1), its Jacobi matrix is

$$L_{*}(A) = \begin{pmatrix} L_{*}(a) & 0\\ (\partial_{u}R_{*}(u))_{e}\eta_{a} & L_{*}(a) \end{pmatrix}.$$
 (5)

From (2), we obtain the following local representations:

$$L_*(A) = (L_j^i(a)), \quad (\partial_u R_*(u))_e \eta_a = (R_{sj}^i(a)\eta_a^j), \tag{6}$$

where

$$R_{sj}^{i}(a) = \left(\frac{\partial^{2}\varphi^{i}(a,u)}{\partial u^{s}\partial a^{j}}\right)_{u=e}.$$
(7)

As a consequence, one has

$$\xi(A) = L_j^i(a) z^j \partial_i + [R_{si}^k(a) \eta_a^i z^s + L_i^k(a) \dot{z}^i] \dot{\partial}_k, \tag{8}$$

where $\dot{\partial}_k = \frac{\partial}{\partial \eta^k}$ and (z^i, \dot{z}^j) are the components of $Z \in T^{1,0}G$.

Let us denote by $E_{\alpha}(A) = (e_i(A), \dot{e}_j(A))$, where

$$e_i(A) = L_i^j(a)\partial_j + R_{ij}^k(a)\eta_a^j \dot{\partial}_k, \quad \dot{e}_j(A) = L_j^s(a)\dot{\partial}_s \tag{9}$$

are called the *complete* and *vertical lifts* of A, respectively.

With these notations, formula (8) suggests the following decomposition:

$$Z(A) = z^i e_i(A) + \dot{z}^j \dot{e}_j(A).$$

A similar calculation as in the real case, see [6], leads to the following expression of Lie brackets of holomorphic vector fields given by (9):

$$[e_i, e_j] = c_{ij}^k e_k, \ [e_i, \dot{e}_j] = c_{ij}^k \dot{e}_k, \ [\dot{e}_i, \dot{e}_j] = 0,$$
(10)

where c_{ij}^k are the usual structure constants of the complex Lie group G.

Also, the structure equations of the complex Lie group $T^{1,0}G$ with respect to the dual basis $\{\widetilde{\omega}^i = (\omega^i)^v, \widetilde{\omega}^{n+i} = (\omega^i)^c\}$ of $\{e_i, \dot{e}_j\}$, given by vertical and complete lifts of the 1-forms $\{\omega^i\}$ on G, can be expressed as follows:

$$\partial \widetilde{\omega}^{i} = -\frac{1}{2} c^{i}_{jk} \widetilde{\omega}^{j} \wedge \widetilde{\omega}^{k}, \ \partial \widetilde{\omega}^{n+i} = -\frac{1}{2} c^{i}_{jk} \widetilde{\omega}^{j} \wedge \widetilde{\omega}^{n+k}.$$
(11)

3 Holomorphic connections on $T^{1,0}G$

Let us consider the holomorphic projection $\pi : T^{1,0}G \to G$. Its holomorphic tangent map $\pi_* : T^{1,0}(T^{1,0}G) \to T^{1,0}G$ is a morphism of holomorphic tangent bundles, which maps a holomorphic vector U at point $Z \in T^{1,0}G$ to a holomorphic vector $u = \pi_*U$ at point $\pi(Z)$. As a result, we have the vertical subbundle

$$V^{1,0}(T^{1,0}G) = \ker \pi_* \subset T^{1,0}(T^{1,0}G),$$

which is holomorphic, and its sections are called *vertical vector fields* on $T^{1,0}G$. Vertical subspaces make up an involutive distribution on the manifold $T^{1,0}G$.

The holomorphic tangent bundle $T^{1,0}G$ is said to be endowed with a *complex nonlinear connection* if there is a complex distribution $H^{1,0}(T^{1,0}G)$ which is complementary to the vertical distribution, that is

$$T^{1,0}(T^{1,0}G) = H^{1,0}(T^{1,0}G) \oplus V^{1,0}(T^{1,0}G).$$

A horizontal distribution $H^{1,0}(T^{1,0}G)$ on the holomorphic tangent bundle $T^{1,0}G$ can be locally specified by the projected vector fields

$$\partial_i^H = \partial_i - N_i^j(Z)\dot{\partial}_j,$$

which are π -connected with the vector fields ∂_i of the natural frame field on the base manifold $T^{1,0}G$.

68

Generally, we notice that the horizontal distribution $H^{1,0}(T^{1,0}G)$ is not a holomorphic one. If the functions $N_i^j(Z)$ depend linearly and uniformly on the fiber coordinates η^j , that is,

$$N_j^i(z^k, \eta_z^k) = N_{il}^j(z^k)\eta_z^l,$$

the connection is said to be *linear*. Thus, the linear connection is specified by the functions $N_{il}^j(z)$, called the components of the linear connection. If, moreover, the linear connection is holomorphic, then the horizontal distribution defined by it is a holomorphic one.

Since any complex Lie group is a complex parallelizable manifold, see [10], there are canonical linear holomorphic connections on it. Let us consider the left connection $\hat{\nabla}$ with respect to which the left-invariant vector fields are absolutely parallel:

$$\widehat{\nabla}_{\partial_i} L^k_j \partial_k = (L^r_j \widehat{\Gamma}^k_{ir} + \partial_i L^k_j) \partial_k = 0.$$

Thus, the coefficients of the left holomorphic connection have the form

$$\widehat{\Gamma}_{ij}^k(z) = -\widetilde{L}_j^r(z)\partial_i L_r^k(z) = L_r^k(z)\partial_i \widetilde{L}_j^r(z),$$
(12)

where $(\widetilde{L}_{j}^{r}(z))$ is the inverse of the matrix $(L_{j}^{r}(z))$.

4 Horizontal and vertical lifts

Let $U = U^i \dot{\partial}_i \in V_E^{1,0}(T^{1,0}G)$ be an arbitrary vertical holomorphic vector field, acted upon by the differential of the left translation (5). Then

$$U(Z) = L_*(Z)U = L^i_i(z)U^j\dot{\partial}_i,$$

which shows that $U(Z) \in V_Z^{1,0}(T^{1,0}G)$. Thus, we have

Proposition 1. The vertical distribution $V^{1,0}(T^{1,0}G) \subset T^{1,0}G$ is left-invariant.

In the following, we consider a holomorphic horizontal distribution defined by a linear holomorphic connection. Let $E_i(Z) = e_i^H(Z)$ be the horizontal lift of a left-invariant holomorphic vector field $e_i(z)$ on G. The mapping of the horizontal lift, i.e. the linear isomorphism $H: T_z^{1,0}G \to H_Z^{1,0}(T^{1,0}G)$, commutes with the differential of the left translation:

$$E_i(Z) = e_i^H(Z) = (L_*(z)\partial_i)^H = L_*(Z)\partial_i^H$$

We shall now analyze the conditions under which E_i are left-invariant vector fields. The condition of left-invariance of E_i is

$$E_i(AZ) = L_*(A)E_i(Z), \tag{13}$$

where $A \in T^{1,0}G$. In local coordinates with respect to the natural field of frames E_i , the left-invariance condition has the form

$$E_i(Z) = L_i^k(z)(\partial_k - N_{kl}^j(z)\eta_z^l\dot{\partial}_j)$$

Then

$$L_{*}(A)E_{i}(Z) = L_{j}^{k}(a)L_{i}^{j}(z)\partial_{k} - (R_{sj}^{l}(a)\eta_{a}^{s}L_{i}^{j}(z) + L_{s}^{l}(a)L_{i}^{k}(z)N_{kr}^{s}\eta_{z}^{r})\dot{\partial}_{l}.$$
 (14)

On the other hand,

$$E_i(AZ) = L_i^k(az)(\partial_k - N_{kl}^j(az)\eta_{az}^l\dot{\partial}_j).$$
(15)

Note that formula (1) implies that

$$\eta_{az}^l = L_s^l(a)\eta_z^s + R_s^l(z)\eta_a^s.$$

Therefore,

$$E_{i}(AZ) = L_{i}^{k}(az)\partial_{k} - (L_{i}^{k}(az)N_{kl}^{j}(az)L_{s}^{l}(a)\eta_{z}^{s} + L_{i}^{k}(az)N_{kl}^{j}(az)R_{s}^{l}(z)\eta_{a}^{s})\dot{\partial}_{j} \quad (16)$$

By setting X = E = (e, 0) in (14) and (15), one obtains

$$L_*(A)E_i(E) = L_i^k(a)\partial_k - R_{si}^l(a)\eta_a^s\dot{\partial}_l$$

and

$$E_i(A) = L_i^k(a)\partial_k - L_i^k(a)N_{kl}^j(a)\eta_a^l\dot{\partial}_j.$$

Combining the last two formula yields

$$R_{si}^l(a)\eta_a^s = L_i^k(a)N_{ks}^l(a)\eta_a^s,$$

which in turn implies

$$N_{is}^j(a) = -\widetilde{L}_i^k(a)R_{sk}^j(a).$$
(17)

Thus, we have

Theorem 2. A necessary and sufficient condition for the horizontal lifts of leftinvariant holomorphic vector fields to be left-invariant is that the coefficients of the linear holomorphic connection are given by (17).

Corollary 1. The field of holomorphic frames E_i is the left-invariant field of frames of the holomorphic horizontal distribution $H^{1,0}(T^{1,0}G)$.

Let us now consider the vertical vector fields $\dot{E}_h(Z) = L_h^l(z)\dot{\partial}_l$. According to Proposition 1, we have

Corollary 2. The field of holomorphic frames \dot{E}_h is the left-invariant field of frames of the holomorphic vertical distribution $V^{1,0}(T^{1,0}G)$.

Thus, we have constructed the left-invariant and adapted field of holomorphic frames $E_A = (E_k, \dot{E}_h)$, where

$$\begin{cases} E_k(Z) = L_k^i(z)\partial_i^H, \\ \dot{E}_h(Z) = L_h^l(z)\dot{\partial}_l. \end{cases}$$
(18)

Finally, by similar calculations as in the real case for the tensor bundle of type (2,0) of a Lie group, we obtain

70

Lifts of left-invariant holomorphic vector fields

Proposition 2. The Lie brackets of the vector fields defined in (18) are:

$$[E_k, E_h] = c_{kh}^i E_i, \ [E_k, \dot{E}_h] = \dot{c}_{kh}^i \dot{E}_i, \ [\dot{E}_k, \dot{E}_h] = 0, \tag{19}$$

where c_{ik}^i are the usual constants structure of G and $\dot{c}_{kh}^r = (\partial_i L_h^r(z))_e + N_{ij}^r(e)$.

Remark 2. From the first identity in (19) it follows that the holomorphic horizontal distribution defined by a linear holomorphic connection with the coefficients given by (17) is integrable.

Acknowledgement

This paper is supported by the Sectoral Operational Programme Human Resources Development (SOP HRD), ID134378 financed from the European Social Fund and by the Romanian Government.

References

- Atiyah, M. F., Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207.
- [2] Goldberg, S. I., *Curvature and Homology*, Revised Edition, Dover Publication, Inc. Mineola, New-York, 1998.
- [3] Ida, C. and Ionescu, A., On a metric holomorphic connection in complex Lie groups, BSG Proceedings, 21 (2014).
- [4] Kobayashi, S. and Nomizu, K., Foundations of differential geometry II, Wiley Interscience, New-York, 1969.
- [5] Lee, D. H., *The structure of complex Lie groups*, Research Notes in Mathematics Series, Chapman and Hall/CRC, 2001.
- [6] Opokina, N. A., Tangent and tensor bundles of (2,0) type under a Lie group. Uch. Zap., Kazan. Gos. Univ., Ser. Fiz.-Mat. Nauki, 147 (2005), no. 1, 138– 147.
- [7] Opokina, N. A., The left connection on the tensor bundle of type (2,0) of a Lie group. Russian Mathematics (Iz. VUZ), 50 (2006), no. 11, 74–79.
- [8] Opokina, N. A., Left-invariant metrics on a tensor bundle of type (2,0) over a Lie group, Lobackevskii J. Math. 34 (2013), no. 4, 384–391.
- [9] Rund, H., Local differential-geometric structures on Lie groups, Tensor, N. S. 48 (1998), 64–87.
- [10] Wang, H.-C., Complex Parallelisable Manifolds, Proceedings of the American Math. Soc. 5, (1954), no. 5, 771–776.

Alexandru Ionescu

72