
Bulletin of the Transilvania University of Braşov • Vol. 8 (57) No. 1 - 2015
Series I: Engineering Sciences

A METHOD TO HANDLE BCH(n,k,t)

ALGORITHM OVER LARGE GF(n) IN
PRACTICAL HARDWARE

IMPLEMENTATIONS

A. STANCIU1 T. CIOCOIU1 F. MOLDOVEANU1

Abstract: This paper presents an approach to handle with elements from
GF(2n), in hardware implementation with minimum costs of area. The
method is described by exemplifying with minimum costs of area. The method
is described by exemplifying the practical implementation of the BCH(n,k,t)
scheme over GF(2n), where n is large (n > 6), on reconfigurable FPGA
hardware with minimum costs of area. There are many papers in the open
literature which presents hardware implementations of algorithms over
GF(2n) but none of them addresses the problem of hardware resources
employed. There are many situations in which an area optimized
implementation is more suitable than a speed optimized implementation.

Key words: Galois Field, BCH, polynomial, hardware implementation.

1 Dept. of Automation and Information Technology, Transilvania University of Braşov.

1. Introduction

There are many applications in which a

BCH (Bose Chaudhuri Hochquenghem)
hardware implementation is more suitable
than a software implementation. One
example it is the case in which we have a
secret key generated with the help of
silicon physical unclonable functions based
on process variations which appear during
the physical execution of an integrated
circuit [5]. The method of generating the
secret key is out of scope in this paper. The
secret key may be used to uniquely
identify the integrated circuits using two
phases: 1) the enrollment phase (Figures 1)
the authentication phase (Figure 2).

The phase 1 illustrated in Figure 1, is
used only once for an integrated circuit. It
generates the 128-bits length identifier

based on ring oscillators. From this 128-
bits length sequence a helper data is
generated, which will be used each time
for the circuit authentication. This stage
corresponds to the encoding stage BCH.

The authentication stage, resumed in
Figure 2, involves the reconstruction of the
identification sequence. The 128-bits
length sequence is regenerated using the
same ring oscillators as in the enrollment
phase. The new 128-bits length sequence is
corrected, in case it contains a number of
accepted errors (maximum 10), using the
helper data and the BCH decoding
algorithm.

The field GF(2n) is defined by a set of 2n
unique elements that is closed under both
addition and multiplication, in which every
non-zero element has a multiplicative
inverse and every element has an additive

Bulletin of the Transilvania University of Braşov • Series I • Vol. 8 (57) No. 1 - 2015

100

Fig. 1. The enrollement phase

Fig. 2. The authentication phase

inverse. As with any field, addition and
multiplication are associative, distributive
and commutative [4]. The field GF(2n) is
defined over an irreducible polynomial of
degree n with coefficients in GF(2n). The
primitive polynomial has a root , named
primitive root where 2n–1 – 1 = 1 and i,
where i < 2 – 1 generates a different element
from GF(2n). The Galois field GF(2n) may
be represented by the set of all
polynomials of degree at most n-1, with
binary coefficients, as can be seen in Table
1. The first step is to consider which
representation of the elements would be
used in the implementation: the
representation as the power of or the
representation as the binary vectors.

Table 1
Examples of Galois Field Elements, n = 8

Elements Polinomyals Binary
vectors

127 6 + 5 + 2 + 01100110
128 7 + 6 + 3 + 2 11001100
130 4 + 2 + + 1 00010111
131 5 + 3 + 2 + 1 00101110

In order to analyze this challenge we
exemplify the addition, substraction,
multiplication and division in GF(24),
considering two elements 10 = 0111 and
11 = 1110.

Addition is the same as substraction and
is easily implemented using XOR and
operands in the form of binary vectors

1001111001111110 xor ; if we
search through GF(24) elements we find

100114 .
It is obvius that for addition/substraction

is more convenient to represent the
elements in the binary vector form.

Multiplication
May be done using power of format:

.11001 66

615211110

 (1)

May be done considering binary vector

form:

.110010011mod101010
10011mod)11100111(

The multiplication is less expensive when

we consider the power of format because
we can use a dedicated multiplier for
natural values and a substraction of 24 – 1.

Division in GF(24) is a multiplication
between the divident and inverse of the
divisor. The inverse may be computed
using the extended euclidian algorithm:

.0010

)(1651111011
10

11

We believe that an approach which

combines the usage of the two
representation form is the most suitable for
an implementation optimized in terms of
costs of area. In the case of BCH(128,10)
or BCH(256, 25) we can store the Galois

Stanciu, A., et al.: A Method to Handle BCH(n,k,t) Algorithm Over Large GF(n) … 101

elements in memories where the address
represents the power of and the value at
the address represents the binary vector. In
cases where n is larger, such as elliptic
curve crypotgraphy with n = 163, the
values are not stored in memories, they are
generated immediately when they are
involved in computations.

2. BCH Algorithm

2.1. Coding

- Choose a primitive polynomial of

degree n, and construct GF(2n);
- Find the minimal polynomial mi(x) of

i for i = 1,2,..2*t;
- Obtain the generator polynomial g(x)

which is the least common multiple of
minimal polynomials;

- Determine the degree of the generator
polynomial;

- Translate the q length message that we
want to encode in a polynomial form of
degree q. Add in the right part of the
polynomial form a number of zeros equals
with the degree of the generator polynomial;

- The previously obtained polynomial is
divided by generator polynomial;

- The remainder of this division;
- represents the helper data which will be

used for error correction and detection [1].

2.2. Decoding

There are many algorithms for decoding

BCH codes. The most ones follow this
general outline:

- Calculate the syndromes mj for the
received vector;

- Determine the number of errors t and the
error locator polynomial from the syndromes;

- Calculate the roots of the error location
polynomial to find the error locations;

- Calculate the error values at those error
locations;

- Correct the errors [1].

3. Generating the Elements of Galois Field

The first step is to generate the elements

of Galois Group using the chosen primitive
polynomial. Binary representation of the
elements are stored in the memory. It is
easy to generate these elements in
hardware. The multiplication of element
represents a shifting operation of the
previous value. If the MSB bit is shifted to
the n+1 position, the primitive polynomial
will be subtracted from the result.

Generally, a large n in the case of BCH
code is 7 or 8 which means that there are
27 or 28 elements in Galois Field that can
be stored in block memories from
reconfigurable hardware.

In cases of larger n such as n = 163, used
in elliptic curve cryptosystems we can
generate this elements immediately, when
we needed in computations. This it will
take some clock cycles, but we still have a
highest frequency of design due to the
simplicity of operations.

4. Computing Galois Field Minimal

Polynomials

In the entire algorithm we consider the

use of a small restricted area for the FPGA
hardware resources. In order to obtain this,
we used BRAM memories to store the
polynomial coefficients and the sequentiality
of some parts of the implemented
algorithm.

The algorithm presented below uses only
one polynomial multiplier circuit and 2
BRAM memories for storing intermediate
results. The size of each memory is n * 2n.
The i address memory will store the
coefficient of xi. The xi coefficient is a sum
of powers of root, e.q

1387177 . These coefficients are
stored in memories as a 2n bits length
binary sequence, where the position in that
value of 1 appears represents the power of .

 After the coefficients are stored, the sum

Bulletin of the Transilvania University of Braşov • Series I • Vol. 8 (57) No. 1 - 2015

102

of these terms will be realized using the
rules of the Galois Field. The algorithm for
computing the i minimal polynomial,
suitable for a hardware implementation
with minimum cost of area is presented in
Figure 3.

Exemplification is made using GF(24)
generated by the primitive polynomial

14 xx . The minimal polynomial for 3
is computed using the formula:

.)()(

)()()(
4333

233
3

xx

xxxm
 (2)

The maximum power of is 16, so we
consider memories of size 8x16.

Phase 1 (Figures 4 and 5): the
initialization of memories that will store
the intermediate results. The mem_
minimal_polynomai_nx2n_inst1 contains the
coefficients of the polynom x + 3.

Fig. 3. Algorithm for minimal polynomials

Fig. 4. Phase 1: mem_minimal_

polynomial_nx2n_inst

Fig. 5. Phase 1: mem_minimal_

polynomial_nx2n_inst2

Stanciu, A., et al.: A Method to Handle BCH(n,k,t) Algorithm Over Large GF(n) … 103

Phase 2 (Figures 6 and 7): the content of
the first memory is multiplied with the
polynomial 6x . The result is

9632 *)(xx . It may be
observed that the polynom 6x has two
coefficients: 1 and 6 . In order to obtain
the coefficients of the polynomial result we
proceed as following:

- Read the coefficient at the address i.
The new value of this coefficient may be
modified in two situations: 1) by the free
term 2) by getting a new term as a result of
the multiplication between the current
coefficient and the coefficient of another
term with a lower degree For these
changes we do the following:
o we go through the coefficient values

and modify the position which are set in 1.
The new values of 1 will be on the position
equivalent with the old position + power of
.

- If the i address is higher than 0, the
sum obtained previously it will be added
with the 1 value of the coefficient term
with one degree lower;

Fig. 6. Phase 2: mem_minimal_

polynomial_nx2n_inst1

Fig. 7. Phase 2 mem_minimal_

polynomial_nx2n_inst2

- For example computing the coefficient
of the term with degree 1:
o We read the value from the address 1 -

000000000000001.
o The coefficient i = 1, it will be multiply

with 9. The new value is:
0000001000000000.
o We read the coefficient from the

addres 0 - 0000000000001000. This will
be added at the previously computed value,
obtaining 0000001000001000, which is
equivalent with 93 .

- The other coefficients are computed
similar, the results are stored in the second
instance of the memory.

Phase 3: This phase is similar with the
previous phase except that now we will
read the coefficients from the second
instance of memory and we will store the
results in the first instance of memory.
During these phases we alternate the two
memories for reading and writing.

Fig. 8. Phase4:

mem_minimal_polynomial_nx2n_inst2

The coefficients of the minimal

polynomial are stored as a sum of power of
:

)(3691234 xx
+ 1)1(3362 xx .

The next step is to apply arithmetic

Galois rules in order to obtain the minimal
polynomial for the 3 term:

1234 xxxx .

Bulletin of the Transilvania University of Braşov • Series I • Vol. 8 (57) No. 1 - 2015

104

5. Generator Polynomial

The generator polynomial is computed

with the formula:

)}.(),...(
),({....)(

123

1

xmxm
xmcmmmcxg

t

 (3)

The maximum degree is t*n, where t is

the number of independent error which
may appear and must be corrected and n
give the order of GF(2n). The minimal
polynomials are co prime.

In our hardware implementation was
used only one instance of multiply module.
One of the operands is the previous result
and the other is a minimal polynomial. The
multiply operation is repeated until all the
minimal polynomial were multiplied.

6. Computing the Syndrome Polynomial

If the number of maximum error which

may be corrected is t we calculate 2*t
syndrome polynomials. The syndrome
polynomials are computed as a remainder
from division between the message and the
minimal polynomials. In Galois Fields
there are different elements with the same
minimal polynomials so the number of
syndrome polynomials is less than 2*t,
where t is the maximum number of error
that may be detected and corrected.

For example we consider:
- The message without errors:

10100110111;
- The message with errors: 10001110111;
- Consider that this code may correct

maximum 2 errors, so we have 4 minimal
polynomial:

1)(4
1 xxxm ,

1)(4
2 xxxm ,

1)(234
3 xxxxxm ,

1)(4
4 xxxm .

(4)

- We have three identical minimal
polynomials so we will do only two division;

- We obtain the following syndrome
polynomial:

1)(3
1 xxS ,

1)(3
2 xxS ,

xxxS 3
3)(,

1)(3
4 xxS .

(5)

7. Reducing Syndrome Polynomial as a

Power of α Element

We need to calculate the syndrome

polynomial in a point equivalent with a
power of :

143

1 1)(S ,

,1

11)(
1323

2462
2

S

.

)1)(1(

)(

33

3

344393
3

S

Multiplication and division were

implemented in hardware using classical
algorithms presented in [2] and [3].

8. Implementation Results and

Conclusions

We optimized the process of

implementation of the BCH(n,k,t)
algorithm by: the choice of the algorithm
with minimum costs in term of hardware
resource usage, the use of BRAM
memories for storing the polynomial
coefficient powers and the sequentiality
of some parts of the implemented
algorithm.

A summary of the usage area, which was
obtained after the synthesis, is presented
in Figures 10 and 11.

Stanciu, A., et al.: A Method to Handle BCH(n,k,t) Algorithm Over Large GF(n) … 105

Fig. 9. Reducing syndrome polynomial

Selected Device:

Virtex 4, 4vsx35ff668-10

Number of Slices:

Number of Slice Flip
Flops:

Number of 4 input
LUTs:

Number of IOs:

Number of bonded
IOBs:

Number of
FIFO16/RAMB16s:

Number used as
RAMB16s:

Number of GCLKs:

Number of
DCM_ADVs:

4404 out of 15360
28%

4210 out of 30720
13%

8266 out of 30720
26%

224

19 out of 448 4%

18 out of 192 9%

18

3 out of 32 9%

1 out of 8 12%

Fig. 10. Authentication method

The test results of the BCH(n,k,t) were
realized on a device from family VIRTEX
4 FPGA-XC4VSX35 and on a device from
family Spartan 3E-XC3S500E device. The
authentication method uses 78% of the
resources on a low FPGA chip as
XC3S500E, which makes it impossible to
be used on such low-FPGAs. Instead good
results are obtained for Virtex 4 family
FPGA.

Selected Device:
Virtex 4, 4vsx35ff668-10

Number of Slices:

Number of Slice Flip
Flops:

Number of 4 input
LUTs:

Number of IOs:

Number of bonded
IOBs:

Number of
FIFO16/RAMB16s:

Number used as
RAMB16s:

Number of GCLKs:

Number of
DCM_ADVs:

4587 out of 15360
29%

4320 out of 30720
14%

8551 out of 30720
27%

224

7 out of 448 1%

12 out of 192 6%

12

3 out of 32 9%

1 out of 8 12%

Fig. 11. Enrollment method

Acknowledgment

We hereby acknowledge the structural

founds project PRO-DD (POS-CCE,
O.2.2.1, ID 123, SMIS 2637, ctr. No
11/2009) for providing the infrastructure
used in this work and the project ID137070
financed from the European Social Fund
and by the Romanian Government.

Bulletin of the Transilvania University of Braşov • Series I • Vol. 8 (57) No. 1 - 2015

106

References

1. Chien, R.T.: Cyclic Decoding Procedure
for the Bose-Chaudhuri-Hocquenghem
Codes. In: IEEE Trans. Inf. Thery IT-
10 (1964) No. 4, p. 357-363.

2. Forney, D.: MIT Principles of Digital
Communication II. Chapter 7, Video
Lectures and Notes.

3. Freudenberger, J., Spinner, J.: Mixed
Serial/Parallel Hardware
Implementation of the Berlekamp
Massey Algorithm for BCH Decoding
in Flash Controller Applications. In:
Signal, Systems, and Electronics
(ISSSE), International Symposium on,

3-5 Oct, 2012, IEEE, doi: 10.1109/
ISSSE.2012.6374329.

4. Guajardo, J., et al.: Efficient Hardware
Implementation of Finite Fields with
Applications to Cryptography. In: Acta
Applicandae Mathematica 96 (2006)
Issue 1-3, p. 75-118.

5. Maes, R., Herrewege, A.,
Verbauwhede, I.: PUFKY: A Fully
Functional PUF-Based Cryptographic
Key Generator, Cryptographic
Hardware and Embedded Systems.
CHES 2012, Lecture Notes in
Computer Science 7428 (2012), p.
302-319.

