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Abstract: This paper investigates a conventional fuzzy control algorithm to 
be used in a closed loop system that should return and keep the blood glucose 
concentration at normal values for diabetic patients. The controller design 
follows general guidelines in fuzzy control theory. Simulations are done 
using a model of glucose kinetics under the influence of insulin injection 
rates and exogenous glucose disturbance. The model is an extension to the 
well-known Bergman’s minimal model by adding the carbohydrates 
absorption rate from Hovorka’s model as the glucose disturbance input. 
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1. Introduction 
 
Several control algorithms for automatic 

blood glucose control in type 1 diabetes 
mellitus (T1DM) patients were tested over 
the years, in simulations or in live 
experiments. Detailed surveys of the most 
used algorithms in this subject during the 
latest 10 years are presented in [19], [20] 
and [14]. Also, very good summaries of 
the most important studies and results 
published in recent years are presented in 
[14] and [10], while the newest are 
presented in details in [6].  

Two different approaches can be noted. 
The first is the model-based system design, 
which implies the use of a model to 
describe the glucose dynamics in various 
cases. The first example would be the 
modified Bergman minimal model [3], [8], 
for T1DM patients, which was intensively 
used in simulations [4]. Many studies 

presented solutions based on a model, and 
a good part of them stepped ahead towards 
testing the simulated control algorithms in 
live experiments.  

The second approach focuses on system 
design methods and algorithms that use 
real data from live experiments and 
physicians’ experience. Researchers argues 
that usually there is an important 
variability in physiological parameters 
from one patient to another and, even 
worse, for a single patient during a longer 
period of time. A blood glucose control 
system is intended to become a routine 
therapy solution and during 24 hours there 
are several influences over the parameters: 
having meals, doing exercises, night 
changes in metabolism, and others [18].  

Physicians’ experience and actions can 
be expressed with better relevance in an 
approximate logic. Treatment decisions are 
based on evaluating blood glucose levels in 
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terms of “too low”, “good” or “too high”, 
and not on strict computations. This 
suggests that a fuzzy logic (FL) approach 
is worth to be investigated (at least). 
Another type of arguments for fuzzy logic 
control (FLC) comes from its theory: it is 
often mentioned that fuzzy control is less 
sensible to small variations of parameters 
and, if extended to an adaptive system, it 
can efficiently cope larger variations too.  

On the other hand, fuzzy control theory 
doesn’t offer strict design methods. In 
many cases, the controller’s rule-base is set 
by following a set of design guidelines, 
handbook solutions or other examples that 
the engineer knows. Fewer solutions are 
obtained from recorded data or by 
translating expert’s decisions into control 
rules. Hence, it seems that designing a 
fuzzy control system based on physicians’ 
treatment actions and experience still has 
enough motivation.  

Convincing studies presenting FLC 
systems for glycaemia control are 
significantly fewer than other control 
algorithms. The review published by 
Youssef et al. in 2009 [20] refers to the FLC 
as being promising, but largely clinically 
untested. Lunze et al. published a very good 
state-of-the-art article in 2013 [14] which do 
not even mention the FLC solution. One year 
later, Doyle et al. [10] present a summary of 
clinical trial protocols which shows the FLC 
as the less preferred solution.  

However, encouraging studies and 
results were reported, even if most of them 
are simulations.  

Campos-Delgado et al. [5] presented a 
two-loop FLC for long-time glycaemic 
control. Their solution uses two Mamdani-
type fuzzy controllers (FC): one in the 
inner loop to adjust the quantities of 
injected insulin for three shots before 
meals, and one in the outer loop to adjust 
the maximum quantities to be provided to 
patient in a time-scale of days (as a 
supervisory support system). The system is 

mostly meant to incorporate medical 
knowledge about the treatment of T1DM, 
and not to offer a real control system in the 
most conventional meaning.  

A simple solution for direct control of 
glycaemia is tested in [7], and compared to 
PID control. The input and output 
variables (glucose concentration, its rate of 
change and insulin dosage) are described 
by four terms each, and the rule base is 
based mostly on design guidelines.  

Mauseth et al. [15] present a conven-
tional table-based Mamdani-type FC which 
respects most guidelines in designing 
fuzzy controllers. They also introduce a 
personalization factor proportional to the 
patient’s total daily dose of insulin. This is 
actually a scaling gain applied to the 
controller’s output, which has strong 
influence on the system’s performance.  

These solutions are mostly designed 
based on control engineering experience, 
especially in fuzzy control theory. In 
opposite, Atlas, Nimri and their team [1], 
[16] proposed a system which applies the 
fuzzy logic theory to imitate lines of 
reasoning of diabetes caregivers, and so to 
focus on medical experience.  

Finally, for the latest studies on glycaemic 
fuzzy control, please refer to the reviews in 
[17] and [6], while for an introduction in 
FLC theory, design guidelines and examples 
please refer to the book of Jantzen [12]. 

 
2. A Model of the Insulin to Glucose 

System, with Meal Glucose Disturbance  
 
Probably the most used model to 

describe the effect of insulin injection rate 
and glucose disturbance input on the blood 
glucose concentration is the modified 
Bergman’s minimal model. In its initial 
form, the model described the kinetics of 
glucose and insulin concentrations in blood 
during the intravenous glucose tolerance 
test [3]. A few years later, Cobelli et al. [8] 
adapted the model to describe the kinetics 
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of glucose concentration under the effects 
of exogenous insulin and glucose rates, 
with application in glycaemic control. 
Over the years, the modification of 
Bergman’s model for T1DM patients 
became known as the “minimal model”.  

The model is a compartment-based 3-rd 
order nonlinear one, depicted as follows: 
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All notations are described in Table 1 
(Detailed descriptions of each are 
presented in [9] and other values than 
those used in this paper are listed in [13]).  

The input variables are the exogenous 
insulin rate, u(t), and the disturbance 
glucose absorption, d(t), while the output is 
the blood glucose concentration, G(t).  

The conversion factors a and b allow 
input variables to be described as flows (in 
terms of [mg/min] and [mU/min], rather 
than [mg/min/dL], respectively [mU/min/L] 
as would be require in the equations). Note 
that, by using these factors, the units would 
be in consistency with clinical convention 
of insulin delivery rate prescription.  

 
The variables and parameters of the model           Table 1 

Notation Description (see also [9]) Unit Values 
G(t) blood glucose concentration at time t [min] mg/dL - 

I(t) blood insulin concentration at time t [min] mU/L - 

X(t) 
a variable defining the effect on the insulin-excitable 
tissues at time t [min] (proportional to the insulin 
concentration in a “remote” compartment)  

1/min - 

d(t) disturbance input of glucose at time t [min] mg/min - 

U(t) exogenous insulin deliver rate at time t [min] mU/min - 

Gb subject’s basal glucose concentration in blood mg/dL 81 

P1 
the insulin-independent rate of tissue glucose uptake 
(i.e. glucose effectiveness) 1/min 0 

P2 the active insulin decrease rate (decrease of uptake) 1/min 0.025 

P3 insulin-dependent increase of tissue glucose uptake  L/(mU×min×min) 13×10-6 

n decay rate of blood insulin 1/min 0.0926 

V 
the assumed distribution volume of the insulin [14], 
which in some studies is considered the total blood 
volume [2]  

L 12 

a glucose input conversion factor  1/L 0.0083 

b insulin input conversion factor  1/L 0.0833 

Dg the quantity of carbohydrates (CHO) in the meal  mg 50,000 

Ag 
CHO bioavailability - a factor describing how much 
of the meal’s CHO is absorbed in the blood unitless 0.8 

tg,max 
the approximate time delay from the start of the meal 
when CHO absorption is at the maximum min 40 
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In the example presented in [2], both 
factors depend on the total blood volume, 
V, and based on the units we considered, 
they should be a = 0.1/V and b = 1/V. 

The “remote” compartment in the model 
refers to the glucose uptake activity in the 
insulin-excitable tissues (as the liver and 
peripheral cells). The reason for this 
compartment is that the glucose uptake 
depends on the insulin concentration at 
“effector site”, X(t), not directly on the 
insulin concentration in the total blood 
volume, I(t). The variable has more 
meaning in compartment-based modelling, 
than in a medical context.  

The glucose disturbance input may refer 
to the injection of glucose in intravenous 
glucose tolerance tests [3], [14], or to the 
glucose increase due to carbohydrates 
absorption after a meal [2]. Based on these, 
two simulation scenarios can be set: 

A) The patient has an initial high 
concentration of glucose, G0. The control 
objectives are: to reduce the glucose 
concentration to its basal value, Gb, in less 
than 3 hours, and to avoid any overshoot 
(which in medical terms means 
hypoglycaemia). 

B) Initially, the patient has a safe glucose 
concentration, G0 = Gb, and he has a meal 
with 50 g CHO. The control objectives are to 
return to a normal value (under 160 mg/dL 
for T1DM patients) in less than 90 minutes, 
and also to avoid the overshoot. 

To run more credible simulations with 
meal glucose disturbance, we considered 
an extension to the minimal model by 
including a sub-model to describe the 
glucose absorption after having a meal. 
This is presented by Hovorka et al. in [11],  

and consists in the following non-linear 
Equation (notations are also described in 
Table 1):  
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The time variation of the disturbance 

input according to this model is depicted in 
Figure 3a and the accumulation of glucose 
caused by this disturbance is in Figure 3b.  

 
3. The Fuzzy Control Algorithm 

 
The fuzzy controller used here is a 

Mamdani proportional-derivative (PD) 
type (see the diagram in Figure 1), having 
the control error and its derivative as the 
input variables and the insulin rate to be 
delivered as the output. Note that negative 
values for the insulin deliver rates are not 
possible, so the controller’s output is 
limited to zero to avoid simulation errors.  

The scaling gains for the input variables 
are not analysed in this paper (ge = gce = 1) 
as they have a smaller influence on the 
control performances. However, to obtain 
a faster reaction to large error values, the 
scaling gain of the output variable was set 
to gu = 2. This value could be personalized 
as in [15]. Further research on finding the 
optimal value is still to be done. 

The control error is defined as: 
 

br GtGtGtGte  )()]()([)( , 
 
with Gr(t) being the reference value of 
glucose concentration at time t, which in 
our case is set to be constant and equal to  

 

 
Fig. 1. The fuzzy controller diagram 



Boldişor, C., et al.: Simulations of a Model-Based Fuzzy Control System for Glycemic… 97 

The numerical rule-base of the fuzzy controller       Table 2 

  change in error 

  ce1 =  0.5 ce2 = 0 ce3 = 0.5 

e1 = 0 0.1 0 0 

e2 = 40 0.2 0.1 0 

e3 = 80 0.3 0.2 0.1 

e4 = 120 0.5 0.4 0.3 

e5 = 160 0.7 0.6 0.3 

e6 = 200 0.9 0.8 0.6 

Er
ro

r 

e7 = 240 1 1 0.8 
 

the basal value of glucose concentration in 
blood:  

 
Gr(t) = Gb. 
 
The fuzzy inference mechanism is a 

Mamdani numerical table-based one [12], 
with the rules described in Table 2. At 
each iteration of the control algorithm the 
insulin dose is calculated as a weighted 
average of uij values in rule-table: 
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with the weights wij being inversely 
proportional to the “distance” between the 
(ei; cej) point and the currently measured 
pair (e(t)); ce(t)): 
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When the values of error and change in 

error are e(t) = ei or ce(t) = cej (for any j), 
then the weights are calculated as: 
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When e(t) = ei and ce(t) = cej the fuzzy 

controller’s output is u(t) = uij. 
 
4. Simulations Results and Discussion 

 
To evaluate the controller’s performance, 

a Matlab-Simulink model and the Matlab’s 
Fuzzy Logic Toolbox were used. The two 
situations mentioned in previous section 
(A and B) were simulated. The results are 
depicted in Figures 2 and 3. For the B case, 
the glucose accumulation in blood due to 
the carbohydrates absorption for a diabetic 
patient is depicted in Figure 4.  

In order to have a more realistic control, 
it was considered that the imaginary 
insulin deliver device adjusts the dosage 
every 5 minutes (Note the shapes of insulin 
dosage in Figures 2b and 3b.).  

It is very unlikely to have a device that 
could change the injection rate in a time 
range of seconds. In terms of control 
engineering, this behaviour is described 
as a zero-order hold element, and it also 
allows a reasonable sampling time. In 
both cases, the glucose concentration 
returned to its basal value in the expected 
time range, and without crossing this 
value. 
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Fig. 2. Glycemic control results: a) the 

blood glucose concentration in time from a 
high initial value to normal and b) the 
insulin injection rate (adjusted every 5 

minutes) that produce this result 
 

5. Conclusions 
 
When speaking about designing a system 

to control the blood glucose concentration 
(“artificial pancreas”), the caregivers’ 
experience in T1DM treatment is the first 
to be considered. In most situations, their 
actions can be expresses in terms of fuzzy 
logic, which means that a fuzzy control 
algorithm gains enough motivation to be 
investigated. In fuzzy control theory, most 
applications follow a set of design 
guidelines that assures certain performance 
and an easy implementation.  

In this paper, we proved the feasibility of 
using a fuzzy logic based simple solution 
to control the blood glucose concentration 
in the Bergman’s minimal model.  

 
Fig. 3. Glycaemia control results: a) the 
blood glucose concentration in time after 
having a meal with 50 g of carbohydrates, 
and b) the insulin injection rate (adjusted 
every 5 minutes) that produce this result 
 
The simulations of the system we 

presented suggest that fuzzy controller can 
assure control performances similar to 
those obtained by using more complex 
algorithms, as the intensively used model 
predictive control. 

The controller assures a realistic return to 
normal values for the blood glucose 
concentration. More important, any 
overshoot value, which in this case means 
possible hypoglycaemia, was avoided. 

The design procedure was quite easy and 
clear, and algorithm is easy to implement 
on any numerical device. The controller 
was obtained mainly from the experience 
in fuzzy control, but also following what it 
can be considered realistic results, as those 
described in today’s literature.  
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Fig. 4. The glucose disturbance after 

having a meal: a) CHO absorption rate in 
time; b) the raise of glucose concentration 
for a T1DM patient from its initial value 

 
Acknowledgements 
 

We hereby acknowledge the structural 
founds project PRO-DD (POS-CCE, 
0.2.2.1., ID 123, SMIS 2637, ctr. No. 
11/2009) for providing the infrastructure 
used in this work. 

 
References 

 
1. Atlas, E., et al.: MD-Logic Artificial 

Pancreas System. A Pilot Study in 
Adults with Type 1 Diabetes. In: 
Diabetes Care 33 (2010) No. 5, p. 
1072-1076.  

2. Bequette, B.W.: Process Control: 
Modeling, Design, and Simulations. 
Prentice Hall PTR, 2002. 

3. Bergman, R.N., Phillips, L.S., Cobelli, 

C.: Physiologic Evaluation of Factors 
Controlling Glucose Tolerance in 
Man. Measurement of Insulin 
Sensitivity and -Cell Glucose 
Sensitivity from the Response to 
Intravenous Glucose. In: J. of Clinical 
Investigations 68 (1981), p. 1456-
1467.  

4. Bergman, R.N.: Minimal Model: 
Perspective from 2005. In: Hormone 
Research in Paediatrics 64 (2005) 
Suppl. 3, p. 8-15. 

5. Campos-Delgado, D.U., et al.: Fuzzy-
Based Controller for Glucose 
Regulation in Type-1 Diabetic Patients 
by Subcutaneous Route. In: IEEE 
Trans. on Biomedical Engineering 53 
(2006) No. 11, p. 2201-2210. 

6. Caudal, A., et al.: Closing the Loop. 
In: Diabetes Technology & 
Therapeutics 17 (2015) No. 1, p. S27-
S38. 

7. Chen, J., et al.: Continuous Drug 
Infusion for Diabetes Therapy: A 
Closed Loop Control System Design. 
In: EURASIP J. on Wireless 
Communications and Networking, 
2008, Art. ID 495185.  

8. Cobelli, C., Toffolo, G., Ferrannini, E.: 
A Model of Glucose Kinetics and their 
Control by Insulin, Compartmental 
and Noncompartmental Approaches. 
In: Mathematical Biosciences 72 
(1984), p. 291-315. 

9. De Gaetano, A., Arino, O.: 
Mathematical Modelling of the 
Intravenous Glucose Tolerance Test. 
In: J. of Mathematical Biology 40 
(2000), p. 136-168.  

10. Doyle, F.J., Huyett, L.M., Lee, J.B., et 
al.: Closed-Loop Artificial Pancreas 
Systems: Engineering the Algorhitms. 
In: Diabetes Care 37 (2014), p. 1191-
1197. 

11. Hovorka, R., et al.: Nonlinear Model 
Predictive Control of Glucose 
Concentration in Subjects with Type 1 



Bulletin of the Transilvania University of Braşov • Series I • Vol. 8 (57) No. 2 - 2015 
 
100 

Diabetes. In: Physiological Measure-
ment 25 (2004), p. 905-920.  

12. Jantzen, J.: Foundations of Fuzzy 
Control. Wiley, UK, 2007.  

13. Kaveh, P., Shtessel, Y.: High Order 
Sliding Mode Control for Blood 
Control Regulation. In: Proc. of the 
2006 Int. Workshop on Variable 
Structure Systems, Mon A.3, Alghero, 
Italy, 2006, p. 11-16. 

14. Lunze, K., et al.: Blood Glucose 
Control Algorithms for Type-1 Diabetic 
Patients: A Methodological Review. 
In: Biomedical Signal Processing and 
Control 8 (2012) No. 2, p. 107-119. 

15. Mauseth, R., et al.: Use of a "Fuzzy 
Logic" Controller in a Closed-Loop 
Artificial Pancreas. In: Diabetes 
Technology & Therapeutics 15 (2013) 
No. 8, p. 628-633. 

16. Nimri, R., et al.: Night Glucose 
Control with MD-Logic Artificial 
Pancreas in Home Setting: A Single 
Blind, Randomized Crossover Trial-

Interim Analysis. In: Pediatric Diabetes 
15 (2014) No. 2, p. 91-99.  

17. Nimri, R., Phillip, M.: Artificial 
Pancreas: Fuzzy Logic and Control of 
Glycemia. In: Current Opinion in 
Endocrinology, Diabetes and Obesity 
21 (2014) No. 4, p. 251-256. 

18. Phillip, M., et al.: Nocturnal Glucose 
Control with an Artificial Pancreas at 
a Diabetes Camp. In: The New 
England Journal of Medicine 368 
(2013), p. 824-833. 

19. Takahashi, D., Yang, X., Hu, F.: A 
Survey of Insulin-Dependent Diabetes-
Part II: Control Methods. In: Int. J. of 
Telemedicine and Applications (2008), 
Article ID 739385, 14 pages.  

20. Youssef, J. El, Castle, J., Ward, K.W.: 
A Review of Closed-Loop Algorithms 
for Glycaemic Control in the 
Treatment of Type 1 Diabetes. In: 
Algorithms 2 (2009) No. 1, p. 518-
532. 

 
 


