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ESTIMATES OF THE CORRECTION COEFFICIENT IN
COULOMB’S LAW FOR ELECTROSTATIC INTERACTION
BETWEEN TWO CHARGED CONDUCTING SPHERES

Stefan BOZHKOV1 Kiril KOLIKOV2 and Boyan ZLATANOV3

Abstract

In the present work we consider the coefficient (correction coefficient),
which compliments Coulomb’s Law in the case of electrostatic interaction
between two charged conducting spheres with equal radii and charges. It
is proved that the correction coefficient is smaller than one, when the ratio
of the radii to the distance between their centers is smaller than 2/5. We
obtained a formula for calculating the correction coefficient with an arbitrary
precision with the help of partial sums.
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1 Introduction

The Coulomb’s Law defines the force of electrostatic interaction between two
point charges. In practice, however, the interaction is not between point charges
but between charged bodies, which have specific dimensions, geometry and phys-
ical structure. This causes the problem for finding the actual electrostatic force
between two charged bodies.

The problem of determining the electrostatic force of interaction between two
charged conducting spheres with arbitrary radiuses and charges was first investi-
gated by Poisson. Later, Sir Thompson (Lord Kelvin) introduces his image charges
theory thus significantly simplifying the investigation. This problem is later on
considered by Maxwell ([7], Chapter 1). He discovers that the electrostatic force
between the two spheres is different from the electrostatic force between the point
charges (with the same magnitude and sign) located at the centres of the spheres,
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which is derived by Coulomb’s law. According to Maxwell this deviation is caused
by the redistribution of the charges as a result of the mutual electrostatic influence
between the spheres. Having in mind the redistribution of the charges, Maxwell
suggests a general method for determining the force of interaction between two
spheres with arbitrary charges and radii using zonal harmonics ([7], Chapters 11-
13). Many scientists after him find other solutions to the problem. In different
special cases they derive exact formulas or give approximate formulas which are
good enough for the solution of some theoretical or practical problems. Soules
analyses Coulomb’s trials and conducts precise experiments having in mind the
induction effects [12]. He uses the image charges method to develop a computer
program in order to determine numerically the force of interaction. Based on the
analysis of the numerical values Soules also suggests an approximated formula
for the electrostatic force. A number of authors using the image charges method
derive approximate formulas for the force of interaction between two charged con-
ducting spheres in the special case when they are with equal radiuses and charges.
Such a formula is found by Slisko and Brito-Orta and using a computer program
they compare the values calculated using different approximations [13].

Recent results on the electrostatic force of interaction between two charged
conducting bodies are obtained in [1], [2], [3], [5], [8], [9], [10], [11].

An exact analytical formula for the force of electrostatic interaction between
two spheres with arbitrary radii and charges is obtained in [4]. There a correction
coefficient is introduced, which complements Coulomb’s law, represented by the
double infinite sum. In the present work we prove the convergence of the correction
coefficient for the particular case of two conducting spheres with equal radii and
equal charges. At predetermined correction coefficient error, we determine the
upper limits of summation indexes in the calculation of this coefficient, when
replacing the infinite sum with finite one.

We will consider in the present work two conductive spheres with equal radii
r and equal charges Q located at a distance R > 2r between their centers. Let us
denote δ = r

R . We will consider the following functions

f(δ) =
√

1− 4δ2, Cj(δ) =
(1 + f(δ))j+1 − (1− f(δ))j+1

2j+1f(δ)
,

φj(δ) =
δ2Cj−1(δ)

Cj(δ)
, Φi,j(δ) =

1

(1− φi(δ)− φj(δ))2 ,

L0(δ) =
1

1 +
∞∑
m=1

δ2m

C2m(δ)
−
∞∑
m=1

δ2m−1

C2m−1(δ)

, Lj(δ) =
(−δ)j

Cj(δ)
L0(δ)

and

L(δ) =
∞∑
i=0

∞∑
j=0

Li(δ)Lj(δ)Φi,j(δ), (1)

that are defined for δ ∈
[
0, 1

2

)
and the index j ∈ N ∪ {0}.
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We have obtained in [4] the formula

F =
Q2

4πε0R2
L(δ), (2)

by applying the image charges method to the electric field created by the electric
charges of the two conducting spheres, which presents the force of electrostatic
interaction between the two spheres. It is easy to see that if we consider two point
charges, i.e. δ = 0 in (1), then L(0) = 1, which is the Coulomb’s Law.

We will use the Lambert W function, which presents the solution of the equa-
tion y = W (y)eW (y). The Lambert W function is defined for any complex number
y. We will restrict to the real valued branch of W :

[
−1
e ,∞

)
→ R.

Let A =
(
aji

)
, i, j = 0, 1, 2, . . . be an infinite matrix of real numbers. Let

{uk}∞k=0 be an arbitrary representation the matrix A as a sequence.

Theorem 1. ([6], p. 362) If the double series
∑∞

j=0

∑∞
i=0

∣∣∣aji ∣∣∣ is convergent then

the series
∑∞

k=0 uk is convergent for any representation {uk}∞k=0 of the matrix A
and

∞∑
j=0

∞∑
i=0

aji =

∞∑
k=0

uk. (3)

We will use a diagonal representation
∑∞

j=0

∑j
i=0 a

j−i
i of the double sum (3)

throughout the article.

2 Main results

Let us put

g(δ) = 1−f(δ)
1+f(δ) , h(δ) =

(
1− 4δ2

1+f(δ)

)−2
, p(δ) = 2δ

1+f(δ) .

As there will be no possibility of misunderstanding we will use f , g, h, p, φi,
Φi,j , Cj instead of f(δ), g(δ), h(δ), p(δ), φi(δ), Φi,j(δ), Cj(δ) just for simplification
of the notations.

We will use the notation [x] to present the integer part of x.

Theorem 2. For every δ ∈
(
0, 2

5

]
inequality L(δ) < 1 holds.

Theorem 3. Let δ ∈
[
0, 1

2

)
and ε > 0. If N =

 log
(
ε(1−p)2(1−δ)4

4h

)
log p

 + 1 and

M =

LambertW
(
ε(1−δ)2

2h p(1− p)2 log p
)

log p

−1 then for every n ≥ N and m ≥M
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inequality ∣∣∣∣∣∣∣∣∣∣∣
L(δ)−

m∑
j=0

j∑
i=0

(−δ)jΦi,j−i(δ)

Ci(δ)Cj−i(δ)(
1 +

∑n
i=1

(−δ)i
Ci(δ)

)2

∣∣∣∣∣∣∣∣∣∣∣
< ε

holds.

3 Auxiliary results

It is easy to see that

g : [0, 1/2)→ [0, 1) and p : [0, 1/2)→ [0, 1). (4)

We will need in the sequel the fraction
Cj−1

Cj
. From Cj = (1+f)j+1

2j+1f

(
1− gj+1

)
we get

Cj−1

Cj
=

2(1− gj)
(1 + f)(1− gj+1)

. (5)

Lemma 1. For every δ ∈
[
0, 1

2

)
and for every j = 0, 1, 2, . . . inequality

δCj(δ)
Cj+1(δ) ≤

1 holds.

Proof. From (5) and (4) we get that the inequality
δCj(δ)
Cj+1(δ) ≤ p(δ) < 1 holds for

every δ ∈
[
0, 1

2

)
.

Lemma 2. For every δ ∈
[
0, 1

2

)
and for every j = 1, 2, . . . inequality δj

Cj(δ) ≤ p
j(δ)

holds.

Proof. The inequality

δj

Cj(δ)
=

(
2δ

1 + f(δ)

)j
· 2f(δ)

(1 + f(δ)) (1− gj+1(δ))
≤
(

2δ

1 + f(δ)

)j
= pj(δ)

is true for every δ ∈
[
0, 1

2

)
.

Lemma 3. For every δ ∈
[
0, 1

2

)
the series

∞∑
j=1

δ2j

C2j(δ)
(6)

and
∞∑
j=1

δ2j−1

C2j−1(δ)
(7)

are convergent.
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Proof. From Lemma 2, the convergence of the series
∑∞

j=1 p
2j and

∑∞
j=1 p

2j−1 it
follows that the series (6) and (7) are convergent.

By Lemma 3 it follows that the series

∞∑
j=0

(−δ)j

Cj(δ)

is absolutely convergent and consequently there holds the representation

S1(δ) =

1 +

∞∑
j=1

δ2j

C2j(δ)
−
∞∑
j=1

δ2j−1

C2j−1(δ)

2

=

1 +
∞∑
j=1

(−δ)j

Cj(δ)

2

=
∞∑
j=0

∞∑
i=0

(−δ)j+i

Cj(δ)Ci(δ)

=
∞∑
j=0

∞∑
i=0

Lj(δ)Li(δ)

L0(δ)L0(δ)
=

∑∞
j=0

∑∞
i=0 Lj(δ)Li(δ)

L0(δ)L0(δ)

(8)

for every δ ∈
[
0, 1

2

)
.

Lemma 4. For every δ ∈
[
0, 1

2

)
and every ε > 0 there exist N1 = N1(δ, ε) ∈ N

and M1 = M1(δ, ε) ∈ N such that for any n ≥ N1 inequality
∣∣∣ (−δ)nCn(δ)

∣∣∣ < ε holds and

for any m ≥M1 inequality (2+m)pm+1(δ)
(1−p(δ))2 < ε holds.

Proof. Let us put N1 ≥
[

log ε
log p

]
+ 1. From Lemma 1 and Lemma 2 it follows that

the inequality
∣∣∣ (−δ)nCn(δ)

∣∣∣ ≤ ∣∣∣ (−δ)N1

CN (δ)

∣∣∣ ≤ pN1(δ) < p
log(ε)
log p (δ) = ε holds true for every

n ≥ N1.

Let us put M1 =

[
LambertW(εp(1−p)2 log p)

log p

]
− 1. For any fixed δ ∈ [0, 1/2) the

function F (u) = (2 + u)pu+1(δ) : [M1,+∞) is a decreasing function. Therefore

the inequality (2+m)pm+1

(1−p)2 ≤ (2+M1)pM1+1

(1−p)2 < ε holds true for every m ≥M1.

Lemma 5. For every δ ∈
[
0, 1

2

)
and every ε > 0 there exists N2 ∈ N, such that

the inequality
∣∣∣∑∞j=0

(−δ)j
Cj(δ) −

∑n−1
j=0

(−δ)j
Cj(δ)

∣∣∣ < ε holds for every n ≥ N2.

Proof. Let us put N2 ≥
[

log ε
log p

]
+ 1. From Lemma 1 the sequence

∣∣∣ (−1)jδj

Cj(δ)

∣∣∣ is

decreasing and consequently from the convergence of the series
∑∞

j=0
(−δ)j
Cj(δ) and

Lemma 4 it follows that the inequality∣∣∣∣∣∣
∞∑
j=0

(−δ)j

Cj(δ)
−
n−1∑
j=0

(−δ)j

Cj(δ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
j=n

(−δ)j

Cj(δ)

∣∣∣∣∣∣ ≤ δn

Cn(δ)
<

δN2

CN2(δ)
< ε

holds for every n ≥ N2.
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Lemma 6. For every δ ∈
[
0, 1

2

)
and for every j = 0, 1, 2, . . . the inequality

φj(δ) ≤ φj+1(δ). (9)

holds.

Proof. From (5) it follows that the inequality
φj
φj+1

=
Cj−1Cj+1

(Cj)2
= (1−gj)(1−gj+2)

(1−gj)2
=

(1−gj)2−gj(g−1)2

(1−gj)2
< 1 holds for every δ ∈

(
0, 1

2

)
.

For δ = 0 inequality (9) is trivial, because φj(0) = 0.

Lemma 7. For every δ ∈
[
0, 1

2

)
there holds limj→∞ φj(δ) = 2δ2

1+f(δ) .

Proof. From (5) we get that

lim
j→∞

φj(δ) = lim
j→∞

δ2Cj(δ)

Cj+1(δ)
= lim

j→∞

2δ2

1 + f(δ)

(
1− gj(δ)

1− gj+1(δ)

)
=

2δ2

1 + f(δ)
.

holds for every δ ∈
[
0, 1

2

)
.

Lemma 8. For every δ ∈
[
0, 1

2

)
and every i, j = 0, 1, 2, . . . the inequality Φi,j(δ) ≤

h(δ) holds.

Proof. From Lemma 6 and Lemma 7 we get the inequality

Φi,j(δ) <

(
1− 2 lim

j→∞
φj(δ)

)−2

=

(
1− 4δ2

1 + f(δ)

)−2

= h(δ).

holds true for every δ ∈
[
0, 1

2

)
.

Lemma 9. For every δ ∈
[
0, 1

2

)
the double series

∞∑
j=0

∞∑
i=0

(−δ)i+jΦi,j(δ)

Cj(δ)Ci(δ)
. (10)

is absolutly convergent.

Proof. From Lemma 2 and Lemma 8 we have that for every δ ∈
[
0, 1

2

)
the in-

equality
∣∣∣ (−δ)i+jΦi,j(δ)

Cj(δ)Ci(δ)

∣∣∣ ≤ pj+i(δ)h(δ) holds.

The double series
∑∞

j=0

∑∞
i=0 p

i+j is convergent for every p ∈ [0, 1) and con-
sequently the series (10) is absolutely convergent.

Lemma 10. For every δ ∈
[
0, 1

2

)
the inequality

∞∑
j=0

∞∑
i=0

∣∣∣∣(−δ)i+jΦi,j(δ)

Cj(δ)Ci(δ)

∣∣∣∣ ≤ h(δ)

(1− p(δ))2
(11)

holds.
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Proof. From Lemma 9 the series (11) is absolutely convergent. Therefore we can
change the summation without changing the sum. Thus we get that the the
inequality

S2(δ) =

∞∑
j=0

∞∑
i=0

∣∣∣∣(−δ)i+jΦi,j(δ)

Cj(δ)Ci(δ)

∣∣∣∣ =

∞∑
j=0

j∑
i=0

∣∣∣∣(−δ)jΦi,j−i(δ)

Ci(δ)Cj−i(δ)

∣∣∣∣
≤ h

∞∑
j=0

j∑
i=0

pj = h
∞∑
j=0

(j + 1)pj =
h

(1− p)2

holds for every δ ∈
[
0, 1

2

)
.

Lemma 11. For every δ ∈
[
0, 1

2

)
and every ε > 0 there exists M2 ∈ N such that

for every m ≥M2 the inequality

Jm(δ) =

∣∣∣∣∣∣
∞∑

j=m+1

j∑
i=0

(−δ)jΦi,j−i(δ)

Ci(δ)Cj−i(δ)

∣∣∣∣∣∣ < ε

holds.

Proof. Let us put M2 =

[
LambertW( ε

h
p(1−p)2 log p)

log p

]
− 1.

From Lemma 2, Lemma 8 and Lemma 4 we get that the inequality

Jm(δ) =

∣∣∣∣∣∣
∞∑

j=m+1

j∑
i=0

(−δ)jΦi,j−i(δ)

Ci(δ)Cj−i(δ)

∣∣∣∣∣∣ ≤ h
∣∣∣∣∣∣
∞∑

j=m+1

(j + 1)pj

∣∣∣∣∣∣
= h

(m+ 2)pm+1 − (m+ 1)pm+2

(1− p)2
≤ h(2 +m)pm+1

(1− p)2
< ε

holds for every m ≥ M2, because (m + 2)pm+1 − (m + 1)pm+2 > 0 for every
m ≥M2.

Lemma 12. For every δ ∈
[
0, 1

2

)
and every ε > 0 there exists M2 ∈ N such that

for every m ≥M2 the inequality∣∣∣∣∣∣
∞∑
j=0

∞∑
i=0

(−δ)j+iΦi,j(δ)

Cj(δ)Ci(δ)
−

m∑
j=0

j∑
i=0

(−δ)j+iΦi,j−i(δ)

Ci(δ)Cj−i(δ)

∣∣∣∣∣∣ < ε

holds.

Proof. By Lemma 9 the series
∑∞

j=0

∞∑
i=0

(−δ)j+iΦi,j(δ)

Cj(δ)Ci(δ)
is absolutely convergent

and therefore it follows that we can change the summation in it without changing
the sum

∞∑
j=0

∞∑
i=0

(−δ)j+iΦi,j(δ)

Cj(δ)Ci(δ)
=
∞∑
j=0

j∑
i=0

(−δ)j+iΦi,j−i(δ)

Ci(δ)Cj−i(δ)
.
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From Lemma 11 we get that the inequality

Bm(δ) =

∣∣∣∣∣∣
∞∑
j=0

∞∑
i=0

(−δ)j+iΦi,j(δ)

Cj(δ)Ci(δ)
−

m∑
j=0

j∑
i=0

(−δ)j+iΦi,j−i(δ)

Ci(δ)Cj−i(δ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
j=0

j∑
i=0

(−δ)j+iΦi,j−i(δ)

Ci(δ)Cj−i(δ)
−

m∑
j=0

j∑
i=0

(−δ)j+iΦi,j−i(δ)

Ci(δ)Cj−i(δ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

j=m+1

j∑
i=0

(−δ)j+iΦi,j−i(δ)

Ci(δ)Cj−i(δ)

∣∣∣∣∣∣ < ε

holds for every m ≥M2 =

LambertW

(
εp(1−p)2

h
log p

)
log p

− 1.

The inequalities (12) and (13) hold for every δ ∈
[
0, 1

2

)
δCj(δ)

Cj+1(δ)
≤ 2δ

1 + f(δ)
, (12)

δ2 ≤ φj(δ) ≤
2δ2

1 + f(δ)
. (13)

We will need the equality (1 + f(δ))(1 + g(δ)) = 2.

Lemma 13. For every δ ∈
(
0, 2

5

]
and any j, i = 1, 2, . . . , the inequalities

δj−1

Cj−1(δ)
(Φi,j−1(δ)− 1) >

δj

Cj(δ)
(Φi,j(δ)− 1) , (14)

δj−1

Cj−1(δ)
(Φ0,j−1(δ)− 1) >

2δj

Cj(δ)
(Φ0,j(δ)− 1) . (15)

hold

Proof. Let us put c1(δ) =
4δ2

(1− 2δ2)2 (1 + f(δ)) (1 + f(δ)− 4δ2)2 . and

b1(δ) = (1− δ2) (1 + f(δ))
(
1 + f(δ)− 4δ2

)2 − 4δ(1− 2δ2)2(1 + f(δ)− 2δ2).

For any δ ∈ (0, 0.4) the inequalities c1(δ) > 0 and b1(δ) > 0 hold. From the
inequalities

A1(δ) = (Φi,j−1(δ)− 1)− δCj−1(δ)
Cj(δ) (Φi,j(δ)− 1)

≥
((

1− 2δ2
)−2 − 1

)
− δCj−1(δ)

Cj(δ)

((
1− 4δ2

1+f(δ)

)−2
− 1

)
≥

(
4δ2(1−δ2)
(1−2δ2)2

− 16δ3

1+f(δ) ·
1+f(δ)−2δ2

(1+f(δ)−4δ2)2

)
= c1(δ)b1(δ)
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we get that A1(δ) > 0 for δ ∈ (0, 0.4] and consequently (14) holds true.

Let us put c2(δ) =
δ2

(1− δ2)2 (1 + f(δ)) (1 + f(δ)− 2δ2)2 and

b2(δ) = (2− δ2)(1 + f(δ))
(
1 + f(δ)− 2δ2

)2 − 4δ(1− δ2)2(1 + f(δ)− δ2).

For any δ ∈ (0, 0.4) the inequalities c2(δ) > 0 and b2(δ) > 0 hold.
From φ0(δ) = 0 we have the equalities

A2(δ) = (Φ0,j−1(δ)− 1)− 2δCj−1(δ)
Cj(δ) (Φ0,j(δ)− 1)

= (Φ0,j−1(δ)− 1)− 2δCj−1(δ)
Cj(δ) (Φ0,j(δ)− 1)

= δ2(2−δ2)
(1−δ2)2

− 4δ3

1+f(δ) ·
1+f(δ)−δ2

(1+f(δ)−2δ2)2
= c2(δ)b2(δ)

Thus we get that A2(δ) > 0 for δ ∈ (0, 0.4] and consequently (15) holds.

4 Proof of main results

Just for some simplification of the notations we will denote:

L0(δ) = L0(δ), Li(δ) =
Li(δ)

L0(δ)
=

(−δ)i

Ci(δ)
, j ∈ N.

Proof. (of Theorem 2) From L0(δ)L0(δ) (Φ0,0(δ)− 1) = 0 and the absolute con-

vergence of the series
∞∑
i=0

∞∑
j=0

Li(δ)Lj(δ) and
∞∑
i=0

∞∑
j=0

Li(δ)Lj(δ)Φi,j(δ) it follows

that we can change the summation in the series

∞∑
i=0

∞∑
j=0

Li(δ)Lj(δ)Φi,j(δ)−
∞∑
i=0

∞∑
j=0

Li(δ)Lj(δ)

without changing the sum. From the chain of equalities

S(δ) =
∞∑
i=0

∞∑
j=0

LiLjΦi,j −
∞∑
i=0

∞∑
j=0

LiLj =
∞∑
i=0

∞∑
j=0

LiLj (Φi,j − 1)

=
∞∑
i=1

2i−1∑
j=0

LjL2i−1−j (Φi,2i−1−j − 1) +
2i∑
j=0

LjL2i−j (Φi,2i−j − 1)


=

∞∑
i=1

L0

(
L2i−1 (Φ0,2i−1 − 1) + 2L2i (Φ0,2i − 1)

)
+
∞∑
i=1

2i−1∑
j=1

LjL2i−1−j (Φi,2i−1−j − 1) +
2i−1∑
j=1

LjL2i−j (Φi,2i−j − 1)
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and Lemma 13 we obtain that S(δ) < 0 for every δ ∈
(
0, 2

5

]
. Thus using the

representation (8) we get that the inequality

L(δ) =
∞∑
i=0

∞∑
j=0

Li(δ)Lj(δ)Φi,j(δ) =

∞∑
i=0

∞∑
j=0

Li(δ)Lj(δ)Φi,j(δ)

S1(δ)

=

∞∑
i=0

∞∑
j=0

LiLjΦi,j(δ)

∞∑
i=0

∞∑
j=0

LiLj

< 1

(16)

holds for every δ ∈
(
0, 2

5

]
.

Proof. (of Theorem 3) From the result that the series

∞∑
j=0

∞∑
i=0

LjLiΦi,j and 1 +
∞∑
j=1

δ2j

C2j(δ)
−
∞∑
j=1

δ2j−1

C2j−1(δ)

are absolutely convergent it follows that their sums do not change if we change
the summation. We will use the representations

S1 = 1− δ

C1(δ)
+
∞∑
j=1

(
δ2j

C2j(δ)
− δ2j+1

C2j+1(δ)

)
and

S2 =

∞∑
j=0

∞∑
i=0

LjLiΦi,j =

∞∑
j=0

j∑
i=0

LiLj−iΦi,j−i.

From Lemma 1 and the equality C1(δ) = 1 inequality 1− δ ≤ S1 ≤ 1 follows.

Let us denote Jm =
∑m

j=0

∑j
i=0 LiLj−iΦi,j−i and Kn(δ) =

∑n−1
j=0

(−δ)j
Cj(δ) .

Let ε > 0 be arbitrarily chosen. From Lemma 11 it follows that there exist

M =

LambertW
(
ε(1−δ)2

2h (1− p)2 p log p
)

log p

− 1,

such that the inequality

|S2 − Jm| =

∣∣∣∣∣∣S2 −
m∑
j=0

j∑
i=0

LiLj−iΦi,j−i

∣∣∣∣∣∣ < ε

2
(1− δ)2 (17)

holds for every m ≥M . Similarly from Lemma 5 it follows that there exist

N =

 log
(
ε(1−p)2(1−δ)4

4h

)
log p

+ 1,
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such that the inequality

|S1 −Kn| =

∣∣∣∣∣∣S1 −
n−1∑
j=0

(−δ)j

Cj(δ)

∣∣∣∣∣∣ < ε (1− p)2 (1− δ)4

4h
(18)

holds for every n ≥ N .
From (18) we get that the inequality

|S2
1 −K2

n| = |S1 +Kn|.|S1 −Kn| ≤ 2|S1|.|S1 −Kn| <
ε (1− p)2 (1− δ)4

2h

holds for every n ≥ N . From (17) we get that the inequality∣∣∣∣S2 − Jm
S2

1

∣∣∣∣ ≤ ε
2 (1− δ)2

(1− δ)2 =
ε

2

holds for every m ≥M . From Lemma 10 we have the inequality

|Jm| ≤
m∑
j=0

j∑
i=0

|LiLj−iΦi,j−i| ≤
h

(1− p)2

and therefore we get the inequality |Jm|
∣∣∣∣K2

n − S2
1

S2
1K

2
n

∣∣∣∣ =
|Jm|
S2

1K
2
n

∣∣K2
n − S2

1

∣∣ ≤ ε

2
, where

we use the inequality S1(δ)Kn(δ) ≥ (1− δ)2. Consequently the inequality∣∣∣∣S2

S2
1

− Jm
K2
n

∣∣∣∣ ≤ ∣∣∣∣S2

S2
1

− Jm
S2

1

∣∣∣∣+

∣∣∣∣JmS2
1

− Jm
K2
n

∣∣∣∣ =

∣∣∣∣S2 − Jm
S2

1

∣∣∣∣+ |Jm|
∣∣∣∣K2

n − S2
1

S2
1K

2
n

∣∣∣∣ < ε

holds for every m ≥M and n ≥ N .

Corollary 1. The correction coefficient (1) is a continuous function in every
closed interval [0, a] ⊂ [0, 1/2).

Proof. From the representation (16) it follows that the correction coefficient is a
fraction of two series. By Lemma 3 and Lemma 9 it follows that the correction
coefficient is a fraction of two continuous functions in every closed interval [0, a] ⊂
[0, 1/2) and therefore it is a continuous function in every closed interval [0, a] ⊂
[0, 1/2).

5 Applications

Formula (2) presents the force of electrostatic interaction between two spheres.
Therefore it is interesting to know the values of the coefficient (1) for different
values of δ = r

R , where r is the radii of the spheres and R is the distance between
their centers. The functions which define the series L(δ) are complicated and
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therefore we could not calculate the precise values of L(δ), for any δ ∈ (0, 1/2).
Theorem 3 however, gives us the possibility to calculate L(δ) with an arbitrary
precision ε > 0, by calculating the partial sums

M∑
j=0

j∑
i=0

(−δ)jΦi,j−i(δ)

Ci(δ)Cj−i(δ)(
1 +

N∑
i=1

(−δ)i

Ci(δ)

)2 (19)

for any δ ∈ [0, 1/2).

Using Theorem 3 we get the values max{M,N} for some δ ∈
(
0, 1

2

)
and ε > 0

in Table 1.

Table 1: Values of max{M,N}, depending on δ and ε

ε \ δ 0.0001 0.001 0.1 0.2 0.3 0.4 0.49 0.499 0.4999 0.49999

10−1 1 1 2 4 6 13 75 336 1363 5250
10−2 1 1 3 5 8 16 88 374 1482 5625
10−3 1 2 4 7 10 20 100 412 1601 5999
10−4 2 2 5 8 13 23 112 450 1720 6373
10−5 2 2 6 10 15 27 124 487 1838 6746
10−6 2 3 7 11 17 30 135 525 1956 7119
10−7 2 3 8 13 19 34 147 562 2074 7491
10−8 3 3 9 14 22 37 159 600 2192 7862
10−9 3 4 10 16 24 41 171 637 2310 8234

10−10 3 4 11 17 26 44 183 674 2428 8605

It is seen from Table 1 that, when δ is relatively small (i.e. the distance
between the spheres is relatively large), the upper limits of summation indexes in
the partial sums (19) are small too. However, if the two spheres are at a relatively
small distance between one another, the upper limits of summation indexes in the
partial sums (19) are sharply increasing. A similar observation with a different
technique is obtained in [13].

Using Theorem 3 we get the values L(δ) for some δ ∈ (0, 1/2) and ε > 0.

From Table 2 we see, that the values of L(δ) are close to one when the radii of
the spheres are relatively small when compared with the distance between their
centers. From Table 2 and Theorem 2 it follows that the Coulomb’s law gives
relatively accurate results in case that the radius r of the spheres is at least an
order of magnitude smaller than the distance R between their centres.

From Table 2 we see, that the values of L(δ) are relatively smaller than one
when the two spheres are at a relatively small distance between one another. This
shows that the force F of interaction between the spheres highly differs from the
Coulomb force FC , when the spheres are at a relatively small distance between
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Table 2: Approximate values of L(δ), depending on δ and ε

ε \ δ 0.0001 0.1 0.3 0.49 0.49999

10−1 1.0 1.0 0.89 0.63 0.61
10−2 1.00 0.996 0.889 0.628 0.615
10−3 1.000 0.9960 0.8890 0.6279 0.6149
10−4 1.0000 0.99595 0.88901 0.62792 0.61491
10−5 1.00000 0.995954 0.889009 0.627922 0.614915

one another. A similar observation for the behavior of L(δ) but with a different
technique is obtained in [13].

This observation raises the following open questions:

• L(δ) < 1 for any δ ∈ [0, 1/2),

• L(δ) is a decreasing function in [0, 1/2),

• the limit limδ→1/2 L(δ) exists and is smaller than 1,
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