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Abstract: Cardiac diseases are considered to be the most lethal classes of 
diseases, impacting approximately 1 in 3 individuals in western countries. 
Currently, the vast majority of surgical procedures targeting these afflictions 
involve percutaneous, non-invasive methods, which rely heavily on various 
imaging techniques, along with advanced image guidance through computer 
vision. This article aims to present an assessment of how various detection 
and tracking techniques such as Marginal Space Learning, Optical Flow and 
Belief Propagation can be combined to identify anatomical structure 
locations in 4D echocardiography, at high speed (34 ms) and with great 
accuracy (2.5 ± 1.2 mm mean error). 
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1. Introduction 
 
Cardiac disease diagnostic and treatment 

preparation relies heavily on modern 
imaging technologies. In order to have the 
correct course of action, the geometry of 
the heart during the heartbeat must be 
quantified. One of the most frequently 
used technologies is 4D (3D + time) trans-
esophageal echocardiography (TEE). It 
relies on ultrasound to observe and record 
the heart motion. Physicians then either 
manually measure the obtained images or 
rely on automated tools to provide the 
necessary information. 

Recently, several approaches have been 
proposed for anatomy detection from 
ultrasound images. In [2] the authors 
developed a method to segment the left-
ventricle heart valves using Marginal Space 
Learning (MSL) [9]. An extended variant 

of this method is described in [7], which 
uses bio-mechanical constraints to further 
refine the obtained results. A successful 
detector plus Optical Flow tracker based 
approach is presented in [8] applied to the 
contour of the left ventricle, and highlights 
the drifting encountered when using 
trackers. Also Belief Propagation trackers 
have been successfully used to identify 
structures which are not visible in every 
stage of the cardiac cycle in [5]. 

This paper proposes a novel, fully 
automated approach for the identification of 
cardiac sub-anatomies by using 3D 
detection techniques and augmenting them 
with a composite tracking mechanism using 
Belief Propagation and Optical Flow. 
During the experimentation phase a 
comparison was done with respect to 
accuracy and speed of the utilized 
algorithms. Based on the obtained results, 
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the proposed composite approach has 
proven to be a viable method in the position 
identification of cardiac sub-anatomies.  

 
2. Method 

 
The basis for the proposed algorithm 

extensions is MSL. This method enables 
rigid detection of anatomical structures by 
identifying their position, orientation and 
scale. From this mechanism, the focus was 
the position detector which employs a 
Probabilistic Boosting Tree [6] classifier 
using 3D Haar-like features to identify a 
configurable number of candidates for the 
location of an anatomical structure. The 
correct selection of one of these candidates 
is essential in the accuracy of the detection 
process. Typically 60 position candidates 
are obtained, each one having a probability 
factor attached. This factor is used by the 
classifier to rank the candidates and 
therefore output only the top 60 starting 
from the one with the highest value. When 
the targeted sub-anatomy is clearly visible 
in the TEE data, such as a high contrast 
area, these candidates are generally 
clustered around a central position. This 
makes the decision process straightforward. 
A simple averaging operation is in most 
cases enough to produce an accurate result. 

The important challenges are faced when 
the PBT classifier does not provide a 
singular cluster of candidates and there are 
no clear outliers. From such a sparse 
candidate cloud, in most situations it is 
extremely hard to make a clear, accurate 
choice. This is the situation in which 
refinement methods play a key role. 

Unlike other imaging technologies used in 
cardiac intervention and therapy planning, 
4D echocardiography has the distinct 
advantage of capturing the motion of the 
cardiac structures. When doing 3D detection, 
as is the case of MSL, all the information 
gathered for the decision process belongs to 
a single TEE frame. This comes as a 

downside of the fact that the method is also 
applicable on other imaging modalities that 
lack temporal information, such as 
Computerized Tomography. A possible 
extension of the capabilities of MSL would 
be to introduce a range of spatial constraints 
which limit the output to key regions. This 
has proved not to be robust enough, firstly 
due to high dynamics of the anatomic 
structures during the cardiac cycle, and also 
due to the high position variability between 
different patients. 

Another approach would be to leverage 
information from neighbouring frames. 
The basic premise is that by running the 
PBT classifier on a range of frames and 
analysing the relationship between the 
obtained candidate clouds, a more accurate 
decision can be drawn for the final position 
result. In this context, two tracking 
algorithms were deployed and their 
individual performance measured. 

The first algorithm introduced is Belief 
Propagation (BP) [3]. This works by 
arranging all the available candidates in a 
graphical model and associating a random 
variable x(v) for each node. Nodes from 
candidates on adjacent frames are fully 
interconnected, and costs are attached to 
each node and edge. The nodes have the 
unary cost φ(xv) represented by the 
probability outputted by the PBT classifier. 
The edges have pair-wise cost of φ(xu,xv) 
representing the Euclidian distance 
between candidates on neighboring frames. 
Having these defined, we can obtain the 
joint probability distribution of all the 
variables in the graph is expressed as a 
pair-wise Markov Random Field: 
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In order to obtain the best set of candidates 

for the described graph, max product belief 
propagation is used, by defining m as the 
max-product message in (2). 
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Let µv(xv) be the estimated belief at node 

xv and defined by the max-marginal of xv: 
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which can be approximated as: 
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Given these max-marginals, the MAP 

(maximum a posteriori estimation) 
estimation is computed such that: 
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Based on this result, we obtain the most 

efficient path through the graph.  
Practically this method ensures that in 

adjacent frames, the candidates selected 
have the closest Euclidian distance 
between the two frames. Therefore if on 
one frame we have a clustered PBT result, 
this will also reflect on close frames, by 
propagating the more accurate location 
through distance differences. 

The second tracking algorithm that has 
been used to refine the detection results is 
Optical Flow. The main functionality of 
this algorithm is to estimate the frame-to-
frame motion of each pixel in an image, 
and is mostly used in cases where the 
motion has reduced amplitude and the 
pixel brightness is close to constant. In the 
first implementation proposed by Horn and 
Schunck [1] the equation to be minimized 
is: 
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In (6) the first term represents the 
brightness consistency constraint, and the 
second term is the smoothness constraint 
which uses the gradient of the optical flow 
vector. The equation also uses a 
regularization constant, α, which weights the 
contribution of the smoothness constraint. 

Another popular variant of the Optical 
Flow algorithm is proposed by Lucas and 
Kanade [4] which extends the original 
concept by assuming that over a local 
neighbourhood, the flow is constant. 
Therefore the optical flow equations can be 
solved by using the least squares criterion.  

The proposed method is based on the 
Lucas-Kanade method and consists of a 
multi-stage approach. On the first available 
frame, the Optical Flow tracker is 
initialized using the candidate range 
outputted by the position detector from 
MSL. On subsequent frames the tracker 
functions independently and tracks the 
position of the candidates frame by frame. 
Using just this approach is unfortunately 
subject to tracker drift issues so a feedback 
loop was implemented. This is where the 
second stage of the proposed method 
comes in. In order to permanently correct 
the tracker drift for each frame, the 
available candidates from the position 
detector can be leveraged. But using these 
directly as input for the tracker would 
negate any benefits of using optical flow in 
the first place. Therefore a result fusion 
stage was created. On every frame, this 
module takes the output of the position 
detector and the optical flow tracker and 
performs a weighted averaging operation. 
This can be configured with a specific 
weight which favours the results from the 
tracker. The candidates outputted from this 
result fusion stage are used as feedback 
input for the tracker on the next frame. 
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Using this multistage approach with 
weighted feedback loop ensures that during 
the tracking process we avoid drifting, and 
also retain the temporal information deduced 
from the Optical Flow algorithm. 
 
3. Experiments and Results 

 
As mentioned in the introduction the 

experiments done have focused on 
identifying the most suitable tracking 
algorithm to be used to augment the 
performance already obtained through 
Marginal Space Learning. First the 
accuracy of the mechanism was assessed 
on a testing set containing 26 expertly 
annotated TEE data sets. Another 
important factor that was analysed was the 
speed at which each mechanism variant 
was able to produce results. To that end all 
the tests were run on the same testing 
machine using an Intel Core i7-4800MQ 
2.70 GHz processor and 16 GB of RAM. 

The cardiac sub-anatomies used to 
benchmark all algorithm variants are the 
left (L), right (R) and non-coronary (N) 
aortic valve leaflet hinge points. These 
points mark the lower-most region of 
attachment of the aortic leaflets to the 
valve, and mark the beginning of the Left 
Ventricle Outflow Tract. These structures 
can be observed in Figure 1. 

Since the position detector is an assisted 
learning algorithm, it was necessary to 
train it specifically for the target anatomies. 

 

 
Fig. 1. 2D short-axis view of the anatomies 

used for algorithm evaluation 

In order to achieve this, a training set of 
680 annotated data sets was assembled. 
This training set does not include the 26 
datasets used for testing. 

 
3.1. Quantitative Assessment 

 
For a complete benchmarking of the 

algorithm performance, the first 
assessment was done using just the 
position detector. The second experiment 
attached the BP module after the position 
detector. The third experiment consisted of 
using the Optical Flow module in 
conjuncture with the position detector. 
Finally, the fourth configuration tested 
involved the position detector followed by 
the BP n+ode as well as the Optical Flow 
modules, named Composite Tracker.  

The last configuration, aside from being 
able to assess the possible cumulative 
improvement brought by using both 
techniques, should also have a distinct 
performance advantage. As mentioned in the 
description of each algorithm, they rely on a 
set of input candidates which are processed 
over the available frames. By using the BP 
node first, we practically eliminate a large 
number of outliers and present only one 
candidate for the Optical Flow mechanism to 
track, instead of the initial 60. Therefore the 
further refinement of the results should not 
affect the overall speed of the system. 

Alternatively, using the Optical Flow 
module first and then the BP would not 
produce any meaningful results. Due to the 
nature of the BP mechanism, it relies on a 
set of candidates for each individual frame, 
in order to optimize the result. Having a 
single candidate per frame as would be 
outputted by the Optical Flow nodes would 
prove futile since no optimization can be 
applied and the outputs would be identical 
to the input data. 

The actual evaluation process takes the 
detection result for each of the targeted sub-
anatomies and measures its Euclidian 
distance to the annotated position, which is 
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considered the detection error. By collecting 
all these values over the entire testing set, 
the mean error, standard deviation and the 
maximum error of 90% of results were 
computed for all the four configurations. 
Also since the position detector always 
generates a set of candidates, in the 
evaluation process, the mean position was 
computed in order to have a single result. 
The evaluation results, represented by 
average results for the three targeted 
anatomies are presented in Table 1. 

 
Algorithm Accuracy    Table 1  

Error[mm] OP BP Comp PosDet 
Mean 2.10 2.45 2.55 2.25 

Std Dev 1.33 1.13 1.13 1.33 
90% 3.21 3.51 3.35 4.28 

 
Since the primary purpose of utilizing 

tracking algorithms for detection 
performance augmentation is to reduce the 
number of outlier cases, the mean 90% error 
between the three target sub-anatomies has 
been computed and plotted in Figure 2. 

From the plotted results it is obvious that 
the tracker based algorithms obtain 
significantly better results with respect to 
outlier removal. This, over time has the 
effect of reducing noise of the detected 
population, and keeping more in line with 
the dynamic of the anatomy. 

By analysing the performance of the 
tracker augmented mechanism variants some 
important conclusions can be draw. As 
expected, the Optical Flow based mechanism 
is more efficient at removing the outlier 
cases than the BP method. This stems from 
the fact that the BP solution relies 
completely on the results of the position 
detector and only improves the selection 
process. In contrast, the Optical Flow 
solution generates its own set of candidates 
which are fused with the position detector 
results through the weighted averaging 
mechanism described above. Therefore we 
see less outlier when using the later solution.  

 
Fig. 2. Average 90% outlier error 
rates [mm] for the tracker based 
solutions (blue, red, green) and 

position detector (purple) 
 
The Composite approach performance is 

situated between the other two solutions 
and it correlates with the other two results. 
Since the initial BP algorithm has proven 
to have slightly worse results, it was 
expected that the second stage tracker 
improves the outcome. 

 
3.2. Detection Speed Assessment 

 
Another very important factor in the 

decision between which mechanism is 
more suited for sub-anatomy location 
identification, is the speed at which it 
produces results. In order to accurate 
determine this, the algorithms were run on 
all available frames from the testing set 
and each individual run was measured. In 
total 1686 operations were performed with 
each algorithm and the average run time 
and its Standard Deviation were computed. 
The obtained results are shown in Figure 3. 

As expected, the fastest method is the 
position detector as it only analyses one 
frame at a time.  

The second fastest is BP as it takes into 
account all available candidates for the 
position detector. Also the variation in run 
time is visibly increased with the tracker, 
since they will run slower as more frames 
are analysed.  

The important difference is observed 
between the Optical Flow tracker and the 
Composite mechanism. As detailed in the 
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Fig. 3. Average runtime [ms] with 
Standard Deviation (black) for the 

trackers (blue, red, green) and 
position detector (purple)  

 
Method section, a speed difference was 
expected since the number of processed 
candidates is dramatically reduced. 

It is worth noticing that the highest 
encountered runtimes for the Composite 
tracker are near the mean value of the 
Optical Flow tracker, which should attest 
the significance of the performance 
improvement. 

 
4. Conclusions  

 
The goal of the presented work was to 

provide an overview of how tracking 
algorithms can improve the robustness of 
sub-anatomy detection from Ultrasound 
data. Also a novel approach was presented 
that aims to combine the strengths of two 
tracking algorithms. During the 
experimentation phase, the proposed 
composite approach has proven to 
efficiently eliminate outliers while also 
obtaining results without a significant 
speed decrease compared to the baseline 
non-tracking solution. 
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