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Abstract: This paper is about an instrumental research regarding a 
powerful multivariate data analysis method which can be used by the 
researchers in order to obtain valuable information for decision makers that 
need to solve the marketing problem a company face with. The literature 
stresses the need to avoid the multicollinearity phenomenon in multivariate 
analysis and the features of Principal Component Analysis (PCA) in reducing 
the number of variables that could be correlated with each other to a small 
number of principal components that are uncorrelated. In this respect, the 
paper presents step-by-step the process of applying the PCA in marketing 
research when we use a large number of variables that naturally are 
collinear.  
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1. Introduction 
 
In the most cases of marketing research the 

descriptive analysis and the univariate or 
bivariate inferential analyses are not enough 
for obtaining that information needed by the 
decision factors that face with a marketing 
problem and order such a research. The 
multivariate analyses extract the main 
information from a large number of variables 
and offer additional details that can support 
the decision process. The computation of 
such methods is quite complicated but the 
modern information systems can assist the 
researchers to obtain the best information. 
Nevertheless the correct using of the 
multivariate methods and the results 
interpretation are very important. In this 
respect, the present research aims to assist 

mainly the young researchers in using the 
Principal Component Analysis (PCA) as 
one of the most popular multivariate data 
analysis methods. The theoreticians and 
practitioners can also benefit from a detailed 
description of the PCA applying on a certain 
set of data. 

 
2. Literature review 
 

Principal component analysis (PCA) is a 
method of data processing consisting in the 
extraction of a small number of synthetic 
variables, called principal components, 
from a large number of variables measured 
in order to explain a certain phenomenon.  

Principal components are a sequence of 
projections of the data, mutually 
uncorrelated and ordered in variance, 
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which are obtained as linear manifolds 
approximating a set of N points [1]. 

Using the Regression model with many 
variables that are highly correlated each 
other will not return the best estimators [4]. 
In such cases when we try to analyse a 
large set of p variables that are usually 
much correlated and generate the 
multicollinearity phenomenon, the PCA is 
recommended. PCA is also known in 
literature as Factor analysis even if the 
critics consider the two methods as being 
different from each other.   

Talking about Factor analysis, there are 
two major classes of research purposes: 
Exploratory Factor Analysis (EFA) and 
Confirmatory Factor Analysis (CFA). EFA 
is heuristic and the investigator has no 
expectations of the number or nature of the 
variables. It allows the researcher to 
explore the main dimensions to generate a 
theory, or model from a relatively large set 
of latent constructs. In contrast with EFA, 
in CFA the researcher uses this approach 
to test a proposed theory or model [5]. 

We can see that both Principal 
Components Analysis and Factor Analysis 
deal with more variables that usually are 
correlated in order to reduce the dimension 
of the analysis to a small number of factors 
that are not correlated (independent 
factors). Thus the negative effects of the 
multicollinearity are avoided. In 
conclusion the Principal Components 
Analysis carries information about not 
only the patterns of variations in individual 
variables but also the relationships 
between variables [3].  

Principal Components Analysis is 
considered a useful tool for dimension 
reduction and compression as the resulted 
factors are orthogonal and every factor 
explains a large part of the variation given 
by the variables that satisfy a certain 
condition [1]. The principal components 
that are to be taken into consideration are 
those factors that can explain the largest 

part of the information given by the initial 
variables. In this respect the number of 
factors which should be retained in the 
analysis is a decision matter for the 
researcher [2]. For plotting purposes, two 
or three principal components are usually 
sufficient, but for modeling purposes the 
number of significant components should 
be properly determined [6]. There are 
many extraction rules and approaches in 
the determination of the number of factors 
that are to be retained. One of the most 
popular is Kaiser’s criteria which state that 
only those factors with eigenvalue higher 
than 1 will be retained in the model. Also 
the Scree test, the cumulative percent of 
variance extracted and parallel analysis 
could be used [5].  

However the logical judgment of the 
researcher should be involved in this 
selection process in order to determine the 
meaning of every factor retained in the 
model. For a better interpretation of the 
results it is recommended to use a 
rotational method, which maximises high 
item loadings and minimises low item 
loadings. The most popular rotation 
technique is Orthogonal Varimax [5]. 

 
3. Research objectives and methodology 

 
The main objective of this paper is to 

support young researchers in their efforts to 
use multivariate data analysis methods. In 
this respect a step-by-step Principal 
Component Analysis is presented in the 
following sections of this paper. For 
exemplification purpose a data base from a 
survey regarding the social services for 
students was used.  

The sample counts 396 respondents who 
answered to several questions that used a 
rating interval scale with five levels equally 
distanced. As these questions refers to many 
aspects regarding the accommodation in 
“Transilvania” University’s residence halls, 
a certain redundancy exists in the measured 
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construct and the variables are imminent 
correlated each other. Thus the 
multicollinearity phenomenon is present 
and the PCA method is recommended. For 
PCA computation the SPSS system has 
been used. 

 
4. Applying the PCA 
 

In applying the PCA we have to ensure 
that the variables used are metric ones 
(measure with interval or ratio scale). Also 
the sample size is important even if there is 
not a general agreement in the literature 
regarding the number of observations and 
the ratio between the sample size and the 
number of variables [5]. Anyway the 
number of observation have to be bigger 
than the number of variables included in 
the analysis with the mention that big 
samples can lead to more accurate results.  

The PCA used in this paper for 
exemplification purpose takes into 
consideration 10 items that measure the 
students’ satisfaction regarding various 
aspects of their accommodation in 
students’ residence hall. For every item a 
numerical scale with 5 levels has been 
used (5- very satisfied and 1- very 
dissatisfied). Starting from the assumption 
that these variables are collinear, the 
purpose of PCA is to reduce the number of 
variables that measure the students’ 
satisfaction to a small number of factors 
that are not correlated. 

For the beginning of the analysis a 
testing step is necessary in order to 
determine the suitability of data for such a 
method. In this respect Kaiser-Meyer-
Olkin (KMO) Measure of Sampling 
Adequacy and Bartlett's Test of Sphericity 
are computed by SPSS system. 

 
 

KMO and Bartlett's Test                            Table 1

Kaiser-Meyer-Olkin Measure of Sampling Adequacy .739

Approx. Chi-Square 783.946

df 45 Bartlett's Test of Sphericity 

Sig. .000 
 

The KMO index ranges from 0 to 1and 
the sample is considered suitable for PCA 
if this index is equal or higher than 0.50. 
Also the Bartlett's Test of Sphericity 
should be significant (p<0.05). The results 
presented in Table 1 reveal that the data 
used in our example are adequate for PCA.  

After these tests we have to take a 
decision regarding the number of factors 
(principal components) that should be 
retained in the model. In the initial solution 
the number of components is equal to the 
number of variables included in the model 
(see Table 2). Every component has an 
eigenvalue which represents the amount of 
variance that is accounted for by a given 

component. Usually the first variables have 
the greatest eigenvalues. 

One of the most commonly used criteria 
for principal component selection is the 
Kaiser’s criterion known also as 
eigenvalue-one criterion. According to this 
one only the variables with the eigenvalue 
greater than 1 will be retained in model.  

Using of eigenvalue-one criterion is not 
considered the best decision when the 
actual differences between the eigenvalues 
of successive variables are quite small. 
Thus a variable with an eigenvalue of 0.99 
will be excluded from the model in spite of 
its significant contribution to the total 
variance. For these reason, the proportion 
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of variance accounted for by every factor 
and the cumulative percentage of variance 
could be used in the process of factor 

selection. We can establish to retain in the 
model all those factors that account for at 
least 10% or 5% of variance.  

 
Total variance explained                                    Table 2 

Initial Eigenvalues Extraction Sums of Squared Loadings Component 
Total % of 

Variance 
Cumulative 

% 
Total % of 

Variance 
Cumulative 

% 
1 3.218 32.182 32.182 3.218 32.182 32.182 
2 1.456 14.561 46.743 1.456 14.561 46.743 
3 .949 9.485 56.228 .949 9.485 56.228 
4 .857 8.566 64.795    
5 .817 8.168 72.963    
6 .735 7.352 80.315    
7 .618 6.184 86.499    
8 .581 5.813 92.312    
9 .455 4.554 96.866    
10 .313 3.134 100    
 
In table 2 we can see that only the first 

two components have the eigenvalue 
greater than one but the value of the third 
component is very closed under one and it 
explains 9.48% of the total variance. If we 
look at the cumulative percent of variance 
explained by the first three factors it counts 
only 56.23% so that we also can include in 

the model some of the next variable. 
Taking into account the cumulative percent 
of variance explained, according to Hair et 
al. cited by Williams et al. “in the natural 
sciences factors should be stopped when at 
least 95% of the variance is explained. In 
the humanities, the explained variance is 
commonly as low as 50-60%”. [5]. 

 
Fig. 1. The scree plot for the initial variables 

 
Another method used for factor 

extraction is the analysis of the Scree plot. 
This one is a subjective method which 
requires the researcher judgement. 
According to this criterion the significant 

factors are disposed like a cliff, having a 
big slope while the trivial factors are 
disposed at the base of the cliff. In the 
Figure 1 we can appreciate that starting 
with the fourth factor the slope of the 



C. CONSTANTIN: Principal Component Analysis-a powerful Tool in … 29

curve is quite small and these factors 
could be excluded from the model. 
Nevertheless the method is very 
subjective because the cut-off point of the 
curve is not very clear in the above chart. 

Whatever method of factor extraction is 
used it is recommended to analyse the 
meaning of every principal component 
according to the variables with significant 

loadings on the retained factors. In order to 
apply this meaning interpretation a rotated 
solution is computed. A rotation is a linear 
transformation that is performed on the 
initial factor solution for the purpose of 
making an easier interpretation. The most 
common rotation method is Orthogonal 
Varimax, which is provided by the 
majority of statistical software. 

 
Rotated component matrix                                    Table 3 

Component  
1 2 3 

Existing reading rooms .699 .102 .111
Silence in residence halls .692 .130 .151
Existing parking .662 .118 -.085
Communication with administration .609 -.223 .357
The guard of residence halls  .548 .405 .158
Internet access .128 .776 -.006
Bathroom equipment .025 .744 .337
Room equipment (furniture) .186 .423 .342
Residence halls’ cleanliness .201 .082 .852
Bathrooms’ cleanliness .024 .396 .742

Extraction Method: Principal Component Analysis.  
 Rotation Method: Varimax with Kaiser Normalization. 

 
When we apply the rotation method a 

factor pattern matrix is obtained, which 
contain the loadings of every variable on 
the retained factors (see Table 3). In order 
to make the interpretation of the meaning 
of every factor the variables that have the 
greatest loadings on a factor are analysed 
in terms of their similarity regarding the 
measured construct. After this 
interpretation the principal components 
could be labelled according to their 
relevant meaning. If the group of variables 
that determine a factor are meaningless we 
have to reconsider the number of factors 
that are included in the model.  

In table 3 we can see that the first 
component is determined by variables 

related to the safety of students or their 
cars and to various managerial aspects. 
The second component is determined by 
the residence halls’ equipment, while the 
third component refers to cleanliness. 

Taking into account the above patterns, 
we can label the component retained in the 
model as follows: Component 1 – “Safety 
and management”, Component 2 – 
“Equipment” and Component 3 – 
“Cleanliness”. 

Using the above validation criterion is 
very important because finally the 
interpretation of the results should lead to 
components with a certain meaning for the 
research purpose.  
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5. Discussions and conclusions 
 

The Principal Component Analysis can 
be used when many variables are used to 
measure the same construct. In such cases 
the multicollinearity phenomenon appears 
and using of other analysis methods like 
regression model is not proper. The most 
important steps in performing PCA consist 
in testing the data suitability for this 
method and in selection of the best factors 
that describe the total variance produced 
by the initial variables. In this process the 
meaning of resulted factors plays a crucial 
role because the purpose of every 
marketing research is to support decision 
makers in their efforts to find solutions for 
the marketing problem they face with. The 
resulted factors (principal components) 
could be used in further analysis regarding 
to the population description (e.g. the 
relationship between the factors and 
population demographics) or as 
explanatory variables in regression models. 
The computation of the new variables that 
represents the principal components could 
be made as a linear combination of the 
initial variable. Such variables are directly 
computed by SPSS system as standardised 
values. We can also obtain new variables 
by simply adding the values of every 
variable that determine a certain 
component or by computing the mean of 
these values. For example in order to 
obtain the new variable “Cleanliness” in 
the above model we can add the values of 

the last two variables for every case or we 
can calculate the mean of these values. 

In conclusion the Principal Component 
Analysis could be considered a powerful 
tool in computing marketing information. 
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